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Abstract: We address the concrete problem of verifying graph prageekpressed in Monadic
Second Order (MSO) logic. It is well-known that the modeécking problem for MSO logic on
graphs is fixed-parameter tractable (FPT) [Cou09, Chap ] mespect to tree-width and clique-
width. The proof uses tree-decompositions (for tree-wédtparameter) and clique-decompositions
(for clique-width as parameter), and the construction afigfitree automaton from an MSO sen-
tence, expressing the property to check. However, thistaaton may fail because either the
intermediate automata are too big even though the final attmirhas a reasonable size or the
final automaton itself is too big to be constructed:the saofemutomata depend, exponentially in
most cases, on the tree-width or the clique-width of the lggap be verified. We present ideas
to overcome these two causes of failure. The first idea isv® gidirect construction of the au-
tomaton in order to avoid explosion in the intermediate StHithe general algorithm. When the
final automaton is still too big, the second idea is to represge transition function by a function
instead of computing explicitly the set of transitionsstlintirely solves the space problem. All
these ideas have been implemented in Common Lisp.
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1 Introduction

It is well-known from [DF99], [FG06],[CMRO01] that the modehecking problem for
MSO logic on graphs is fixed-parameter tractable (FPT) vadpect to tree-width and
clique-width ¢wd).

The standard proof is to construct a finite bottom-up treeraaton that recognizes
a tree (or clique) decomposition of the graph. However, the sf the automaton can
become extremely large and cannot be bounded by a fixed elerpdéuanction of the
size of the formula unless P=NP [FGO04]. This makes the probiard to tackle in
practice, because it is just impossible to construct theedtgomaton.

Systematic approaches have been proposed for subclassEformulas with
limited quantifications in [KLO9]. Our approach is not sysggic; we consider specific
problems which we want to solve in practice, for large classfegraphs.

In the general algorithm, the combinatorial explosion megus each time we en-
counter an alternation of quantifiers which induces a ddteration of the current au-
tomaton. We want to avoid determinizations as much as ples#ilitial ideas to achieve
this goal were first presented in [CD10].



We do not capture all MSO graph properties, but we can foreati this way col-
oring and partitioning problems to take a few examples. isdhticle, we only discuss
graphs of bounded clique-width, but the ideas work as welyjfaphs of bounded tree-
width, in particular because if a graph has a tree-widiti < £, it has a clique-width
cwd < 281 There is however an exponential blow-up.

The Autowrité software written in Common Lisp was first designed to chedk ca
by-need properties of term rewriting systems [Dur02]. Fis purpose, it implements
tree (term) automata. In the first implementation, just tmg&ness problem (does the
automaton recognizes the empty language) was used anchirapied.

In subsequent versions [Dur05], the implementation wagldg@ed in order to pro-
vide a complete library of operations on term automata. Téasd natural step is to
solve concrete problems using this library and to test thédiof the implementation.
Checking graph properties is a perfect challenge for Autewr

Given a property expressed by a MSO formula, we have expatadehe three
following techniques.

1. compute the automaton from the MSO formula and using therg¢algorithm,

2. compute directly the final automaton,

3. define the automaton with implicit transition functiostead of computing its set
of transitions.

The first technique is the only one which is completely genieraheory. The two

first techniques have the advantage that once the final atdonm computed (and
minimized), it can be memaorized for further use. The miniaatomaton obtained in
both cases is unique: it depends only on the property andmits éogical description.
This can be helpful to verify that the two constructions ayerect.

The limits are soon reached using the first technique. Thensetechnique allows
to go somewhat further. With the third technique there iscstihmo more limitation (at
least not the same ones) because the whole automaton iscoegdructed.

In this paper, we do not address the problem of finding termesenting a graph,
that is, to find a clique-width decomposition of the graphséme cases, the graph of
interest may come with a “natural decomposition” from whieé clique decomposition
of bounded clique-width is easy to obtain but for the geneaiaké the known algorithms
are not practically usable.

