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Abstract: Reasoning about incomplete qualitative temporal inforomats an essential topic
in many Atrtificial Intelligence applications. In the domafi natural language processing for
instance, the temporal analysis of a text yields a set of teatpelations between events in a given
linguistic theory. Our aim is first to situate the events witspect to each other and to describe
(compute or count) all possible relations between them. Vg¢ firesent the formalism of S-
languages which formally describes this domain. We exphdig Lisp is adequate to implement
this theory. Next we describe a Common Lisp sys&n$ (for S-LanguageS) which implements
part of this formalism. A graphical interface written usiMeCLIM, the free implementation
of the CLIM specification frees the potential user of any Lisppwledge. A complete example
illustrates both the theory and the implementation.

1 Introduction

The notion of time is ubiquitous in any activity that requiiatelligence. In particular,
several important notions like change, causality, ancdbactire described in terms of
time. Time has been recognized as a fundamental notion irelimgdand reasoning
about changing domains. Reasoning about temporal comistrigi thus an important
task in many areas of computer science and elsewhere, inglirdscheduling, natural
language processing, planning, database theory, disgrasiuit design, archeology,
genetics, and behavioral psychology [DGVO05].

Many frameworks for formalizing time have been proposeldbased on work by
logician philosophers who were concerned with physics nglege theories, among
whom Frege, Prior, Montague, Hamblin, Reichenbach, or &L8%hitehead and Nicod.
This explains why all works have been handled in a logicahiavork.

In this article, we are concerned with the qualitative aspétemporal reasoning,
i.e. only how "objects” are time-related to each other, withafbrmation about any
gquantitative aspect. We are thus interested in two prolhlems
(i) a representation problem: how to represent time or terlpmbjects and what tem-
poral relations are to be represented and how,

! Supported by the project "ANR Blanc Conique”.



(ii) a calculus problem for the reasoning: knowing theandb are in relation~, andb
andc are in relationr, what possible relations are derived foandc.

According to the classical spatial representation of tiorea geometrical oriented
line, temporal items are taken as points, intervals or charrpoints/intervals, depend-
ing on whether objects to be represented are viewed as ékenlasting or iterative.
For each representation type, an algebra has been propbegubint algebra [vBC90]
for expressing the three basic relations between pointsloreathe point-interval al-
gebra [Vil82] for expressing the five basic relations betwagoint and an interval on
a line, the interval algebra [Ham69] for the thirteen basiations between intervals on
a line, which has become well known since the appearancel @3 Other suggested
calculi have been derived from one or several of the oned elt@ve. These algebra are
integrated with various logics. There are three known wdygpresenting and reason-
ing about temporal information: first order logic, modalilcg and temporal relational
calculi. All these approaches are restricted to binanti@is and based on transitivity
tables like the one for point-point algebra shown in the nakte which is read in the
following way: the first column shows one of the basic relati®tween two pointg,
andp, on an oriented line: precedes), equals £) and succeedsx(), the first line
shows the same for two points andps, and an inside cell provides the possible de-
rived relations betweem, andps. For instance, ip; < ps andps > ps, we can’t derive
any constraint betweemn andps. Butif p; < p2 andps < ps, then necessary, we have

p1 < p3.

| ||P2 <p3|P2=P3|p2 >p3|
pP1 <Dp3
p1 <p2||p1 <Pp3|p1 <P3|P1=DP3
P1 > D3
p1 = p2||P1 < P3|P1 =P3|P1 > P3
p1 <p3
P1 > p2||p1 = P3|P1 > P3|P1 > P3
pP1>Dp3

A qualitative temporal constraint in this framework is depid in terms of a graph,
whose vertices are labeled with temporal objects, and aitbstemporal relations. The
consistency of such a graph depends on the calculus witkitisdty tables and there is
no way to directly express a n-ary relation between n objects

The use of graphs entailed the resolution of path-congigtand particular com-
plexity problems which gave rise to the exhibition of sombsais of relations (convex,
pointizable, Ord-Horni.a. [NB95]).

The S-languages formalism is based on a totally differepragrech. It was first
introduced in [Sch02]. Its aim was to propose lighter anderintuitive representation
than the one given in [Lig91] itself an extension of [Vil82].

