
Implementing huge term automata

Ir ène A. Durand
idurand@labri.fr

LaBRI, CNRS, Université de Bordeaux, Talence, France

Abstract: We address the concrete problem of implementing bottom-up term automata and in
particular huge ones. An automaton which has so many transitions that they cannot be stored in
a transition table is represented be a fly-automaton in whichthe transition function is represented
by a (Lisp) function. Fly-automata have been implemented inside the Autowrite software (en-
tirely written in Common Lisp) and experiments have been done in the domain of graph model
checking.
Key Words: Tree automata, Lisp, graphs

1 Introduction

The Autowrite1 software entirely written in Common Lisp was first designed to check
call-by-need properties of term rewriting systems [Dur02]. For this purpose, it imple-
ments term (tree) automata. In the first implementation, just the emptiness problem
(does the automaton recognizes the empty language) was usedand implemented. In
subsequent versions [Dur05], the implementation was continued in order to provide a
substantial library of operations on term automata. The next natural step was to try to
solve concrete problems using this library and to test its limits. The following famous
theorem connects the problem of verifying graph propertieswith term automata.

Theorem 1. Monadic second-order model checking isfixed-parameter tractablefor
tree-width [Courcelle (1990)] and clique-width [Courcelle, Makowski, Rotics (2001)].

Tree-widthandclique-widthare graph complexity measures based on graph decompo-
sitions. Adecompositionproduces a term representation of the graph. For a graph prop-
erty expressed in monadic second order logic (MSO), thealgorithmverifying the prop-
erty takes the form of a term automaton which recognizes the terms denoting graphs
satisfying the property. In [CD10], we have given two methods for finding such an
automaton given a graph property. The first one is totally general; it computes the au-
tomaton directly from the MSO formula; but it is not practically usable because the
intermediate automata that are computed along the construction can be very big even if
the final one is not. The second method is very specific: it is a direct construction of the
automaton; one must describe the states and the transitionsof the automaton. Although
the direct construction avoids the bigger intermediate automata, we are still faced with

1 http://dept-info.labri.fr/∼idurand/autowrite/

1

the hugeness of the automata. For instance, one can show thatan automaton recogniz-
ing graphs which are acyclic has33

k

states wherek is the clique-width (see Section 3)
of the graph. Even fork = 2, with which not very many interesting graphs can be
expressed, it is unlikely that we could store the transitiontable of such an automaton.

The solution to this last problem is to usefly-automata. In a fly-automaton, the
transition function is represented, not by a table (that would use too much space), but
by a (Lisp) function. No space is then required to store the transition table. In addition,
fly-automata are more general than finite bottom-up term automata; they can be infinite
in two ways: they can work on an infinite (countable) signature. they can have an infinite
(countable) number of states. This concept was easily translated into Lisp and integrated
to Autowrite.

The purpose of this article is
– to present in detail the concept of fly-automaton,

– to explain how automata and especially fly-automata are implemented in Autowrite,

– to present some experiments done with these automata for theverification of prop-
erties of graphs of bounded clique-width.

2 Preliminaries: terms

We recall some basic definitions concerning terms. The formal definitions can be found
in the on-line book [CDG+02]. We consider a finite signatureF (set of symbols with
fixed arity). We denote byFn the subset of symbols ofF with arity n. SoF =

⋃
n Fn.

T (F) denotes the set of (ground) terms built upon a signatureF .

Example 1.LetF be a signature containing the symbols{a, b, adda b, rela b, relb a,⊕}

with
arity(a) = arity(b) = 0 arity(⊕) = 2

arity(adda b) = arity(rela b) = arity(relb a) = 1

We shall see in Section 3 that this signature is suitable to write terms representing
graphs of clique-width at most2.

Example 2.t1, t2, t3 andt4 are terms built with the signatureF of Example 1.

t1 = ⊕(a, b)

t2 = adda b(⊕(a,⊕(a, b)))

t3 = adda b(⊕(adda b(⊕(a, b)), adda b(⊕(a, b))))

t4 = adda b(⊕(a, rela b(adda b(⊕(a, b)))))

We shall see in Table 1 their associated graphs.