To illustrate our approach, we shall stick to a unique exangpdng the paper al-
though we have made experiments with many more graph piepert

Path Property: Let Path(X;, X2) be the monadic second-order formula expressing
that, for an undirected grapi and setsX; and X, of vertices this graph, we have
X1 C X, | X1| = 2 and there is a path i6[ X>] linking the two vertices of{; 2.

! http://dept-info.labri.fr/ ~idurand/autowrite/
2 To simplify the presentation, we confuse somewhat syntebsamantics. We note in the same
way a variableX; and its values (sets of vertices)



Figure 1: A graph to test the propertfath(X;, Xs)

Consider the graph of Figure 1.X; = {vs,vs} and Xy = {vy, v3, v4, v7,vs} the
propertyPath(X1, X2) holds forG: | X;| = 2 and there is a pathy — v; —v; —vs —v3
from vg to vs with vertices inX,. The property does not hold X; = {vs,vs} and
X2 = {Ul, V3, V4, Ug}.

Forcwd = 2, we were able to obtain the term automaton (see below howstdem
scribe graphs) directly from the MSO formula starting frdme fiutomata representing
the basic operations, transforming and combining them thitblean operations, de-
terminization, complementation, projection, cylindréiion. But it runs out of memory
for cwd = 3.

We were successful in constructing the direct automatom«fal up to 4. But for
cwd = 5, the program runs out of memory because the constructethatdo is simply
too big.

For higher clique-width, there is no way of representingliekfy the transitions.
This is when the third method comes on stage. The really newlire is to represent
the transition function precisely by a function. Consedlyethere is no more need to
store the transitions. Transitions are computed on the fgnthe automaton is running
on a given term (representing a graph). A graph of cliquettwidhavingn vertices is
represented by a tertrof size|t| < f(k).n. Hence, onlyt| transitions are needed. This
number is in practice much less that the number of trangtadran automaton able to
process all possible terms denoting graphs of clique-width

After recalling how graphs of bounded clique-width are esgnted by terms and
how properties on such graphs can be expressed in MSO, welskatibe our experi-
ments using Autowrite trying to construct automata verni§yproperties on graphs.

2 Preliminary

2.1 Term automata

We recall some basic definitions concerning terms and tetonszata. Much more in-
formation can be found in the on-line book [CD@G2]. We consider a finite signature



F (set of symbols with fixed arity) and@ (F) the set of (ground) terms built from a
signaturef.

Example 1.Let F be a signature containing the symbgisb, add, y,, relqp, relpq, D}
with

arity(a) = arity(b) = 0 arity(®) = 2
arity(addq_p) = arity(relq ) = arity(rely o) =1

We shall see in Section 2.3 that this signature is suitableite terms representing
graphs of clique-width at mo&t

Example 2.t1, to, t3 andt, are terms built with the signatutg of Example 1.

t1 = ®©(a,b)

to = addq_p(®(a, ®(a,b)))

ts = add,p(®(addap(D(a, b)), add, ,(B(a,b))))
ty = add,. b(EB(a relay(adday(D(a,D)))))

We shall see in Tabl@?their associated graphs.

Definition 1. A (finite bottom-up)erm automatohis a quadrupled = (F,Q,Qy, A)
consisting of a finite signaturg, a finite setQ of states, disjoint fron¥, a subset
Qy C Q of final states, and a set of transitions rulesEvery transition is of the form
flq1,...,qn) — qwith f € F,arity(f) =nandqi,...,q.,q € Q.

Term automata recognizegularterm languages[TW68]. The class of regular term
languages is closed by the boolean operations (unionsegxtdon, complementation)
on languages which have their counterpart on automata.|Fdetails on terms, term
languages and term automata, the reader should refer to {OR|G

2.2 Graphs as a logical structure

We consider finite, simple, loop-free, undirected graphksefesions are easy/)Every
graph can be identified with the relational structliWe;, edg) whereVy is the set of
vertices an@dg the binary symmetric relation that describes edgégs C Ve X Vg
and(z,y) € edgc if and only if there exists an edge betweeandy.