Following the natural philosophy of Whitehead, Nicod andsgil, which traces
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Figure 1: Representation of S-words, andw,

back to LeibniZ, a lettera is associated with each temporal object (event, or fact or
state)a and acts as its identity. Any object related to a determiroadiesof time or a
point of view can be described as event-like, lasting or tipe. Let us denote the
way the object is to be perceived as its tempagpect The aim of S-language is to
provide a uniform framework for describing both the temp@spect of objects and
their temporal relationships.

If a is depicted as event-like, only one occurrence of its identill be used,; if
a is depicted as lasting, two occurrences of its identity Wwél needed, each of them
representing one bound of its interval of duration. If it &pitted as lasting and iterating
n times, it will be represented Brn occurrences of its identity.

In a word (a sequence of letters), the fact that a Idités after another lettea
expresseprecedenceetweera andb. To express simultaneity, we defieletters(S
for Set languages in general or féiynchronization in the framework of time). which
are sets of letters occurring at the same til®avordsare words over S-letters. Each
occurrence of the identity of an object will appear at mosteoim an S-letter, which is
assumed to model a moment.

The S-wordw; = [{b,c{cHb}] contains several pieces of information: there
are two temporal objectfsandc; they are both lasting objectsandc start at the same
time andb finishes after. The S-wordws = [{bH{a}{b}] means that the temporal
objecta is event-like and occurs during the lasting objecf temporal representation
of wy andws is given in Figure 1.

Given a set of temporal objects, S-words can express camstr@aver them. Our
work focuses on the problem of expressing, enumerating ontiog possible scenarii
given a set of temporal constraints.

To simplify the presentation of this work, we shall restocitrselves to handlest-
ing objects — that is lasting and repetitive lasting objectghoalgh taking into account
event-like objects does not induce major difficulties.

2 These philosophers asserted that time is built from natudetlaat a moment is a "passage of
the nature” [Whi20], that is, the set of all events occurrsigultaneously at that moment.



2 Preliminaries

2.1 Letters and S-letters

Each temporal object is represented by ktter e. By o, we denote thalphabetof
all letters. It is supposed to be linearly ordered accordinthe order of the letters in
their enumeration. For instance,= {a, b, ¢ } anda < b < c¢. #a denotes the
cardinality ofa.

An S-letteris a non-empty subset af. It defines synchronization points between
events. For instancég,c} is an S-letter meaning thatandc occur simultaneously.
By So. = P(a) \ {{} }, we denote the set of S-letters whaselerlyingalphabet isy
and name it the S-alphabet of all letters. For instance,

Stab.cy = {{al, {b}, {c}, {ab}, {ach {bc} {ab.c} 1.

2.2 S-words

An S-wordis a sequence of the S-letters, in other words an elemeff of . We sur-
round the sequences of the S-letters of an S-word by brafKets The Parikh vector
of a S-wordw is the vectorw of N#* whosei'" coordinate is the number of occur-
rences of the!” letter. The alphabet(w) of a S-wordw is the set of letters appearing
in its S-letters.

Examplel.leta = {a, b, ¢, d }andw = [{a{a,b}a,ci{a,b,c}]
a(w) = {a,b,c}andw= (4,2,2,0).

Letters in S-letters of an S-word can bemarkedwith the following bijective mark-
ing. For all letterd € « appearing inv, the first occurrence dfis marked), the second
1 and so on. Marking the S-word gives:

[{a_OHa 1,b 0{a 2,c O{a 3,b_1,c 1}]

A possible meaning for S-words is the following. The marketddr/, (and each
other appearance éfwith an even mark) indicates that the object associated tivéh
letter] starts. Eachi; with an odd mark indicates that the object stops.

As the marking of an S-word is bijective, we generally dorriteymarks. However,
when dealing with subwords of S-words — which happens whellivag incomplete
temporal descriptions — it will be informative to write theanks. For instance, given
two lasting objects andb, b starts strictly after the end af’ could be written by the
complete S-word{a}{a}{b}{b}]

(which is implicitly [{a_0Ha_1Hb_0}b_1}] )
or only described bf{a_1}¥b_0}] as[{a_O0Ha_1}] and[{b_OKb_1}] are
implicit.

Hence our letters in S-letters are always marked (eithelidgitly or explicitly). The
marked-alphabetv;, (L) of an S-wordw is the set of marked (or implicitly marked)
letters ofw.



