Implementing huge term automata

Ir éne A. Durand
idurand@labri.fr
LaBRI, CNRS, Université de Bordeaux, Talence, France

Abstract: We address the concrete problem of implementing bottorreup tiutomata and in

particular huge ones. An automaton which has so many tiansithat they cannot be stored in
a transition table is represented be a fly-automaton in wifielransition function is represented
by a (Lisp) function. Fly-automata have been implementesitlenthe Autowrite software (en-

tirely written in Common Lisp) and experiments have beenedionthe domain of graph model
checking.

Key Words: Tree automata, Lisp, graphs

1 Introduction

The Autowrité software entirely written in Common Lisp was first designeaheck
call-by-need properties of term rewriting systems [Dur@2jr this purpose, it imple-
ments term (tree) automata. In the first implementation, flas emptiness problem
(does the automaton recognizes the empty language) wasanseiplemented. In
subsequent versions [Dur05], the implementation was coad in order to provide a
substantial library of operations on term automata. The netural step was to try to
solve concrete problems using this library and to testiitstti. The following famous
theorem connects the problem of verifying graph propewtiigls term automata.

Theorem 1. Monadic second-order model checkingfised-parameter tractablfor
tree-width [Courcelle (1990)] and clique-width [Cource]IMakowski, Rotics (2001)].

Tree-widthandclique-widthare graph complexity measures based on graph decompo-
sitions. Adecompositioproduces a term representation of the graph. For a graph prop
erty expressed in monadic second order logic (MSO)atherithmverifying the prop-
erty takes the form of a term automaton which recognizesdhad denoting graphs
satisfying the property. In [CD10], we have given two methddr finding such an
automaton given a graph property. The first one is totallyegainit computes the au-
tomaton directly from the MSO formula; but it is not practlgausable because the
intermediate automata that are computed along the cotistnizan be very big even if
the final one is not. The second method is very specific: it isecticonstruction of the
automaton; one must describe the states and the transitiding automaton. Although
the direct construction avoids the bigger intermediatematta, we are still faced with

Yhttp://dept-info.labri.fr/~idurand/ autowite/

the hugeness of the automata. For instance, one can shoanthatomaton recogniz-
ing graphs which are acyclic has" states where is the clique-width (see Section 3)
of the graph. Even fok = 2, with which not very many interesting graphs can be
expressed, it is unlikely that we could store the transitaise of such an automaton.
The solution to this last problem is to ufig-automataln a fly-automaton, the
transition function is represented, not by a table (thatlase too much space), but
by a (Lisp) function. No space is then required to store thadition table. In addition,
fly-automata are more general than finite bottom-up termraata; they can be infinite
in two ways: they can work on an infinite (countable) signattiiey can have an infinite
(countable) number of states. This concept was easilylgtatsinto Lisp and integrated
to Autowrite.
The purpose of this article is
— to present in detail the concept of fly-automaton,

— to explain how automata and especially fly-automata aredmphted in Autowrite,

— to present some experiments done with these automata feettfieation of prop-
erties of graphs of bounded clique-width.

2 Preliminaries: terms

We recall some basic definitions concerning terms. The fod®finitions can be found
in the on-line book [CDG02]. We consider a finite signaturg (set of symbols with
fixed arity). We denote by, the subset of symbols ¢f with arity n. SoF = J,, F.
7T (F) denotes the set of (ground) terms built upon a signature

Example 1.Let F be a signature containing the symbfis b, add, v, relqp, relpq, D}
with

arity(a) = arity(b) = 0 arity(®) = 2
arity(addq_p) = arity(rel,p) = arity(relpq) =1

We shall see in Section 3 that this signature is suitable itevierms representing
graphs of clique-width at mo&t

Example 2.t1, to, t3 andt, are terms built with the signatutg of Example 1.

ty = ®(a,b)

te = add, »(®(a, ®(a,b)))

t3 = adda_p(®(add,_p(D(a, b)), adda,(D(a, b))))
ts = add,_p(®(a, reloy(addq(D(a,b)))))

We shall see in Table 1 their associated graphs.