Properties of a grap@ can be expressed by sentences of relevant logical languages
For instance, ¢ is complete” can be expressed by

Y, Vy, edga(x, y)

Monadic Second order Logic is suitable for expressing maaplyproperties.

3 Term automata are frequently called tree automata, butnivtisa good idea to identify trees,
which are particular graphs, with terms.

4 We consider such graphs for simplicity of the presentatistmize can work as well with di-
rected graphs, loops, labeled vertices and edges
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2.3 Term representation of graphs of bounded clique-width

Definition 2. Let £ be a finite set of vertex labels and we consider graptssich that
each vertex € V¢ has alabelabel(v) € L. The operations on graphs apethe union

of disjoint graphs, the unary edge additi@itl, , that adds the missing edges between
every vertex labeled to every vertex labeletl the unary relabelingel,,_, that renames

a to b (with a # b in both cases). A constant terdenotes a graph with a single vertex
labeled bya and no edge.

Let 7, be the set of these operations and constants.

Every termt € 7 (F) defines a grapld:(t) whose vertices are the leaves of the
termt¢. Note that, because of the relabeling operations, thedaifehe vertices in the
graphG(t) may differ from the ones specified in the leaves of the term.

A graph haglique-widthat most if it is defined by some € 7 (F) with |£] < k.

Note also that if the ternt describing a graplds does not use redundancies like
adda_b(adda_b(. ), then|t| = @(|Vg|)

Example 3.For £ = {a, b}, the corresponding signature has already be presented in
Example 1. The graphs corresponding to the terms definedampbe 2 are depicted
in Table??.

Example 4.The graph of Figure 1 is of clique-widtd 5. It can be represented with
the term built with = {a, b, ¢, d, e} and shown on the left of Figure 2.

Let Xy,...,X,, be sets of vertices of a gragh. We can define properties of
(X1,...,Xm). For example,

E(X1, X5) : there is an edge between somec X; and somex; € Xo;
Sgl(X3) : Xsisasingleton set;
X7 C X5 :X;isasubsetofs.

Definition3. Let P(X;,..., X,,) be a property of sets of verticés,, . . ., X,,, graphs

G denoted by terms € 7(F.). Let 73 be obtained fromiF, by replacing each
constani by the constants™ w wherew € {0,1}™. For fixedZ, let Lp x, .. x,.).zc

be the set of termsin 7 (F}*) such thatP(X1, ..., X,,,) is true inG(t), whereX; is
the set of vertices which corresponds to the leaves labgied o where the-th bit of
wis 1. Hencet € 7 (F) defines a grapt¥(t) and an assignment of sets of vertices to
the set variableX(y, ..., X,,.



Example 5.The graph of Figure 1 with vertex assignme¥t = {vs,vs} and X, =
{v1,v3,v4,v7,v8} can be representethy the term at the right of Figure 2; it satisfies
the path property. With vertex assignméit = {vs, vs} andXs = {v1,v3,v4, vs}, it
can be represented by almost the same term butbi@@[v7] instead ob™01[v7]

but it does not satisfy the path property anymore.

add_c_d( add_c_d(
add_b_d( add_b_d(
oplus( oplus(
divi), do1[v1],
rel_d_b( rel_d_b(
add_a_d( add_a_d(
oplus( oplus(
d[v2), d"00[v2],
add_c_e( add_c_e(
oplus( oplus(
add_a_b( add_a_b(
add_b_c( add_b_c(
oplus( oplus(
a[v3], a"11[v3],
oplus( oplus(
bv4], b 01[v4],
cva))). c°00[v5])))),
add_a_b( add_a_b(
add_b_e( add_b_e(
oplus( oplus(
a[ve], a“00[v6],
oplus( oplus(
b[v7], b01[v7],
e[vaD)N)) e"11[va))N))