2.3 S-languages

An S-languagés a set of S-words. Given an alphabetand a vectore N# (which
associates an integer to each letter), the set of all pesSiblords is called th&-
universeof o andw and is denoted by («, w). Given an S-languagg, the alphabet
a(L) of L is the set of letters of. and the marked-alphabet, (L) of L is the set of
marked-letters appearing in the S-word</of

If, by hypothesis, we know that each object associated wigtter/ occurs a finite
number of times: then for each lettelr, we have a maximum index @f — 1. In that
case, S-words havite length and the S-universe of interest is the one associathd w
the vector having as it8" coordinate the length of the S-word that depicts it. In these
cases, we do not mention the Parikh vector of the S-universe.

But S-languages are not always restricted to a finite S-uséven [Sch07a] S-
languages over infinite S-words are used to deal with exacutaces in distributed
systems. In this case the alphabet is finite but the alphdimetuked-letters is not (the
set of possible marks is infinite) and the Parikh vector cateodefined, but the S-
universe is defined as the set of all possible S-words andiste

An S-language will be represented eitherixtensioni.e. by giving the list of its
S-words (this is possible in the finite case only: finite laaggel of finite S-words) or by
expressions over S-languages, which are caflexkpression@ot to be confused with
Lisp Sexpressions) using operators. Operations and expressien S-languages will
be presented in Section 3.

Suppose for instance that we have two independent objeatslb, each occurring
once. They are represented by S-wo{dg{a}] and[{b}{b}] respectively. The
S-universe is the S-language containing all the posséslibf combining these two
objects that is all the S-words haviri@, 2) as Parikh vector. This S-language has 13
S-words, given by the Delannoy numh@x2, 2) [Slo], which depicts the 13 possible
relationships between two intervals on a line and well-knaw artificial reasoning
community as Allen’s relations [AllI81, All83]. We shall sée Section 3 that this S-
language can be represented byrtfir of the two S-wordsf{a}{a}] X [{bKb}]

So, for justtwo objectsa andb, each occurring once and without any specific con-
straint (other that "the beginning of an object occurs #iribefore its end”), we have a
set of 13 possibilities (S-words) for combining them. Nowedinstraints exist between
the objects, we will get an S-language which is a subset aetli8 possibilities. Each
subset of the S-universe corresponds to specific condraint

Example 2.For instance, if we add the constraints thahust start strictly aftes and
end after than or at the same timeasve get the following S-language with 4 possi-
bilities: L1 = {[{a{bHa.b}l, [{aHaHbHb}], [{aHa,bXb}l,

[{aKbHaKb}]}

There are'® S-languages included in the S-universe; the whole paresgmts the
absence of constraint; the empty part represents incobipatnstraints.



e [{aHaHbXb}] [{bXbHaHa}] e

— [{aH{a.b}b}] [{bXa,bXa}] e

e [{a{bHaKb}] [{bHaKbHa}l e —

e — [{al{bHa,b}] [{a,b}{bHa}l e —

e ——— [{ai{bKbXa}l [{bHaKaKb}l ———

—— [{a,bH{bHa}] [{aKbKa,b}] e ——

—— [{a.bHa,b}] ——
where me— s [{a}{a}] and ——— is [{b}{b}]

Figure 2: The 13 relations between two intervals on a line

3 Operations and expressions on S-languages

3.1 Classical operations on languages

From one point of view, S-languages are a special case ofdldanguages. Conse-
quently, all classical operations on formal languagesyafipE96]. In particular, the
boolean operations (union, intersection, complement)catenation, mirror are de-
fined in the usual way considering that S-letters are theretf the S-words. In the
classical framework, letters are basic objects which cabeadecomposed. In the S-
languages framework, the letters of the S-words are Skgite. sets of letters which
we may want to compose or decompose. Expressions over 8dgeg will be refered
to as S-expressions (not to be confused Wilp Sexpressions3expr . The classical
projection would be to project over a sub-alphabet of Sisttit erases S-letters.

3.2 S-projection

In the S-language framework, we may define the S-projecti@n a sub-alphabet of
letters which erases letters inside the S-letters of a Siwidne same extension can be
considered for morphisms and inverse morphisms.

TheS-projectionof an S-wordw over the alphabet, denoted byw|, is the S-word
obtained by erasing from all occurrences of letters which are notdrand then every
S-letter which has become empty.