3 Application domain

All this work will be illustrated through the problem of véying properties of graphs of
bounded clique-width. We present here the connection ketweaphs and terms and
the connection between graph properties and term automata.

3.1 Graphs as a logical structure

We consider finite, simple, loop-free, undirected graphsefesions are easy)Every
graph can be identified with the relational struct{¥e;, edg) whereVy is the set of
vertices anadgq the binary symmetric relation that describes edgégs C Vg x Vo
and(x,y) € edgg if and only if there exists an edge betweeandy.

Properties of a grapy’ can be expressed by sentences of relevant logical languages
For instance(G is completecan be expressed by, Vy, edga(z,y) or G is stable
by Vz,Vy, ~edgs(x,y) Monadic Second order Logic is suitable for expressing many
graph properties liké-colorability, acyclicity,

3.2 Term representation of graphs of bounded clique-width

Definition 2. Let £ be a finite set of vertex labels and let us consider grapissich
that each vertex € V¢ has a labelabel(v) € £. The operations on graphs ar€,
the union of disjoint graphs, the unary edge additidd,_, that adds the missing edges
between every vertex labeledto every vertex labeled, the unary relabelingel,
that renames to b (with a # b in both cases). A constant terirdenotes a graph with
a single vertex labeled hyyand no edge.

Let 7, be the set of these operations and constants.

Every termt € T (F.) defines a grapld:(¢t) whose vertices are the leaves of the
termt¢. Note that, because of the relabeling operations, thedatfehe vertices in the
graphG(t) may differ from the ones specified in the leaves of the term.

A graph haglique-widthat mostx if it is defined by some € 7 (F) with |£| < k.
We shall abbreviate clique-width lmyvd

4 Term automata

We recall some basic definitions concerning term automagairA much more infor-
mation can be found in the on-line book [CDG2].

2 We consider such graphs for simplicity of the presentationvie can work as well with di-
rected graphs, loops, labeled vertices and edges

3 opl us will be used instead af inside the softwardut owr i t e

tq to t3 ty

o o 099 2
ol o lo—o|d

Table 1: The graphs corresponding to the terms of Example 2

4.1 Finite bottom-up term automata

Definition 3. A (finite bottom-up)erm automatohis a quadrupled = (F,Q,Qy, A)
consisting of a finite signaturg’, a finite setQ of states, disjoint fron¥, a subset
Qf C Q of final states, and a set of transitions rulésEvery transition is of the form
fla1, .-, qn) — qwith f € F,arity(f) = nandqi,...,q.,q € Q.

Term automata recognizegularterm languages[TW68]. The class of regular term
languages is closed under the Boolean operations (unitersection, complementa-
tion) on languages which have their counterpart on autonfataall details on terms,
term languages and term automata, the reader should ref@DiG+02].

To distinguish these automata from the fly-automata definedibsection 4.2 and
as we only deal with terms in this paper we shall refer to treviously defined term
automata atable-automata

Example 3.Figure 1 shows an example of a table-automaton. It recognéens rep-
resenting graphs of clique-width 2 which are stable (do notain edges). Statea>
(resp.) means that we have found at least a vertex labalgesp.b). State<ab>
means that we have at least a vertex labeleghd at least a vertex labelédbut no
edge. Stater r or means that we have found at least an edge so that the graph is no
stable. Note that when we are in the statéd>, anadd_a_b operation creates at least

an edge so we reach tker r or > state.

Run of an automaton on a term

Therun of an automaton on a term labels the nodes of the term withtéte(s) reached
at the corresponding subterm. The run goes from bottom tgtaning at the leaves.

Recognition of a term by an automaton

A term isrecognizedy the automaton when a final state is obtained at its rootirEig
shows in a graphical way the run of the automa2ersTABLE on a term representing

a graph of clique-widtt2. Below we show a successful run of the automaton on a term
representing a stable graph.

4 Term automata are frequently called tree automata, butnivisa good idea to identify trees,
which are particular graphs, with terms.