Figure 2: Terms representing the graph of Figure 1

Example 6.The propertyPath(X;, X2) can be expressed by the following MSO for-
mula:

Velx € X1 = 2 € Xo]A
r,ylre XiAyeXihae#£yAvVz(ze X1 =z =2Vy=2)A
VX3lx € Xg AVu,v(u € XgAu € Xo Av € X Aedg(u,v) = v € X3) =y € X3

of quantifier-height. Uppercase variables denote sets of vertices, and loweveais
ables denote individual vertices.

3 Implementation of term automata

The part of Autowrite which is of interest for this work is tiraplementation of term
automata together with some operations on these automata.
The main operations that are implemented are:

— Reduction (removal of inaccessible states), decision gfterass; they have been
implemented in the very first version of Autowrite.

5 Note that the vertex number inside brackets is not part oitpeature; it is there to help the
reader make the correspondence between the leaves ofithandrthe vertices of the graph.



— Determinization, Complementation, Minimization, Unidmtersection which have
been added in subsequent versions of Autowrite.

— Signature transformation, Projection and Cylindrificatishich have been added
to deal with changes of signatures typically fréfi* to ]-"2”'.

The object at the core of this library is the term automatdre @fficiency of many
operations depends heavily on the data structures choseptesent the states and
transitions of the automata. Since the first version of Auit@Dur02], much care
has been devoted to improve the representation of automdtde performances have
improved significantly. However, this work, which leads osthe limits of what is
computable in a human'’s life, has also shown limits in ourlangentation, in terms of
space and time. In particular, we have realized that reptiegethe set of transitions is
a crucial point. Since, we use binary terms, the number oftt@ns isO(s?) wheres
is the number of states.

From the start, we have represented an automaton as a sigjeet ¢an object with
a signature), a list of references to its states, a list @regfces to its final states and its
set of transitions.

3.1 Representation of states

The principle that each state of an automaton is represégtadinique Common Lisp
object has been in effect since the beginning of Autowritis.then very fast to compare
objects: just compare the references. This is achieved)usish-consing techniques.
On the contrary to systems like MONA [KMO1], a state is nottjetepresented by a
number, it can also have constituting elements. The firgtareor this choice is that
each state has a meaning which can be better expressed byispnghject than by
a simple number. The second reason is that states can tvesisehtain states from
other automata when building an intersection automatoaxXample. The third reason
will me made clear in Section 6 when we define the transitiorction as a function
instead of defining it as a set of transitions.

Often we need to represesetsof states of an automaton. We have two ways of
representing sets of statéxt vectorsor containersof ordered states.

Bit vectors are faster, but tend to use more space; consaarerslower but can be
used when bit vectors lack of space.

Each state has an internal unique number which allows usder @tates in the
containers. Operations on containers (equality, unidersection, addition of a state,
...) can then use algorithms on sorted lists which are faster

3.2 Transitions

The definition itself of an automaton suggests that the iiansfunction should be
represented by a set of transitions. And it is indeed the ealytion that we had in
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Figure 3: Dag representation of the transitions
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mind when we started writing Autowrite. Whatever repreagah is chosen to store
the transitions, it must offer a functioff f, states) which according to a symbgl of

arity n and a list of stategy, ..., ¢, returns the target state (or a set of target states
in a non-deterministic case)of the transitionf(q1,...,q9,) — ¢ stored in the data
structure.

However, the transition function is really a function: iethtates have a meaning as
specified in Section 3.1, then in some ca$€g, states) can be written as a function
which computes the target stataccording tof and the contents of the statgs. . . , ¢,
without the transition being stored in any data structure. 8iall explain this novel
implementation in Section 6.