Example 3.Letw = [{a,cHa,b}{c,d{a,b,c}] anda = {a,b}.
w), = [{aKa,bH{a,b}]

The S-projection of an S-language is the set of the S-priojesbf its S-words.



3.3 The join operation

Consider two S-languagds;, L, over respective alphabetg L) and«(Ls). Each
S-languagd.; represents temporal constraints which restrict the Saersé/(a(L;)).
joining the two language&; and L, consists in constraining («(L;) U «(L2)) with
the union of the constraints of both languages. The join atp@r will be denoted by
the symbol.

Example 4.RecallL; = {[{a}{bHa,b}], [{aHaKbKb}], [{ala,bXb},

[{a{bHaKb}} of Example 2. The languagk, ={[{a}{a,cH{c}]} can be
described by the constraint Starts wher stops”.L1J L» yields the S-language
{[{aX{bKa.cHb.c}l, [{aHbHa,cHbHc}. [{a{bKa.c HeHb}l,

[{aH{bHa,b,cHc}], [{aH{bH{bHa,cHc}}

There are two special cases for the join operation: the fase®ccurs when the
alphabets of the two languages are identical, then the @iesponds to the intersection
of the two languages; the second case occurs when the atgheleedisjoint and is
described below.

3.3.1 The mix operation (join with disjoint alphabets)

In the case of disjoint alphabets, the join operation is @ kifhshufflethat we callmix
and denote b¥X: it considers all possibilities of ordering independetides.

In the case wheré, = [{a}{a}] and L, = [{bHb}] , the S-language corre-
sponding toL,J L, (already seen in Section2.3) can be obtained by applyingwbe
rewrite rules

{aKb} -> {a,b}

{a.b} -> {bHa}
on the concatenation df; and L, which is[{al{a}{b}{b}] . The lattice (shown
in Figure 3.3.1) obtained by applying the rewrite rules edms all the S-words of; X
L. Note that these S-words are the same as the one in Figure 2.3.

This principle generalizes to any number of letters andrigilages with any cardi-
nality.

A mix expression is a compact way of representing an S-usevéall the possi-
bilities for a given set of temporal objects). S-universes asually very big (so big
that we can’t compute them in practice) so the mix is an irglispble tool to handle
S-languages. Very often the computation of the languagesponding to a mix expres-
sion will lead to a combinatorial explosion. Consequerstlich computation should be
avoided as much and as long as possible. The idea is to fifsirpeevery possible
simplifications which could prune part of the search space.
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Figure 3: Lattice of the mix operation

3.3.2 Join operation (with intersecting alphabets)

In the general case, the alphabets have a non-empty iniers@e(L; ) N a(Lz2) # 0).

The basic operation is defined on S-words. feindg two S-words.

If a(f) Na(g) = 0 thenfJg = fXg as defined above. Otherwise, [&t o(f) N
a(g) # 0. If the projectionsf|; andg,z differ then the constraints inherent to the two
words are incompatible anfdg = {}. Otherwise, the S-words are compatible and
fJgis the S-language containing all S-wordsiritten overa(f) U a(g) which satisfy
hiacpy = f andhjq ) = g. Letforinstance

[ = [{a,cHa,b}{c,d}{a,b,c}] and
g = [{eHa,e,f{e}Ha,b}{fHa,b,fH{e}] .
Theng = {a,b} , f3 = [{aH{a,b}H{a,b}] = g|g and

fJg = {[{eHa.c.e,f{eKa,bHc,d,H{a.c.b,fHe}l,
[{eKa,c.e,f{eHa,b}{c,d{fHa,c,b,He}l,
[{eKa,c.e,f{eHa,b}fHc.di{a,c,b,f{e}l} .

However, we can give a more compact representation usingitheperation:
[{eHa,c.e.f{eKa,b}] . ({c.d}] X [{f}]) . [{ab.c.fHe 1]

The join operation extends to languages: the join of tworSleges is the union of
the joins of an S-word of the first language and an S-word os#wnd. A description
of the algorithm can be found in [Sch07b]. Our implementatioovides both a recur-
sive and an iterative version of it. The join algorithm is adial in the S-languages set-
ting because solving a problem described by a set of consi{&il, E2, ... En}
consists in computing the S-language corresponding to-aepBession
E=E1JE2J ..JEn



3.4 Example

The following example is inspired by [Rev96]. Consider adé trains named A, B, C, D, E, F'}
with the following set of temporal constraints.

