
SLs: User’s Guide
(Still being written)

Irène Durand

Université de Bordeaux I
33405 Talence, France
idurand@labri.fr

1 Introduction

SLS is a tool for handling Slanguages (containing swords) and Sexpressions (expressions
over Slanguages). [4, 3, 1, 2]

The graphical interface (still under construction) is written using FreeCLIM, the free
implementation of the CLIM specification. New functionnalities could be easily integrated
upon demand.

2 Installation

The system has been compiled to run on a PC x86 under Linux and also on a Power PC
under MacOSX. Other architectures can be made available on demand.

The graphical interface is an X11 client so requires an X11 server.
The user should get the file SLS.tgz appropriate for your system and install the system

with the following commands.

$ tar xzvf SLS.tgz # unless done automatically by your system

$ cd SLS

$ ./INSTALL

The system is started by typing

./sls &

Use the Quit button or the Quit command to exit SLS.
The directory SLS contains a Data directory were the specifications are stored.

3 Specification Files

The user may specify a set of SLS objects (swords, slanguages, sexpressions) related to a
common alphabet of letters in a specification file whose name should have the extension
.txt.

An SLS specification file starts with the definition of a signature, eventually followed
by th e definition of a set of variables. Next we may have in any order definitions of TRSs,
automata, termsets, each one of them associated with a distinct name.



Example: trains.txt

Problem trains

([{a,b,e}] . ([{a}] X [{b}] X [{e}]))

(([{a}] X [{b}]) . [{a}{b}])

((([{a}] X [{c}]) . [{a}{c}{d}{d}]) U (([{a}] X [{c}]) . [{a,c}{d}{d}]))

([{b}{b,d,f}] . ([{f}] X [{d}]))

(([{e}] X [{d}]) . [{d,e}])

Sword [{a}{{a}]

Lexpr ([{a}{a}] X [{b}{b}])

Lexpr ([{a,b}] J [{b_1,c}])

3.1 Comments

Any part of a line located after the character ; is considered a comment and will be ignored.

3.2 Names

The name of a letter or a language should not contain the following characters ;, :, (,

), ", - unless the name is surrounded by " ".

3.3 Letters, iletters sletters

A letter has a name. An iletter is a letter indexed with an integer. A sletter is a set of
iletters.

3.4 Swords

An Sword is introduced by the Sword keyword followed by the Sword. Swords are sequences
of Sletters surround by squared brackets ([]).

3.5 Lexpr

An Lexpr is introduced by the Lexpr keyword followed the Lexpr surrounded by parenthe-
ses.

3.6 Problem

An Problem is introduced by the Problem keyword followed the name of the problem
followed by a list of Lexprs which are the constraints of the problem.

3.7 Slanguage

A Slanguage is introduced by the Slanguage keyword followed by the name of the Slan-
guage and its swords.



4 Using SLS

4.1 Generalities

The top pane of the SLS window is an interactor pane from which the user interacts with
the system. It prompts the user for commands and arguments.

At any time the user can get help about the current possibilities by clicking on the
right-button.

Commands are accessible either thru the command line using completion (achieved
with the <TAB> key or from the menus items. Some commands are also available from
buttons.

All commands accessible are accessible by typing the command name (written on the
item) to the Command prompt. The latter is recommended as thru completion it will
save the user a lot of typing. Completion works for commands, data filenames, automaton
names, trs names, termset names.

The menu are there to remind the user of every possible command or for people who
don’t like to type. In any case, at the moment, arguments of commands need to be typed
in the interactor pane.

– The Read commands are used to read SLS objects into the current specificationc
directly from the command line.

– The Load commands are used to load SLS objects into the current specification from
a file with the .txt extension.

– The Save commands are used to save SLS objects into a file.
– The Retrieve commands are used to set the current SLS object with an already com-

puted object.
– The Alphabet (resp. Ialphabet ) commands give the alphabet (resp. ialphabet) of the

current SLS object of the correponding type.

4.2 File Menu

From this menu, one can change the directory where specifiations are loaded Change Data
Directory , clear the bottom result pane clear or quit the application Quit .

4.3 Spec Menu

This menu gathers all commands related to the current Specification.

4.4 Sword Menu

This menu gathers all commands related to the current Sword..

Size One can obtain the length of the current Sword by using the Size command.



4.5 Lexpr

This menu gathers all commands related to the current Lexpr.

Language

4.6 Language

This menu gathers all commands related to the current Slanguage

Cardinal One can obtain the cardinal of the current Slanguage by using the Cardinal
command.

5 How to exit if SLS crashes

In that case, you should end up in the Lisp debugger. Just type (cl::quit) to exit Lisp.

6 Example of a session

Command: Load Spec

spec filename: trains.txt

Command: Solve

Command: Language Lexpr

Command: Cardinal Language

Command: Membership To Language

7 Snapshots of a session

Figures 1, 2, 3, 4and 5 at the end of the document show some snapshots of the graphical
interface.

References

1. Jean-Michel Autebert, Matthieu Latapy, and Sylviane R. Schwer. Le treillis des chemins de delannoy. Discrete

Mathematics, 258(1-3):225–234, 2002.
2. Jean-Michel Autebert and Sylviane R. Schwer. On generalized delannoy paths. SIAM J. Discrete Math.,

16(2):208–223, 2003.
3. Sylviane R. Schwer. Temporal granularity enlightened by knowledge. In NLDB, pages 30–41, 2000.
4. Sylviane R. Schwer. Reasoning with intervals on granules. J. UCS, 8(8):793–807, 2002.



Fig. 1. Operations on the current term and the current automaton



Fig. 2. Boolean operations on automata



Fig. 3. Call by need queries



Fig. 4. Call by need queries



Fig. 5. Call by need queries