The first representation chosen to represent a set of fi@msis a hash-table: the
key is the list(fq¢; ... ¢qn) (Whereg; is in fact the reference to the object representing
the statey;) and the value is the target statef the transitionf (q1, . .., gn).

For instance, the following set of transitions:

a—q  flq,92,6)—q
b—qx fla1,q3,q2)—q3
f(%#]z#]z)ﬂl]z

yields a hash-table with 5 entries corresponding to the tshiafid-sides of the transi-
tions. The advantage of this representation is that thenkaid-sides are kept together
and that we can easily take into account commutative symbtagever, when the
symbols have arity. > 2 the table may become of siz@|". In order, to reduce the
size of the data structure representing the set of transitiwe have also considered a
dag representation which is illustrated by Figure 3.

We now turn our attention to the problem of computing an aatiom accepting the
terms overF . for fixed £ representing graphs verifying an MSO property.

4 The general method (first method)

The first technique consists in applying the general allgoritvhich transforms a MSO
formula into an automaton. The algorithm can be appliedrseely until an atomic
formula is reached. In order to process a MSO formula, we rtrasslate it into a
formula without first-order variables (which has the samartifier-height) and which



uses only boolean operations (and, or, negation) and siatpeic properties likeX =
0, Sgl(X) (denoting thatX is a singleton set)X; C X, for which an automaton is
easily computable.

Some standardization on the names of set variables is theassery in order to
apply our operations.

The formula given in Example 6 is thus translated as showovbeélote that this
translation is done by hand but could be automated as tmNKINA [KMO1].

Example 7.
Path(Xl,Xg) :Xl ng/\Pl(Xl,Xg)
Pl(X17X2) :3X37X4)P2(X1)X27X3)X4)

Pr(X1, X2, X3, X4) = Sgl(X3) NSl Xa) AN Xs CXIANXy C X AX3 # Xy
/\|X1| = 2/\P4(X2,X3,X4)

Py(X2, X3, X4) = P5(X2, X3, X4)

P5(X2,X3,X4) = 3X{,P6(X{,X2,X3,X4)

PG(X{,XQ,X37X4) =X3C X5 AN Xy, CX5AN P7(X{,X2)

Pr(X1,X3) = ~Ps(X], X2)

Ps(X1, X2) = 3X3, Xy, Po(X], Xo, X3, X4)

PQ(X{7X2,X37X4) = Sgl(Xg) /\Sgl(X4) /\X3 Q X{ /\X3 g X2 /\X4 Q XQ/\

Edge(X3, X4) N—-Xy C X{

4.1 Basic automata for graph properties

We have implemented constructions parametrized byf the basic automata which
may appear as atomic formulas in our MSO sentences (thededair MSO formu-
las), among them:

setup-singleton-automaton (cwd mj) |Sg¢l(X;)

setup-edge-automaton (cwd mi j) Edge(X;, X;)
setup-subset-automaton (cwd m j1j2) [ X;, € X},
setup-nequality-automaton (cwd m j1 j2X;, # X,
setup-equality-automaton (cwd m j1 j2)X;, = X,
setup-snequality-automaton (cwd m j1|j291(X;,) A Sgl(X;,) A X, # X,
setup-cardinality-automaton (cwd m j1|dard(X;, ) = ¢

For example, a call to setup-singleton-autom@oR, 1) returns an automaton work-
ing on terms representing graphs of cliqgue-width at mdstith £ = {a, b}) with two
sets of vertices\; and X5 and recognizing terms such thdt is a singleton, for in-
stance the terradd_a_b(oplus(a™10,b"00)) .An example of such call is shown
in Table 1.