2

3 Application domain

All this work will be illustrated through the problem of verifying properties of graphs of
bounded clique-width. We present here the connection between graphs and terms and
the connection between graph properties and term automata.

3.1 Graphs as a logical structure

We consider finite, simple, loop-free, undirected graphs (extensions are easy)2. Every
graph can be identified with the relational structure〈VG, edgG〉 whereVG is the set of
vertices andedgG the binary symmetric relation that describes edges:edgG ⊆ VG×VG

and(x, y) ∈ edgG if and only if there exists an edge betweenx andy.
Properties of a graphG can be expressed by sentences of relevant logical languages.

For instance,G is completecan be expressed by∀x, ∀y, edgG(x, y) or G is stable
by ∀x, ∀y,¬edgG(x, y) Monadic Second order Logic is suitable for expressing many
graph properties likek-colorability, acyclicity,

3.2 Term representation of graphs of bounded clique-width

Definition 2. Let L be a finite set of vertex labels and let us consider graphsG such
that each vertexv ∈ VG has a labellabel(v) ∈ L. The operations on graphs are⊕3,
the union of disjoint graphs, the unary edge additionadda b that adds the missing edges
between every vertex labeleda to every vertex labeledb, the unary relabelingrela b

that renamesa to b (with a 6= b in both cases). A constant terma denotes a graph with
a single vertex labeled bya and no edge.

LetFL be the set of these operations and constants.
Every termt ∈ T (FL) defines a graphG(t) whose vertices are the leaves of the

term t. Note that, because of the relabeling operations, the labels of the vertices in the
graphG(t) may differ from the ones specified in the leaves of the term.

A graph hasclique-widthat mostk if it is defined by somet ∈ T (FL) with |L| ≤ k.
We shall abbreviate clique-width bycwd.

4 Term automata

We recall some basic definitions concerning term automata. Again, much more infor-
mation can be found in the on-line book [CDG+02].

2 We consider such graphs for simplicity of the presentation but we can work as well with di-
rected graphs, loops, labeled vertices and edges

3 oplus will be used instead of⊕ inside the softwareAutowrite

3

t1 t2 t3 t4

b

a a

b

a

ba

ab b b

a

Table 1: The graphs corresponding to the terms of Example 2

4.1 Finite bottom-up term automata

Definition 3. A (finite bottom-up)term automaton4 is a quadrupleA = (F , Q, Qf , ∆)

consisting of a finite signatureF , a finite setQ of states, disjoint fromF , a subset
Qf ⊆ Q of final states, and a set of transitions rules∆. Every transition is of the form
f(q1, . . . , qn) → q with f ∈ F , arity(f) = n andq1, . . . , qn, q ∈ Q.

Term automata recognizeregular term languages[TW68]. The class of regular term
languages is closed under the Boolean operations (union, intersection, complementa-
tion) on languages which have their counterpart on automata. For all details on terms,
term languages and term automata, the reader should refer to[CDG+02].

To distinguish these automata from the fly-automata defined in subsection 4.2 and
as we only deal with terms in this paper we shall refer to the previously defined term
automata astable-automata.

Example 3.Figure 1 shows an example of a table-automaton. It recognizes terms rep-
resenting graphs of clique-width 2 which are stable (do not contain edges). State<a>
(resp.) means that we have found at least a vertex labeleda (resp.b). State<ab>
means that we have at least a vertex labeleda and at least a vertex labeledb but no
edge. Stateerror means that we have found at least an edge so that the graph is not
stable. Note that when we are in the state<ab>, anadd_a_b operation creates at least
an edge so we reach the<error> state.

Run of an automaton on a term

Therun of an automaton on a term labels the nodes of the term with the state(s) reached
at the corresponding subterm. The run goes from bottom to topstarting at the leaves.

Recognition of a term by an automaton

A term isrecognizedby the automaton when a final state is obtained at its root. Figure 2
shows in a graphical way the run of the automaton2-STABLE on a term representing
a graph of clique-width2. Below we show a successful run of the automaton on a term
representing a stable graph.