Aut onat on 2- STABLE

Si ghat ur e:

States: <a> <ab> <error>

Final States: <a> <ab>

Transitions a -> <a>
add_a_b(<a>) -> <a>
ren_a_b(<a>) ->
ren_a_b() ->

ren_a_b(<ab>) ->

opl us*(<a>, <a>) -> <a>

opl us*(<a>,) -> <ab>

opl us*(<a>, <ab>) -> <ab>
add_a b(<ab>) -> <error>
add_a b(<error>) -> <error>
opl us*(<error>,q)

-> <error> for

abren_ab:1ren_b a:l add_a_b:1 oplus: 2+

b ->

add_a_b() ->
ren_b_a(<a>) -> <a>
ren_b_a() -> <a>

ren_b_a(<ab>) -> <a>
opl us*(,) ->

opl us*(, <ab>) -> <ab>
opl us*(<ab>, <ab>) -> <ab>
ren_a b(<error>) -> <error>
ren_b_a(<error>) -> <error>

all ¢

Figure 1: A table-automaton recognizing terms representing statalples

G

OO
a/ \b

add_ab

te = add_a_b(®(a,b))

add_ab

52
<a> a b

<ab> @
a \ b

<a>

add_ab

5]
a \ b
add_a_b <error>

7\

Figure 2: Graphical representation of an (unsuccessfalpfuihe automaton on a term

add_a_b(ren_a_b(oplus(a,b))) -> add_a_b(ren_a_b(oplus(<a>, b)))
-> add_a_b(ren_a_b(oplus(<a>)) -> add_a b(ren_a_b(<ab>))

-> add_a_b() ->

4.2 Fly term automata

Definition4. A fly term automatoiffly-automatorfor short) is a tripled = (F, 4, fs)

where

— Fis a countable signature of symbols with a fixed arity,

— ¢ is a transition function,

5:Un}—n><Q"—>Q

far- . an

—4q

where(is a countable set of states, disjoint frc¢fiy

— fsis the final state function fs: QQ — Boolean
which indicates whether a state is final or not.

Note that, both the signatuf€ and the set of state3 may be infinite. A fly-automaton
is finite if both its signature and set of states are finite.

Theorem 5. Fly-automata are closed under Boolean operations, homeinems and
inverse-homomorphisms.

We shall callbasicfly-automata that are built from scratch in order to distiistpu
them from the ones that are obtained by combinations ofiegistutomata using the
operations cited in the above theorem. We call the ledenposedly-automata.

4.3 Relations between fly and table-automata

When a fly-automatoiF, 4, fs) is finite, it can be compiled into a table-automaton
(F,Q,Qy,A). The transition tabled can be computed fror starting from the con-
stant transitions and then saturating the table with ttenms involving new accessible
states until no new state is computed. The set of (acceysifales) is obtained dur-
ing the construction of the transitions table. The set ofl fatates() y is obtained by
removing the non final states (according to the final statastionfs) from the set of
states.

A table-automaton is a particular case of a fly-automatocait be seen as a com-
piled version of a fly-automaton whose transition functois described by the transi-
tions tableA and whose final state functidsiverifies to membership tQ ;. It follows
that the automata operations defined for fly-automaton wallkfor table-automata.

Table-automata are faster for recognizing a term but theyspsice for storing the
transitions table. Fly-automata use a much smaller spaeesfiace corresponding to
the code of the transition function) but are slower for tegnagnition because of the
calls to the transition function. A table-automaton shdwdused when the transition
table can be computed and a fly-automaton otherwise.

5 Implementation of term automata

5.1 Representation of states and sets of states
States for table-automata

For table-automata, therinciple that each state of an automaton is represented by a
single Common Lisp object has been in effect since the baginof Autowrite. It is
then very fast to compare objects: just compare the refeerihis is achieved using
hash-consing techniques. Often we need to represtsdf states of an automaton. For
fly-automata, we shall usmntainerf ordered states. Each state has an internal unique
number which allows us to order states in the containersr&djp@s on containers
(equality, union, intersection, addition of a state, .ah ¢hen use algorithms on sorted
lists which are faster.