NAUTOWRITE> (setf *a* (setup-singleton-automaton 2 2 1))
Singleton-X1 2 states 17 rules

NAUTOWRITE> (show * a*)

Automaton Singleton-X1

States q0 ql

Final States ql

Transitions

a’00 -> qo0 b*00 -> g0 rel_a_b(q0) -> qO rel_b_a(q0) -> qO
a’01 -> qo0 b*01 -> g0 rel_a_b(ql) -> q1 rel_b_a(ql) -> q1
a’l0 -> q1 b"10 -> g1 add_a_b(q0) -> q0 oplus(q0,q1) -> ql
a’ll -> ql b™11 -> g1l add_a_b(ql) -> g1 oplus(ql,qo) -> ql
oplus(g0,gq0) -> q0

NIL

NAUTOWRITE> (setf *t* (input-term "add_a_b(oplus(a®10,b"00))")
add_a_b(oplus(a™10,b™00))

NAUTOWRITE> (recognized-p  *t* * ax)

Iq1

NAUTOWRITE> (recognized-p  *t* * ax)

ql

NAUTOWRITE> (setf *nt* (input-term "add_a_b(oplus(a10,b>10))"))
add_a_b(oplus(a™10,b™10))

NAUTOWRITE> (recognized-p  *nt * * a*)

NIL

Table 1: Automaton forSgl(X;) with m = 2 andcwd = 2

4.2 The recursive algorithm

Given a formulap = P(X;, ..., X,,), we want to compute the associated automaton
A(¢)-
— If the formula is atomic then we call the function which cortgmithe automaton.
For instance, irPy (X7, X», X3, X4), Sgl(X3) is computed by

setup-singleton-automaton (cwd, 4, 4)

If the formula is a disjunctio = ¢; V ¢, we compute the union odl,, and.Ag,.

If the formula is a conjunctiogp = ¢; A ¢2, we compute the intersection gf,,
andA¢,2.

If the formula is a negation = —(¢'), we complement the automatoty,. To be
complementedd, must be determinized.

If the formula is an existential formula of the forgX;, P(X1,...,X,»), we do a
projection ofAp(x, ... x,.) On(1,...,i — 1,i+ 1,m) which implies a shiftin the
indices of variables(; 1, ... Xp.

— If the formula¢ = P(X4,...,X,,) does mentionX;, we can obtaind, by a
cylindrification of the automatomp(x{,___X;H) (with X/ = X, for1 < i < j
andX/ = X, for j <i < m) on thej-th components.

Intersection which is handled by saturation (producingduced automaton) pre-
serves determinism. The bottleneck of this general algoris the necessity of deter-
minizing an automaton in order to complement it. Each deit@zation can increase
exponentially the number of states.



State g Property Pq

[O,B] X1 = @,B = ﬁ(G(f,Xg)),Xl = {U} - XQ,A = Oé(G(t,Xg),U)

[1, A, B] B = p(G(t,X2)), X1 = {v,v'} C Xp,v=2", A = a(G(t, X2),v),

2,{A, A"}, B]| A = a(G(t, X2),d), B = B(G(t, X2)) there is no path betweanandv’ in G(t, X3)
Ok P(Xl,XQ) holds

Error All other cases

Table 2: Meaning of states for the path propefyith(X1, X2)

Most properties that we tried could not be tested for graplefique-width strictly
higher than 2 with this method. It is nevertheless intengstd implement it because it
is completely general and for small clique-width we can igedomputed automaton
for a comparison with the automaton that we obtain using #versd method that we
are presenting now. The automaton can also be comparedcheigutomaton computed
by MONA (see Section 7).

5 The second method: direct construction of the final automain

The last remark motivates the following development. Fansaraph properties ex-
pressible in MSO, the corresponding automaton can be testdirectly by a set of
states and a description of the transition function on tkestes. Once a proof has been
made that the description is correct (it produces an autmmahich recognizes the
terms satisfying the property), one can directly compugahtomaton without using
the MSO sentence. Chapter 6 of the book in progress [Coul@s guch descriptions
for several properties among thePath (X1, X2). As said in the introduction, we shalll
stick to the path property although we can handle many others

We shall not go into all the details of the construction ofdneomaton foPath (X, X2),
but we shall present at least a description of its states anctlre transitions function
works.