4 Term automata are frequently called tree automata, but it isnot a good idea to identify trees,
which are particular graphs, with terms.

4

Automaton 2-STABLE
Signature: a b ren_a_b:1 ren_b_a:1 add_a_b:1 oplus:2*
States: <a> <ab> <error>
Final States: <a> <ab>

Transitions a -> <a> b ->
add_a_b(<a>) -> <a> add_a_b() ->
ren_a_b(<a>) -> ren_b_a(<a>) -> <a>
ren_a_b() -> ren_b_a() -> <a>
ren_a_b(<ab>) -> ren_b_a(<ab>) -> <a>
oplus*(<a>,<a>) -> <a> oplus*(,) ->
oplus*(<a>,) -> <ab> oplus*(,<ab>) -> <ab>
oplus*(<a>,<ab>) -> <ab> oplus*(<ab>,<ab>) -> <ab>
add_a_b(<ab>) -> <error> ren_a_b(<error>) -> <error>
add_a_b(<error>) -> <error> ren_b_a(<error>) -> <error>
oplus*(<error>,q) -> <error> for all q

Figure 1: A table-automaton recognizing terms representing stable graphs

ba

a b a b

a ba b a b<a>

<error>

<ab>

<a>

add a b

⊕

add a b

⊕

add a b

⊕

add a b

⊕

add a b

⊕

tG = add a b(⊕(a, b))

G

Figure 2: Graphical representation of an (unsuccessful) run of the automaton on a term

add_a_b(ren_a_b(oplus(a,b))) -> add_a_b(ren_a_b(oplus(<a>,b)))
-> add_a_b(ren_a_b(oplus(<a>,)) -> add_a_b(ren_a_b(<ab>))
-> add_a_b() ->

4.2 Fly term automata

Definition 4. A fly term automaton(fly-automatonfor short) is a tripleA = (F , δ, fs)

where
– F is a countable signature of symbols with a fixed arity,

– δ is a transition function,

δ :
⋃

n Fn × Qn → Q

fq1 . . . qn 7→ q

whereQ is a countable set of states, disjoint fromF ,

5

– fs is the final state function fs : Q → Boolean

which indicates whether a state is final or not.

Note that, both the signatureF and the set of statesQ may be infinite. A fly-automaton
is finite if both its signature and set of states are finite.

Theorem 5. Fly-automata are closed under Boolean operations, homomorphisms and
inverse-homomorphisms.

We shall callbasicfly-automata that are built from scratch in order to distinguish
them from the ones that are obtained by combinations of existing automata using the
operations cited in the above theorem. We call the latercomposedfly-automata.

4.3 Relations between fly and table-automata

When a fly-automaton(F , δ, fs) is finite, it can be compiled into a table-automaton
(F , Q, Qf , ∆). The transition table∆ can be computed fromδ starting from the con-
stant transitions and then saturating the table with transitions involving new accessible
states until no new state is computed. The set of (accessible) statesQ is obtained dur-
ing the construction of the transitions table. The set of final statesQf is obtained by
removing the non final states (according to the final states function fs) from the set of
states.

A table-automaton is a particular case of a fly-automaton. Itcan be seen as a com-
piled version of a fly-automaton whose transition functionδ is described by the transi-
tions table∆ and whose final state functionfs verifies to membership toQf . It follows
that the automata operations defined for fly-automaton will work for table-automata.

Table-automata are faster for recognizing a term but they use space for storing the
transitions table. Fly-automata use a much smaller space (the space corresponding to
the code of the transition function) but are slower for term recognition because of the
calls to the transition function. A table-automaton shouldbe used when the transition
table can be computed and a fly-automaton otherwise.

5 Implementation of term automata

5.1 Representation of states and sets of states

States for table-automata

For table-automata, theprinciple that each state of an automaton is represented by a
single Common Lisp object has been in effect since the beginning of Autowrite. It is
then very fast to compare objects: just compare the references. This is achieved using
hash-consing techniques. Often we need to representsetsof states of an automaton. For
fly-automata, we shall usecontainersof ordered states. Each state has an internal unique
number which allows us to order states in the containers. Operations on containers
(equality, union, intersection, addition of a state, ...) can then use algorithms on sorted
lists which are faster.