States fly-automata

For fly-automata however, states are not stored in the reptason. For basic fly-
automata, they are created on the fly by calls to the tramsitinction. It follows that
the previously set out principle is not necessarily apjliea

For composed automata, the states returned by the trangiticction are con-
structed from the ones returned from the transition fumdiof the combined automata.
For operations like determinization, inverse-homomospts, sets of states are involved.
If a state is not represented by a unique object, comparisistates may become very
costly when states become more and more complicated. Icéisat we shall have no
space problem but we may get a time problem. A solution isppdyethe same principle
as for table-automata, that is to say, to represent eadh syt unique object. But for
this we shall have to maintain a table to store the bindingrbet some description of
a state and the unique corresponding state. This table beuleset between runs of the
automaton on a term. But it may happen that so many stateseated by one single
run that we get a space problem. In some cases, a compromsdmiound between
the to techniques.

5.2 Automata

The implementation of table-automata was partially disedsn [CD10]. Although the
implementation of table-automata benefits from the use sp Lit could as well be
programmed in any other general purpose programming lagegudne implementation
of fly-automata however is much more interesting becaustsafse of the functional
paradigm to represent and combine transition functionstandgse of the object system
to deal uniformly with fly or table automata.

The abstract clasgbstract-automatogeneralizes the two notions of table-automaton
and fly-automaton. An abstract automaton has a signédaed transitions.

(defclass abstract-aut omat on (named- obj ect signature-niXxin)
((transitions :initarg :transitions :accessor get-transitions)))

The concrete classabl e- aut omat on contains the automata whose transitions
are represented by a tabkeabl e- t r ansi t i ons) and whose final states are repre-
sented by a set of states.

(defclass tabl e-automaton (abstract-aut omat on)
((finalstates ...)

)

The concrete claskl y- aut onat on contains the fly-automatgr, ¢, fs) whose
transitions are represented by a functibhy- t r ansi t i ons)and which have a final
state function to decide whether a reached state is final.

(defclass fly-automaton (abstract-aut onaton)
((finalstates-fun ...)

)

5.3 Transitions

The abstract clasgbstract-transitiongeneralizes the two notions of transitions: table-
transitions and fly-transitions.

(d
(d

qi, - - -

efcl ass abstract-transitions () ())

efgeneric transitions-fun (transitions)
(:docunentation

"the transition function to be applied to

a synbol of arity n and a list of n states"))

The transition function applied to a symbglof arity n and a list ofn states
, qn returns what we call garget The target can bBll L if the transition is un-

defined, a single stateif the transition is deterministic or a set of states, ..., ¢, }
otherwise.

(d

(d

t,..

ef generic apply-transition-function (root states transitions)
(: docunentation "conputes the target of ROOT(STATES)
with TRANSI TI ONS"))

ef met hod appl y-transition-function
((root arity-synmbol) (states list)
(transitions abstract-transitions))
(funcall (transitions-fun transitions) root states))

When we have recursively computed the tardgts. . ., 7, for all the arguments
., tp of atermf(¢y,...,t,), we may compute the target fomwith the operation

appl y-transitions-function-gft (root targets transitions) which
applies the transition function to the elements of the s@teproduct of the targets (a
target which is a single statebeing assimilated with the singletdn}.

(d

(d

ef generic apply-transition-function-gft (root targets transitions)
(:docunentation "conputes the target of ROOT(TARGETS)
with TRANSI TI ONS"))

ef met hod appl y-transition-function-gft
((root arity-synbol) (targets list)
(tr abstract-transitions))
(do ((newargs (targets-product targets) (cdr newargs))
(target nil))
((nul'l newargs) target)
(let ((cvalue
(apply-transition-function root (car newargs) tr)))
(when cval ue
(setf target (target-union cvalue target))
(when (typep target ’'ordered-container)
(assert (cdr (contents target))))
target))))

The conput e- st at es- r a operation implements the run of the transitions on

atermt = f(t1,...,t,) given by its rootf and list of argumentsty, ..., ¢,). It

computes recursively the targefs, . .., T,, of the argumentg,, ..., ¢, respectively
and appliesappl y-transi ti on-function-gft with f and the computed tar-
getsTy, ..., T,.