Leta(G,x) = {labela(y) | y € Ve andz “ y} C L.

Let 8(G) = {(labelg(x),labela(y)) | x,y € Ve andx “ y} C L X L.
Q ={Ok,Error} U{(0,B) | BC L x L}U

{[1,A,B] |0 #AC L,BC L x L}U
{[2,{A, A} B] | A, A CLLA#D,A #0,BCLxL}

The meaning of these states is described in Table 2. Wetiade/2 < |Q| < 2¢wd*+2
wherecwd = |L] > 2.



Transition rules Conditions

¢ 00 — [0,0]

¢ 00— [0,{(a,a)}] cel

¢ 11 — [1,{a},{(a,a)}]

relq,»(Ok) — Ok

relq ([0, B]) — [0, ha,p(B)] whereh,, ,
relap([1, A, B]) = [1, hap(A), ha p(B)] replaces: by b
relas([2, {4, A’} B]) (2, {hap(A), hap(A)}, hap(B)]

add,»(Ok) — B’ = f(B,a,b)
add, ([0, B]) — [0 B’ D =g(A,B,a,b)
add, ([1, A, B]) — [1,D, B’] D' =g(A',B,a,b)
add, (]2, {A A'},B]) — [2,{D,D'}, B'] (AG (a®b)oB)NA =0
add.p([2,{A, A'}, B]) — Ok (A® ((a®b)oB)NA #0
®(Ok, [0, B]) — Ok

®([0, B], Ok) — Ok

a([0, B], [0, B’]) — [0, B"]

&([0, B],[1,A,B']) — [1, A, B"]

&([1, A4, B],[0,B']) — [1, A, B"] B"=BUB
a([1, 4, B],[1, 4, B"]) — [2,{A, A’}, B"]

®([0, B],[2,{A, A'}, B']) — [2,{A, A’}, B"]

&([2,{A, A"}, B'],[0,B]) — [2,{A, A’}, B"]

Table 3: Transition rules of the automaton f®uth(X;, X2)

The transition rules are shown in Table 3. In this table, westhe auxiliary func-
tions (®, f, g) which can be found in [Cou09].
With the direct construction, we were first able compare th@mined automaton
with the automaton obtained with the general method-fat = 2. Then we solved the

problem forcwd € {3, 4}.

cwd |

2 3

4 |5

Almin(A)[25/ 12

2141127

3443/ 2197out

However, with higher values of clique-widtlwd > 5), we are confronted to a

memory space problem. And indeed the number of states iastefe/2 = 212 < |Q|
which gives at leas2?® transitions (see [Cou09], Chapter 6).
We have presented experiments only with the path propeutyw® have tried sev-

eral other propertie$ like connectivity, existence of a cyclé;colorability, ...

6 See some results at
http://dept-info.labri.fr/

Most

~idurand/autowrite/Graphs/Graphs.pdf




of the time, the limit is aroundwd = 3. The conclusion is that for greater values of
cligue-width, it is not possible to compute in extenso thansitions of the automata
because its number of states is simply too big (exponemtiabil or more). In a few
cases, we do not run out of memory but the program runs “far’ ¢8ecolorability with
cwd = 3).

6 The third method: fly-automata

The problems of space (for most properties) or time (cotpproperty) disappear if
we represent transitions with a function. Defining suchditaans (which we calfly-
transitiong consists in defining a lisp function which applies to a syimband a list of
stateq(q1, . - -, ¢») and returns the target stajef the transitionsf (¢1, . .., qn) — ¢

This is easily done from the description of the direct camsgion of the automaton
as the one given in Section 5. Actually, the code that is emitio define a concrete
transition can be directly called in the fly-transitionsdtion.