. A BandE reach the platform at the same time

. Aleaves beford.

. Aleaves after or at the same time@but before the arrival ob.
. DandF arrive at the same time &sis leaving.

. EandDleave at the same time.

OabhwNBE

We consider the following problem: how many platforms areassary to satisfy
constraints 1 to 5. We formalize the problem into the S-lapps framework. For each
train, we consider the event corresponding to the time dwihich the train remains
at the platform. Because of security reasons, we do not dhetva train to arrive on a
track from which a train is currently leaving.

Our alphabet isx = {a,b,c,d,e,f }, one letter for each train. The S-universe is
the S-language represented by the following mix expression
[{aKa}l X [{bXb}] X [{cHcH X [{dXd}] X [{eHe}] X [{fKf H
which means that we have 6 lasting temporal objects. Thei&#se contains

D(2,2,2,2,2,2) = D(25) = 308682013

S-words [Slo]. The five constraints can be expressed by tfenfing five S-expressions:

1 El = [{fabe}] . ([{a}] X [{b}] X [{e}])

2. E2 = ([{fa}] X [{b}]) . [{a}{b}]

3. E3 = (([{a}] X [{cHc}]) . [{aHdHd}]) U
(({a3] X [{c}]) . [{a,cHdHd})

4. E4 = [{bH{bd.f}] . ([{f}] X [{d}])

5. ES = ([{e}] X [{d}]) . [{d.e}]

3.5 Simplifying S-expressions

For solving a set of constrainig1, E2, ... En} , one must evaluate the S-expression
E1 J E2 .. J En .Ingeneral,itis nottractable to evaluate the S-languagesor-
responding to th&i and then joining them because the intermediate S-langLeages
much too big. The key idea is to simplify ®until it becomes reasonable to compute
the final S-language. Finding simplifications and provingytire correct is a difficult
domain which is not completely explored. The first kind of glifications results from
classical properties of the operators like associatigiynmutativity, idempotence and
distributivity. The other simplifications concern the jadperation or its special cases
(mix, intersection). For instance, the intersection of taraguages with disjoint alpha-
bets is empty; the join of a language with its S-universeésidmguage itself.

For our trains example of Section 3.8LS is able to simplify the S-expression
which evaluates to an S-language containing 24 S-wordsngftfebetween 5 and 7.
The final language can be written usig mix as:



E = ([{cHcH X [{a,b,e}]).[{a}].[{b.d.H].({f}] X [{e.d 1y
({a.b.e}] X [{c}]).[{a,c}].[{b,d.B.({f}] X [{e,d}])

In order to solve our problem, we have to recall the good preation of what this

S-language depicts (the possible relationships betweempdhiods where trains are

stopped at a platform), then to find insiean S-word which minimizes the meeting

or interleaving between these periods. The first choicetake([{c}{c}{a,b,e}])

from the left sub-S-expressidfic}{c}] X [{a,b.e}]) which isolates the trai@.

The new S-expression B=[{c}{cKa,b,eHa}b,d.f.({] X [e,d})

and contains only 3 S-words. Fir€lstops and leaves, thénB, E arrive all at the same

time, then we need at least three tracks. Blkaves only before the arrival @ and

F, then we need one more track. The answer of the problem isthia i tracks are

enough; 4 tracks are also sufficient for all S-word€of

4 Implementation of S-languages

It will not take long to justify the choice of the Common Lisgniguage to implement
the theory of S-languages: the domain is typically symbascopposed to numeric;
the data are highly hierarchical which justifies an objadtted language; in addition,
multiple inheritance is very useful for factoring propegiand associated methods for
simplifying S-expressions.

4.1 Implementation of basic objects

The basicSLS objects are letterfletter) , marked lettergmletter) , S-letters
(sletter) , alphabets for all the different kinds of lettéedphabet, malphabet) ,
S-words(sword)

To prevent combinatorial explosion we use the well-knowchteque ofhash-
consing each element of each object category is represented bygaeihisp object;
there is a list for each category of object; the objects aveesdtin the list correspond-
ing to its category. When the creation of an object is reqljieelook-up is done in the
corresponding list; if an object with equal components lfi@eeq sense) is found such
object is returned; otherwise a new object is constructeldstored in the list. Here is
the example of thenletter  case.