(defgeneric conpute-target-ra (root args transitions)
(:docunentation
"computes the target ROOT(args) with the TRANSI TI ONS'))

(def net hod conmpute-target-ra
((state abstract-state) (args (eql nil))
(transitions abstract-transitions))
(declare (ignore transitions))
(decl are (ignore args))
state)

(def met hod conpute-target-ra
((root arity-symbol) (args list)
(transitions abstract-transitions))
(let ((targets
(mapcar
(lambda (arg)
(conmpute-target-ra (root arg) (arg arg) transitions))

args)))

(apply-transition-function-gft root targets transitions)))

6 Implementation of automata operations

The main operations that are implemented on all automata are
— run of an automaton! on a termt,

recognition of a ternt by an automatom,

decision of emptiness fod (£(A) = @7),

completion, determinization, complementation of an awtttm.A,

union, intersection of two (or more) automata,

— homomorphism and inverse homomorphism on an automaténduced by an
homomorphism (inverse homomorphism) on the constant tiga,.

For table-automata, we have also implemented
— reduction (removal of inaccessible states),

— minimization.

but this is not discussed in this paper.
Some high level operations can be implemented at the levabstract automata.
This is the case for the run of an automaton, the recogniti@term.

(defgeneric conpute-target (term autonaton)
(:docunentation
"conmputes the target (NIL, g or {ql,...,qk})

of TERM wi th AUTOVATON'))

(def met hod conpute-target ((term term (a abstract-autonmaton))
(conpute-target-ra-and-signal (root term (arg tern) a))

For instance, the run of an automatdnon a term¢ = f(¢4,...,t,) is achieved
by a call to by the operationonput e-t ar get ont and.A which returns the target
accessible front using.4. When no state is accessible, the targellid. otherwise
when the computation is deterministic, the target is a sirsghte otherwise it is a set
(cont ai ner) of states. A target ifinal if it is not NI L, if it is a single final state or
if it contains a final statg. A term isrecognizedvhen it reaches a final target.

(def generic recogni zed-p (term aut omat on)
(:docunentation "true if TERMis recongi zed by AUTOVATON'))

(def net hod recogni zed-p ((termterm (a abstract-autonaton))
(let ((target (conpute-target terma)))
(val ues
(finaltarget-p target a)
target)))

The decision of emptiness is also done at the levelldt r act - aut ormat on
because it involves running an automaton and not creatiwgpomnes.

Determinization, Complementation, Union, IntersectiBlomomorphism and in-
verse homomorphism can all be implemented for fly-autonvileashall detail some of
these constructions further.

Because a table-automaton can always be transformed inyeaaithmaton and a
finite fly-automaton back to a table automaton we get the spmeding operations for
table-automata for free once we have implemented them fauftpmata. However, for
efficiency reasons, it might be interesting to implementsafithese operations at the
level of t abl e- aut omat on. For instance, the complementation which consists in
inverting non final and final states is easily performed diysan a table-automaton.

Implementing operations directly at the levet@&bl e- aut onat on has the draw-
back that it depends on the representation chosen for theiti@s table. Whenever,
we would want to change this representation we would have-tmplement these op-
erations. The only advantage is a gain in efficiency.

Some operations on table-automata may give a blow-up insteifithe size of the
transition table (determinization, intersection). Instisiase, the solution is to omit to
compile the resulting operation back to a table-automaton.

Itis though possible to deal uniformly with table and fly-amuiata.

6.0.1 Creation of a fly-automaton

To create a fly-automaton one should provide a signatureresition function and a
final state function:

(defun make-fly-automaton (signature tfun final states-fun)

-)

10

6.0.2 Complementation of a fly-automaton

For a deterministic and complete automaton, the complestientconsists just in com-
plementing the final state function. The signature and thesitions remain the same.