6

States fly-automata

For fly-automata however, states are not stored in the representation. For basic fly-
automata, they are created on the fly by calls to the transition function. It follows that
the previously set out principle is not necessarily applicable.

For composed automata, the states returned by the transition function are con-
structed from the ones returned from the transition functions of the combined automata.
For operations like determinization, inverse-homomorphisms,sets of states are involved.
If a state is not represented by a unique object, comparisonsof states may become very
costly when states become more and more complicated. In thatcase, we shall have no
space problem but we may get a time problem. A solution is, to apply the same principle
as for table-automata, that is to say, to represent each state by a unique object. But for
this we shall have to maintain a table to store the binding between some description of
a state and the unique corresponding state. This table couldbe reset between runs of the
automaton on a term. But it may happen that so many states are created by one single
run that we get a space problem. In some cases, a compromise must be found between
the to techniques.

5.2 Automata

The implementation of table-automata was partially discussed in [CD10]. Although the
implementation of table-automata benefits from the use of Lisp, it could as well be
programmed in any other general purpose programming language. The implementation
of fly-automata however is much more interesting because of its use of the functional
paradigm to represent and combine transition functions andits use of the object system
to deal uniformly with fly or table automata.

The abstract classabstract-automatongeneralizes the two notions of table-automaton
and fly-automaton. An abstract automaton has a signatureF and transitions.

(defclass abstract-automaton (named-object signature-mixin)
((transitions :initarg :transitions :accessor get-transitions)))

The concrete classtable-automaton contains the automata whose transitions
are represented by a table (table-transitions) and whose final states are repre-
sented by a set of states.

(defclass table-automaton (abstract-automaton)
((finalstates ...)
...))

The concrete classfly-automaton contains the fly-automata(F , δ, fs) whose
transitions are represented by a function (fly-transitions) and which have a final
state function to decide whether a reached state is final.

(defclass fly-automaton (abstract-automaton)
((finalstates-fun ...)
...))

7

5.3 Transitions

The abstract classabstract-transitionsgeneralizes the two notions of transitions: table-
transitions and fly-transitions.

(defclass abstract-transitions () ())

(defgeneric transitions-fun (transitions)
(:documentation
"the transition function to be applied to
a symbol of arity n and a list of n states"))

The transition function applied to a symbolf of arity n and a list ofn states
q1, . . . , qn returns what we call atarget. The target can beNIL if the transition is un-
defined, a single stateq if the transition is deterministic or a set of states{q′1, . . . , q

′

n′}

otherwise.

(defgeneric apply-transition-function (root states transitions)
(:documentation "computes the target of ROOT(STATES)

with TRANSITIONS"))

(defmethod apply-transition-function
((root arity-symbol) (states list)
(transitions abstract-transitions))

(funcall (transitions-fun transitions) root states))

When we have recursively computed the targetsT1, . . . , Tp for all the arguments
t1, . . . , tn of a termf(t1, . . . , tn), we may compute the target fort with the operation
apply-transitions-function-gft (root targets transitions)which
applies the transition function to the elements of the cartesian product of the targets (a
target which is a single stateq being assimilated with the singleton{q}.

(defgeneric apply-transition-function-gft (root targets transitions)
(:documentation "computes the target of ROOT(TARGETS)

with TRANSITIONS"))

(defmethod apply-transition-function-gft
((root arity-symbol) (targets list)
(tr abstract-transitions))

(do ((newargs (targets-product targets) (cdr newargs))
(target nil))

((null newargs) target)
(let ((cvalue

(apply-transition-function root (car newargs) tr)))
(when cvalue

(setf target (target-union cvalue target))
(when (typep target ’ordered-container)
(assert (cdr (contents target))))

target))))

The compute-states-ra operation implements the run of the transitions on
a term t = f(t1, . . . , tn) given by its rootf and list of arguments(t1, . . . , tn). It

8

computes recursively the targetsT1, . . . , Tn of the argumentst1, . . . , tn respectively
and appliesapply-transition-function-gft with f and the computed tar-
getsT1, . . . , Tn.