States that will be accessed when running the automaton antiaiar term are
initially not known. In most cases, we do not even want to cotaphe list of accessible
states of the automaton because, this list is simply tocddigtcomputed. The states are
formally described in a compact way; the ones that are uselélsnever be computed.
The situation is the same for the list of final states. Theesasvay to represent final
states is also to use a predicate which tells whether a stéiteal or not.

So a fly-automaton is just a signed object which has a transfitinction and a final
state predicate. Of course Common Lisp is very suitablegresent objects containing
functions since functions are first-class objects. Defiranity-automaton reduces to
defining the transition function and final state predicate.

(defun fly-path-automaton (cwd)
(make-fly-automaton-automaton
(setup-vbits-signature cwd 2)
(lambda (root states)
(make-state
(path-transitions-fun root (mapcar #'state-contents sta tes))))
(lambda (state)
(and (ok-p (state-contents state)) state))

:name (format nil ""A-PATH-X1-X2-fly-automaton” cwd)))

The transition function of union and intersection autonmagan anonymous function
which calls the respective functions of the combined autamdote that a concrete
automaton can be transformed into a fly automaton: the tran$unction simply looks
for the transition in the stored transitions. But the coseanay fail for space and time
reasons. We did not reach any limitation using fly-automdtizkvwe tried up tewd =
18. We could run the automata on terms representing terms orgi@ph we had a
term representation for. Our problem right now is to find bigghs with their clique-
decomposition in order to perform tests.

In this paper we did not address the difficult problem of figdan clique-width

decomposition of a graph (so the clique-width) of a graph.



This problem was shown to be NP-complete in [FRRS06]. [OUrgd&s polyno-
mial approximated solutions to solve this problem. More lsariound in [Cou09].

Often, when automata are used (in compilation for instgnite) automaton is
“small” and the input is much much larger. In the present céde the opposite. In
particular, because we do not know how to decompose verg taaphs, we are only in
position of using our tools for relatively small graphs (480 vertices). Consequently,
there is no overhead in using fly-automata. Also, it is notonignt that the terms repre-
senting graphs be optimal because the computation “on thefftyansitions does not
depend much on the total numbé£|) of vertex labels.

7 Related work

Monadic second-order logic on finite and infinite words andaby terms is imple-
mented in the software MONA [KMO01] developed by Klarlund astders. Its use for
checking graph properties is considered by Soguetin [Soy88NA, with some tech-
nical adaptations, is usable for the first technique: it Is &automatically compute the
automaton corresponding to an MSO formula; in that it seeniskgr than Autowrite.
States are represented by an integer. MONA works with biteangs only which is ok
for graphs represented with a signature with a maximum afity (¢). The symbols
with higher arity are simply transformed into binary synmbwelhich have fake chil-
dren when used in terms. The transitions are representedvy dimensional array.
The cell(4, j) contains a binary decision diagram (BDD) which leads forrgggmbol
/" wto the target statk such thatf” w(i, 7) — k. MONA has deterministic transitions
only. When a projection is performed, the determinizat®dane at the same time. Au-
towrite can deal with symbols of any fixed arity. An importgaint is that Autowrite
has both deterministic and non deterministic automatas ®hery useful when the
deterministic automaton corresponding to the desiredgrtggannot be computed by
lack of space. In that case, Autowrite will be able to cheak pihoperty with the non
deterministic automaton. See also [CouQ9] about this laisttp

8 Perspectives

We have still many more properties of graph to experimentragrtbem connectivity.
For the automata for which we could compute the set of trmmsit it would be nice
to create an on-line library of automata corresponding tiperties available to the
community of researchers. There is still a lot to be donerfguroving the efficiency
of Autowrite. We have maintained several data structuressoresenting the automata
transitions but have not yet conducted systematic testealo@e their performances.
In order to do more experiments with our fly-automata, we areently working on a
program for generating automatically random or particglaphs (with their decom-
positions) of arbitrary clique-width.
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