(def met hod conpl enent - aut omaton ((f fly-automaton))
(let ((d (determni ze-autonmaton (conpl ete-automaton f))))
(make-fly-aut omat on
(signature f)
(transitions-fun (get-transitions d))
(lambda (state)
(not (finalstate-p state d))))))

6.0.3 Determinization of a fly-automaton

If an automatomd = (F, 4, fs) is not deterministic, its transition function returns sefts
states{q1, - - -, ¢ }. The determinized version of is an automatot(A) = (F, ¢, fs').
If Q is the domain of (the set of states ofl), letd(Q) denote the set of statesd(fA).
Each subsefqs, . .., ¢, } of Q yields a statégs, . . ., ¢,] in d(Q). ¢’ is defined by with

0" U, Fn x d(Q)" — d(Q)
f,Sl,...,Sn — S

with g € Sifandonly if3¢1,...,q, € S1 x ... S, suchthay € §(f,q1,. .., qn).
This is easily translated into Lisp:

(def met hod det-transitions-fun ((transitions fly-transitions))
(lanbda (root states)
(let ((target
(apply-transition-function-gft
root (mapcar
(lanbda (state)
(container state))
st at es)
transitions)))
(when target
(make-gstate target)))))

And fs' is defined by

fs: d(Q) — Boolean
S+ 3Jq € S such thafs(q)

which translates into Lisp:

(def net hod det-final states-fun ((f fly-autonaton))
(lambda (gstate)
(sone
(lanbda (state) (finalstate-p state f))
(contents (container gstate)))))

11

The new final stat&’ calls the final state functiofs of A.
It is then obvious to determinize a fly-automaton:

(def net hod determ ni ze-automaton ((f fly-automaton))
(make-fly-aut omat on
(signature f)
(det-transitions-fun (get-transitions f))
(det-finalstate-fun f)))

The following function returns a fly-automaton which rectmgs stable graphs. If
cwd>0, the automaton is finite and works on graphs of clique-widtslor equal than
cwd. If cwd>0, the automaton is infinite (by its infinite signature) and k&on graphs
of arbitrary clique-width.

(defun fly-stable-automaton (&optional (cwd 0))
(make-fly-aut omat on
(setup-signature cwd)
(I anbda (root states)
(stable-transitions-fun root states))
(lanbda (state)
(stable-final state-fun root states))))

The call(f | y- st abl e- aut omat on 2) returns a finite fly-automaton whose
compiled version is shown in Example 3.

The main task for defining a fly-automaton is to describe thtestand the transi-
tion function (in the previous examptg abl e- t r ansi t i ons- f un). This task is
described in [CD10] and detailed examples can be found in(Gp

6.0.4 Other operations

The other operations (completion, union, intersectiom) iamplemented in the same
style. The transition function of union and intersectiorioaiata is a function which
calls the respective functions of the composed automata.

7 Experiments

Most of our experiments have been run in the domain of vergiygraph properties as
described in 3.

7.1 Fly versus table-automata

In order to compare running time of a fly-automaton and of theeasponding table-
automaton, we must choose a property and a clique-width Factwthe automaton is
compilable.

This is the case for theonnectedness property/e have a direct construction of an
automaton verifying whether a graph is connected. The spmeding table automaton

12

Time in seconds

35 -

5 -
table automatM

0 - . T T 1 | | | | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
N/1000

Figure 3: Connectedness on grapRs (cwd = 3)

has22™“~1 4 2¢wd _ 2 states. It is compilable up tavd = 3. For cwd = 4, which
gives|Q| = 32782, we run out of memory. It is possible to show that the number of
states of the minimal automaton[i§| > 22'""*"*". So there is no hope of having a
table-automaton for this property andd > 3. The P,° graphs have clique-width

We could then compare the computation time with the fly-aatiom to the one
with the table-automaton, with increasing valuesiofrhe size of a term representing
a graphpP, is5n + 1 and its depth ign — 3.

Figure 3 shows that the computation time is roughly lineahwespect ta» and
that the slope of the line is steeper for the fly-automaton.