(defmethod make-mletter ((string string) &optional (mark 0))
(let = ((letter (make-letter string))
(name (name letter)))
(or (find-object name (mletters * SPEC * )
‘test (lambda (name mletter)
(and (eq name (name mletter))
(= mark (mark mletter)))))
(let ((mletter (make-instance 'mletter :letter letter
:mark mark)))
(setf (mletters * Spec *)
(append (mletters *spec ) (list mletter)))
mletter))))



This technique has also the advantage that SLS basic olajeots|-comparable
which improves time performance.

aletter ‘ ‘word ‘

sword |

letter | |m|ener | sletter |

Figure 4: Classes for basiSLS objects

The hierarchy of the classes describing b&ii& objects is presented in Figure 4.1.
Note that an S-letter, being a sequence of letters, is isetbrd (but not an S-word).

4.2 Implementation of S-expressions

The classaalanguage contains all objects which describe languages. A language ¢
be represented by its set of wordariguage , word) or by an expression. An ex-
pression is defined recursively: it is either a concletgguage or an expression
with an operator and whose arguments are expressions. Netase of themixin

alanguage

Lexpr

commutative—mixin idem-mixin op-lexpr

ic—mixin assoc-lexpr unary-lexpr

/

gljoin concatenation | |mirror | star

bool-mixin ljoin mix

lintersection |

lunion |

Figure 5: Class hierarchy for representing S-languages

classes to capture properties which help simplifying eggiens. For instance, the pri-



mary methodtlean-args  normalizes the arguments of an associative S-expression.
The secondary methods complete this task according to ltee ptoperties of an oper-
ator. For instance, if the operator is idempotent, we carokenduplicated or equivalent
arguments.
(defmethod clean-args ((lexpr assoc-lexpr)) ...)
(defmethod clean-args :before ((lexpr fold-mixin))

(setf (args lexpr)

(remove-duplicates (args lexpr) :test #'equivalent))
lexpr)

4.3 Specifications forSLS

SLS handles a set of specifications that can be loaded integhcti specification
consists of a signature, possibly a set of variables, falbwy a list ofSLS objects.
SLS objects are S-words, S-expressions, S-languages, Prsljganof S-expressions
which correspond to constraints). In a same specificatioe, siores objects from a
common S-universe.

Figure 4.3 shows an example of such a specification. Thatfsion contains
the train problem of Section 3.4. It also shows how to spe8ifyord, S-expressions or
S-languages in extension.

Figure 6: Example of arSLS specification

4.4 The graphical interface

A graphical user interface helps the user load his/her datedrds, S-expressions,
S-languages) and apply operations on it. It is written ushegMcCLIM[SMO02] sys-
tem which is the free implementation of ti@&.IM specification. A snapshot of the
SLS window after loading therain.txt specification is shown Figure 7. All the
commands are either accessible from the command line inofhevindow or from
menus, classified according the type of object they openmatélere we have applied
the commandsolve (also in theProblem menu) which transforms the set of con-
straints of the problem into a (when possible) simplifiedxgression which becomes
the current S-expression. Next we have appliedShenguage Sexpr command
(also in theSexpr menu) which computes the S-language corresponding to the cu
rent S-expression and invoked tRardinality Slanguage command (also in
theSLanguage menu) which prints the cardinality of the current S-langeidginally,
with the Membership To Slanguage , we verify that the current S-word belongs
to the current S-language. The final look of the window is shawFigure 8.



File Spec 3Sword Problem Zexpr Slanguage

Command: Load Spec A
spec filename: trains.tzt

Command: | o

i
Current Problem trains A
([{a,b,e}] . ([{a}] X [{b}] X [He}ll}

(Cltar] ¥ [ikr]) . [Hatibi D}

((Cl{al] % [{elic}]) [{abidi{di]y U (([{a}] ® [{e}]) . [{a,ciid}idi])) E
([{ktib,d, L] (0efr] % [edrlng

(([{e}] % [{d}]) . [{e,d}])

i
=) i 1 |
Current Sexpr ([{a,b}] T [{b,c}]) -

i
=) I =
turrent Sword [{e}{ct{a.b,el{atib,d,fi{e] A furrent Zlancuage L A
,db{f}] | {l{ay b} {a,b}], [(a}{al{k}{b}], [la}{a,b]|_