(defgeneric compute-target-ra (root args transitions)
(:documentation
"computes the target ROOT(args) with the TRANSITIONS"))

(defmethod compute-target-ra
((state abstract-state) (args (eql nil))
(transitions abstract-transitions))

(declare (ignore transitions))
(declare (ignore args))
state)

(defmethod compute-target-ra
((root arity-symbol) (args list)
(transitions abstract-transitions))

(let ((targets
(mapcar
(lambda (arg)

(compute-target-ra (root arg) (arg arg) transitions))
args)))

(apply-transition-function-gft root targets transitions)))

6 Implementation of automata operations

The main operations that are implemented on all automata are:
– run of an automatonA on a termt,

– recognition of a termt by an automatonA,

– decision of emptiness forA (L(A) = ∅?),

– completion, determinization, complementation of an automatonA,

– union, intersection of two (or more) automata,

– homomorphism and inverse homomorphism on an automatonA induced by an
homomorphism (inverse homomorphism) on the constant signatureF0.

For table-automata, we have also implemented
– reduction (removal of inaccessible states),

– minimization.

but this is not discussed in this paper.
Some high level operations can be implemented at the level ofabstract automata.

This is the case for the run of an automaton, the recognition of a term.

(defgeneric compute-target (term automaton)
(:documentation
"computes the target (NIL, q or {q1,...,qk})

9

of TERM with AUTOMATON"))

(defmethod compute-target ((term term) (a abstract-automaton))
(compute-target-ra-and-signal (root term) (arg term) a))

For instance, the run of an automatonA on a termt = f(t1, . . . , tn) is achieved
by a call to by the operationcompute-target on t andA which returns the target
accessible fromt usingA. When no state is accessible, the target isNIL otherwise
when the computation is deterministic, the target is a single state otherwise it is a set
(container) of states. A target isfinal if it is not NIL, if it is a single final stateq or
if it contains a final stateq. A term isrecognizedwhen it reaches a final target.

(defgeneric recognized-p (term automaton)
(:documentation "true if TERM is recongized by AUTOMATON"))

(defmethod recognized-p ((term term) (a abstract-automaton))
(let ((target (compute-target term a)))
(values

(finaltarget-p target a)
target)))

The decision of emptiness is also done at the level ofabstract-automaton
because it involves running an automaton and not creating new ones.

Determinization, Complementation, Union, Intersection,Homomorphism and in-
verse homomorphism can all be implemented for fly-automata.We shall detail some of
these constructions further.

Because a table-automaton can always be transformed into a fly-automaton and a
finite fly-automaton back to a table automaton we get the corresponding operations for
table-automata for free once we have implemented them for fly-automata. However, for
efficiency reasons, it might be interesting to implement some of these operations at the
level of table-automaton. For instance, the complementation which consists in
inverting non final and final states is easily performed directly on a table-automaton.

Implementing operations directly at the level oftable-automatonhas the draw-
back that it depends on the representation chosen for the transitions table. Whenever,
we would want to change this representation we would have to re-implement these op-
erations. The only advantage is a gain in efficiency.

Some operations on table-automata may give a blow-up in terms of the size of the
transition table (determinization, intersection). In this case, the solution is to omit to
compile the resulting operation back to a table-automaton.

It is though possible to deal uniformly with table and fly-automata.

6.0.1 Creation of a fly-automaton

To create a fly-automaton one should provide a signature, a transition function and a
final state function:

(defun make-fly-automaton (signature tfun finalstates-fun)
...)

10

6.0.2 Complementation of a fly-automaton

For a deterministic and complete automaton, the complementation consists just in com-
plementing the final state function. The signature and the transitions remain the same.