7.2 Verification of properties
We have direct constructions of the automata for the follmpproperties.

1. Polynomial
— Stabl€)
— Partition X1, ..., X,,)
— k-Cardinality)
2. non polynomial
— k-Coloring(C4, . .., Ck) compilable up tawd = 4 (for k = 3)
— Connectedneg$scompilable up tawd = 3

° A P, graph is a chain of, vertices

13

— Clique() compilable up tawd = 4
— Path{ X4, X2) compilable up tawd = 4

— Acyclic() not compilable

With the previous properties, using homomorphisms and &moloperations, we
obtain automata for

— k-Colorability() compilable up td: = 3 (cwd = 2), k = 2 (cwd = 3)
— k-Acyclic-Colorability() not compilable (uses Acyclic)

— k-Chord-Free-Cycl@

— k-Max-Degré)

— Vertex-Cove(X;) 2°v¢ states

— k-Vertex-Covef)

The Vertex-Cover property can be expressed by a combinafiafready defined
automata.
;7 Vertex-Cover(X1) = Stabl e(V-X1)
(defun fly-vertex-cover (cwd)
(x1-to-cx1 ;; Stable(V-X1)
7, Stabl e(X1)
(fly-subgraph-stabl e-automaton cwd 1 1)))

(defun fly-k-vertex-cover (k cwd)
7, exists X1 s.t. vertex-cover(X1l) and card(Xl) = k
(vprojection
(i ntersection-autonaton
(fly-vertex-cover cwd) ;; Vertex-Cover(X1)
(fly-subgraph-cardinality-automaton ;; Card(X1l) = k
k cwd 1 1))))

Many problems that where unthinkable to solve with tablesmata could be solved
with fly-automata. For very difficult (NP-complete) problerwe still reach time or
space limitations. Figure 4 shows the running time of a flyeeaton verifying3-
colorability on rectangular grids x N (clique-widths).

8 Conclusion and perspectives

We can not think about a better language than Lisp to implertgautomata whose
transition function is represented by a function. Verifyigraph properties on graphs
of bounded clique-width is a perfect application field td @ms implementation. In the
near future, we plan to implement more graph properties andn tests on real and
random graphs.

In this paper, we did not address the problem of finding teepsasenting a graph,
that is, to find a clique-width decomposition of the graphséme cases, the graph of

14

Time in tens of seconds

1800

1600

1400

1200

1000

800

600

400

0 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000 N

Figure 4: 3-colorability on rectangular gridé x N

interest comes with a “natural decomposition” from which tlique decomposition of
bounded clique-width is easy to obtain but for the generse e known algorithms are
not practically usable. This problem, known as ffaesing problermand has been stud-
ied so far only from a very theoretical point of view. It wasgin to be NP-complete
in [FRRS06]. [OumO08] gives polynomial approximated salus to solve this problem.
More can be found in [Cou09]. The concept of fly-automata isegal and could be
applied to other domains where big automata are needed.

References

[CD10] Bruno Courcelle and Irne Durand. Verifying monadéxzend order graph properties
with tree automata. IRroceedings of the 3rd European Lisp Symposipages 7-21,
May 2010.

[CDGT02] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. kmgiS. Tison, and
M. Tommasi. Tree Automata Techniques and Applicatior2002. Draft, available
fromhttp://tata.gforge.inria.fr.

[Cou09] Bruno Courcelle. Graph structure and monadic seéamder logic. Available at
http://ww. | abri.fr/perso/courcell/Book/ Cour GGBook. pdf
To be published by Cambridge University Press, 2009.

[Dur02] Irene Durand. Autowrite: A tool for checking praopies of term rewriting systems.
In Proceedings of the 13th International Conference on RawgiTechniques and
Applications volume 2378 ofLecture Notes in Computer Sciengages 371-375,
Copenhagen, 2002. Springer-Verlag.

[Dur05] Iréne Durand. Autowrite: A tool for term rewrite stems and tree automat&lec-
tronics Notes in Theorical Computer Scient&4:29-49, 2005.

[FRRS06] M. Fellows, F. Rosamond, U. Rotics, and S. Szei@éque-width minimization is
NP-hard. InProceedings of the 38th Annual ACM Symposium on Theory op@em
ing, pages 354-362, Seattle, 2006.

[Oum08] Sang-lIl Oum. Approximating rank-width and cliquédth quickly. ACM Trans.
Algorithms 5(1):1-20, 2008.

[TW68] J.W. Thatcher and J.B. Wright. Generalized finiteomuiata theory with an application
to a decision problem of second-order logMathematical Systems Thep®/57-81,
1968.

15