S Hikr], [H{ab{bi{al (B}1} =
1 v
=] i | = I I=

A

i

I 1
" Guitl clear |fusrflabrifidurandf .sbel/site/Smots/Datal] " harks

Figure 7: First snapshot o6LS

SLScontains altogether 6000 linesG@bmmon Lisp of which around 1200 corre-
spond to the graphical interface. One the project patye//dept-info.labri.
u-bordeaux.fr/fidurand/SLS/ , one can find a description of the project, a User’s
Manual, an archive with the latest source and executab#efbilea few architectures.

5 Related work and perspectives

Objects and temporal constraints between them is a cru@fiemin many domains
(artificial intelligence, linguistics, music,...). Malgrour software really usable in ap-
plications work requires work in two directions.

The problem of constraint satisfaction is intrisically exntial. In S-languages,
the mix operation is a way to avoid combinatorial explosinoreome cases. For the
other cases, and in order to minimize the risk of combinataxplosion, theoretical
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=] i | = I 1
The cardinality of Slanguage unmaned is Zz4
Current sword is in current slanguage

spec filenams: trains.tzt A
Command.: Solve

Command: Slanguage Sexpr

Cammand. Cardinality Slanguage =
Command.: Membership To Slanguage

Command: | i
Current Problem trains A
([{a,b,e}] . ([{a}] X [{b}] X [{e}]1))

(([ta}] ¥ [tki]) . [H{atibi D)

((Cl{al] % [{elic}]) [{abidi{di]y U (([{a}] 2 [{e}]) [ia,eb{d}{dt]1)) E
([{b}{b,d,f}] (LHEr] X [Hdr1))

(([{e}] % [{d}]) . [{e,d}])

]
=) i 1 |
current Sexpr (((({[{c}] . ({[{e}] . ([{a,b,e}] . (([{e}]l . ([{a}l . ([{b)] % [{d}{dil |
133y U flfa,et] o (0ib] X [idbidilyy U (0fatl . ([{bt] X [{et] X [{db{dilrinsy U ([f ﬂ
a,b,e,ab] . (([del] . ([{at] . ([{b}] X [{d}{d}1))) U ([{a,=}] . ([{b}] % [{d}{d}]))

U ([{at]l . ([{b}] X [{e}] X [{d}{d}+11))) U ([{a,b,e}] . (([{e}] (Lick] . ([{a}] . ¢
[iBr] ®H [ididdi )iy U (lie,cr] o (0dar] . @ltkr] X [idi{drlady U ([der] o (0[ie}]) .
([{at] . ([{k}] X [{db{di]) U ([{a,e}] . ([{b}] X [{d}{di1)) U ([{a}] . ([{b}] ® [{
eb] X [HdH{dr1d )y 7 ([ibhik,d, £}] . (D{f}] X [{d}1) T (([ie}] 2 [{d}]) . [{e,d} i
=) I =
current Sword [{c}{clia,b,el{alib,d,fi{e] |4 Current Slanguage unmaned A
,db{f}] | ([{a,k, 2] (e} (e} {a} {k,d, ] (e,d} {£}], [la, ﬁ
| brei{ctict {a} {b,d,f} {e,d,f}], [{a.b,e}{c
Pich{al tb,d, £} {f}{e,d}], [{ci{a,b,e}{ct{ r

I 1

[ ] = |

" Guitl clear |fusrf labri/idurand/.sbcl/site/Smots/Data/] " harks

Figure 8: Second snapshot &S

work must be done for better simplifying S-expressions teéalculating in extension
the corresponding S-language. When we can’t avoid comtnitghexplosion, program-
ming should be as efficient as possible in terms of memorgation and time compu-
tations. Many improvements may be done in that directiortjqadarly we haven't yet

exploited the possibility of detecting and sharing equénakexpressions as we already
do for S-word, S-letters. Futhermore, we also plain to asely terms of S-expressions,

the convex, pointizable and Ord-Horn classes studied inirtteval algebra theory
[NB95].

At the outside level, much work needs to be done to allow n@amjmuter scientists
to use the tool. Representing graphically S-words could fiesiastep. Next we could

think of a tool for helping the user defining graphically cbamts between objects

resulting in a set of S-words.
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