(defmethod complement-automaton ((f fly-automaton))
(let ((d (determinize-automaton (complete-automaton f))))
(make-fly-automaton
(signature f)
(transitions-fun (get-transitions d))
(lambda (state)
(not (finalstate-p state d))))))

6.0.3 Determinization of a fly-automaton

If an automatonA = (F , δ, fs) is not deterministic, its transition function returns setsof
states{q1, . . . , qp}. The determinized version ofA is an automatond(A) = (F , δ′, fs′).
If Q is the domain ofδ (the set of states ofA), letd(Q) denote the set of states ofd(A).
Each subset{q1, . . . , qp} of Q yields a state[q1, . . . , qp] in d(Q). δ′ is defined by with

δ′ :
⋃

n Fn × d(Q)n → d(Q)

f, S1, . . . , Sn 7→ S

with q ∈ S if and only if ∃q1, . . . , qb ∈ S1 × . . . Sn such thatq ∈ δ(f, q1, . . . , qn).
This is easily translated into Lisp:

(defmethod det-transitions-fun ((transitions fly-transitions))
(lambda (root states)
(let ((target

(apply-transition-function-gft
root (mapcar

(lambda (state)
(container state))

states)
transitions)))

(when target
(make-gstate target)))))

And fs
′ is defined by

fs : d(Q) → Boolean

S 7→ ∃q ∈ S such thatfs(q)

which translates into Lisp:

(defmethod det-finalstates-fun ((f fly-automaton))
(lambda (gstate)
(some
(lambda (state) (finalstate-p state f))
(contents (container gstate)))))

11

The new final statefs′ calls the final state functionfs of A.
It is then obvious to determinize a fly-automaton:

(defmethod determinize-automaton ((f fly-automaton))
(make-fly-automaton
(signature f)
(det-transitions-fun (get-transitions f))
(det-finalstate-fun f)))

The following function returns a fly-automaton which recognizes stable graphs. If
cwd>0, the automaton is finite and works on graphs of clique-width less or equal than
cwd. If cwd>0, the automaton is infinite (by its infinite signature) and works on graphs
of arbitrary clique-width.

(defun fly-stable-automaton (&optional (cwd 0))
(make-fly-automaton
(setup-signature cwd)
(lambda (root states)
(stable-transitions-fun root states))

(lambda (state)
(stable-finalstate-fun root states))))

The call(fly-stable-automaton 2) returns a finite fly-automaton whose
compiled version is shown in Example 3.

The main task for defining a fly-automaton is to describe the states and the transi-
tion function (in the previous examplestable-transitions-fun). This task is
described in [CD10] and detailed examples can be found in [Cou09].

6.0.4 Other operations

The other operations (completion, union, intersection) are implemented in the same
style. The transition function of union and intersection automata is a function which
calls the respective functions of the composed automata.

7 Experiments

Most of our experiments have been run in the domain of verifying graph properties as
described in 3.

7.1 Fly versus table-automata

In order to compare running time of a fly-automaton and of the corresponding table-
automaton, we must choose a property and a clique-width for which the automaton is
compilable.

This is the case for theconnectedness property. We have a direct construction of an
automaton verifying whether a graph is connected. The corresponding table automaton

12

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

T
im

e
in

se
co

n
d

s

N/1000

table automaton

fly automaton

Figure 3: Connectedness on graphsPN (cwd = 3)

has22
cwd

−1 + 2cwd − 2 states. It is compilable up tocwd = 3. For cwd = 4, which
gives |Q| = 32782, we run out of memory. It is possible to show that the number of
states of the minimal automaton is|Q| > 22

⌊cwd/2⌋

. So there is no hope of having a
table-automaton for this property andcwd > 3. ThePn

5 graphs have clique-width3.
We could then compare the computation time with the fly-automaton to the one

with the table-automaton, with increasing values ofn. The size of a term representing
a graphPn is 5n + 1 and its depth is4n − 3.

Figure 3 shows that the computation time is roughly linear with respect ton and
that the slope of the line is steeper for the fly-automaton.

7.2 Verification of properties

We have direct constructions of the automata for the following properties.

1. Polynomial

– Stable()

– Partition(X1, . . . , Xm)

– k-Cardinality()

2. non polynomial

– k-Coloring(C1, . . . , Ck) compilable up tocwd = 4 (for k = 3)

– Connectedness() compilable up tocwd = 3

5 A Pn graph is a chain ofn vertices

13

– Clique() compilable up tocwd = 4

– Path(X1, X2) compilable up tocwd = 4

– Acyclic() not compilable

With the previous properties, using homomorphisms and Boolean operations, we
obtain automata for

– k-Colorability() compilable up tok = 3 (cwd = 2), k = 2 (cwd = 3)

– k-Acyclic-Colorability() not compilable (uses Acyclic)

– k-Chord-Free-Cycle()

– k-Max-Degre()

– Vertex-Cover(X1) 2cwd states

– k-Vertex-Cover()

The Vertex-Cover property can be expressed by a combinationof already defined
automata.

;; Vertex-Cover(X1) = Stable(V-X1)
(defun fly-vertex-cover (cwd)

(x1-to-cx1 ;; Stable(V-X1)
;; Stable(X1)
(fly-subgraph-stable-automaton cwd 1 1)))

(defun fly-k-vertex-cover (k cwd)
;; exists X1 s.t. vertex-cover(X1) and card(X1) = k

(vprojection
(intersection-automaton
(fly-vertex-cover cwd) ;; Vertex-Cover(X1)
(fly-subgraph-cardinality-automaton ;; Card(X1) = k
k cwd 1 1))))

Many problems that where unthinkable to solve with table-automata could be solved
with fly-automata. For very difficult (NP-complete) problems we still reach time or
space limitations. Figure 4 shows the running time of a fly-automaton verifying3-
colorability on rectangular grids6 × N (clique-width8).

8 Conclusion and perspectives

We can not think about a better language than Lisp to implement fly-automata whose
transition function is represented by a function. Verifying graph properties on graphs
of bounded clique-width is a perfect application field to test our implementation. In the
near future, we plan to implement more graph properties and to run tests on real and
random graphs.

In this paper, we did not address the problem of finding terms representing a graph,
that is, to find a clique-width decomposition of the graph. Insome cases, the graph of

14

0

200

400

600

800

1000

1200

1400

1600

1800

0 100 200 300 400 500 600 700 800 900 1000

T
im

e
in

te
n

s
o

fs
ec

o
n

d
s

N

Figure 4: 3-colorability on rectangular grids6 × N

interest comes with a “natural decomposition” from which the clique decomposition of
bounded clique-width is easy to obtain but for the general case the known algorithms are
not practically usable. This problem, known as theparsing problemand has been stud-
ied so far only from a very theoretical point of view. It was shown to be NP-complete
in [FRRS06]. [Oum08] gives polynomial approximated solutions to solve this problem.
More can be found in [Cou09]. The concept of fly-automata is general and could be
applied to other domains where big automata are needed.

References

[CD10] Bruno Courcelle and Irne Durand. Verifying monadic second order graph properties
with tree automata. InProceedings of the 3rd European Lisp Symposium, pages 7–21,
May 2010.

[CDG+02] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree Automata Techniques and Applications. 2002. Draft, available
from http://tata.gforge.inria.fr.

[Cou09] Bruno Courcelle. Graph structure and monadic second-order logic. Available at
http://www.labri.fr/perso/courcell/Book/CourGGBook.pdf
To be published by Cambridge University Press, 2009.

[Dur02] Irène Durand. Autowrite: A tool for checking properties of term rewriting systems.
In Proceedings of the 13th International Conference on Rewriting Techniques and
Applications, volume 2378 ofLecture Notes in Computer Science, pages 371–375,
Copenhagen, 2002. Springer-Verlag.

[Dur05] Irène Durand. Autowrite: A tool for term rewrite systems and tree automata.Elec-
tronics Notes in Theorical Computer Science, 124:29–49, 2005.

[FRRS06] M. Fellows, F. Rosamond, U. Rotics, and S. Szeider.Clique-width minimization is
NP-hard. InProceedings of the 38th Annual ACM Symposium on Theory of Comput-
ing, pages 354–362, Seattle, 2006.

[Oum08] Sang-Il Oum. Approximating rank-width and clique-width quickly. ACM Trans.
Algorithms, 5(1):1–20, 2008.

[TW68] J.W. Thatcher and J.B. Wright. Generalized finite automata theory with an application
to a decision problem of second-order logic.Mathematical Systems Theory, 2:57–81,
1968.

15

