
Reasoning about qualitative temporal information with S-words
and S-languages

Ir ène A. Durand
LaBRI, Université de Bordeaux,

idurand@labri.fr

Sylviane R. Schwer1

LIPN, Université Paris-Nord
schwer@lipn.univ-paris13.fr

Abstract: Reasoning about incomplete qualitative temporal information is an essential topic
in many Artificial Intelligence applications. In the domainof natural language processing for
instance, the temporal analysis of a text yields a set of temporal relations between events in a given
linguistic theory. Our aim is first to situate the events withrespect to each other and to describe
(compute or count) all possible relations between them. We first present the formalism of S-
languages which formally describes this domain. We explainwhy Lisp is adequate to implement
this theory. Next we describe a Common Lisp systemSLS (for S-LanguageS) which implements
part of this formalism. A graphical interface written usingMcCLIM, the free implementation
of the CLIM specification frees the potential user of any Lispknowledge. A complete example
illustrates both the theory and the implementation.

1 Introduction

The notion of time is ubiquitous in any activity that requires intelligence. In particular,
several important notions like change, causality, and action are described in terms of
time. Time has been recognized as a fundamental notion in modeling and reasoning
about changing domains. Reasoning about temporal constraints is thus an important
task in many areas of computer science and elsewhere, including in scheduling, natural
language processing, planning, database theory, diagnosis, circuit design, archeology,
genetics, and behavioral psychology [DGV05].

Many frameworks for formalizing time have been proposed, all based on work by
logician philosophers who were concerned with physics or language theories, among
whom Frege, Prior, Montague, Hamblin, Reichenbach, or Russell, Whitehead and Nicod.
This explains why all works have been handled in a logical framework.

In this article, we are concerned with the qualitative aspect of temporal reasoning,
i.e. only how ”objects” are time-related to each other, without information about any
quantitative aspect. We are thus interested in two problems:
(i) a representation problem: how to represent time or temporal objects and what tem-
poral relations are to be represented and how,

1 Supported by the project ”ANR Blanc Conique”.

(ii) a calculus problem for the reasoning: knowing thata andb are in relationr1 andb

andc are in relationr2, what possible relations are derived fora andc.
According to the classical spatial representation of time,on a geometrical oriented

line, temporal items are taken as points, intervals or chains or points/intervals, depend-
ing on whether objects to be represented are viewed as event-like, lasting or iterative.
For each representation type, an algebra has been proposed:the point algebra [vBC90]
for expressing the three basic relations between points on aline, the point-interval al-
gebra [Vil82] for expressing the five basic relations between a point and an interval on
a line, the interval algebra [Ham69] for the thirteen basic relations between intervals on
a line, which has become well known since the appearance of [All83]. Other suggested
calculi have been derived from one or several of the ones cited above. These algebra are
integrated with various logics. There are three known ways of representing and reason-
ing about temporal information: first order logic, modal logics, and temporal relational
calculi. All these approaches are restricted to binary relations and based on transitivity
tables like the one for point-point algebra shown in the nexttable which is read in the
following way: the first column shows one of the basic relation between two pointsp1

andp2 on an oriented line: precedes (<), equals (=) and succeeds (>), the first line
shows the same for two pointsp2 andp3, and an inside cell provides the possible de-
rived relations betweenp1 andp3. For instance, ifp1 < p2 andp2 > p3, we can’t derive
any constraint betweenp1 andp3. But if p1 < p2 andp2 < p3, then necessary, we have
p1 < p3.

p2 < p3 p2 = p3 p2 > p3

p1 < p2 p1 < p3 p1 < p3

p1 < p3

p1 = p3

p1 > p3

p1 = p2 p1 < p3 p1 = p3 p1 > p3

p1 > p2

p1 < p3

p1 = p3

p1 > p3

p1 > p3 p1 > p3

A qualitative temporal constraint in this framework is depicted in terms of a graph,
whose vertices are labeled with temporal objects, and arcs with temporal relations. The
consistency of such a graph depends on the calculus with transitivity tables and there is
no way to directly express a n-ary relation between n objects.

The use of graphs entailed the resolution of path-consistency and particular com-
plexity problems which gave rise to the exhibition of some subsets of relations (convex,
pointizable, Ord-Horn,i.a. [NB95]).

The S-languages formalism is based on a totally different approach. It was first
introduced in [Sch02]. Its aim was to propose lighter and more intuitive representation
than the one given in [Lig91] itself an extension of [Vil82].

Following the natural philosophy of Whitehead, Nicod and Russell, which traces

{b,c} {c} {b}

b

c

{b} {a} {b}

a

b

Figure 1: Representation of S-wordsw1 andw2

back to Leibniz2, a lettera is associated with each temporal object (event, or fact or
state)a and acts as its identity. Any object related to a determined scale of time or a
point of view can be described as event-like, lasting or repetitive. Let us denote the
way the object is to be perceived as its temporalaspect. The aim of S-language is to
provide a uniform framework for describing both the temporal aspect of objects and
their temporal relationships.

If a is depicted as event-like, only one occurrence of its identity will be used; if
a is depicted as lasting, two occurrences of its identity willbe needed, each of them
representing one bound of its interval of duration. If it is depicted as lasting and iterating
n times, it will be represented by2n occurrences of its identity.

In a word (a sequence of letters), the fact that a letterb is after another lettera
expressesprecedencebetweena andb. To express simultaneity, we defineS-letters(S
for Set languages in general or forSynchronization in the framework of time). which
are sets of letters occurring at the same time.S-wordsare words over S-letters. Each
occurrence of the identity of an object will appear at most once in an S-letter, which is
assumed to model a moment.

The S-wordw1 = [{b,c}{c}{b}] contains several pieces of information: there
are two temporal objectsb andc; they are both lasting objects;b andc start at the same
time andb finishes afterc. The S-wordw2 = [{b}{a}{b}] means that the temporal
objecta is event-like and occurs during the lasting objectb. A temporal representation
of w1 andw2 is given in Figure 1.

Given a set of temporal objects, S-words can express constraints over them. Our
work focuses on the problem of expressing, enumerating or counting possible scenarii
given a set of temporal constraints.

To simplify the presentation of this work, we shall restrictourselves to handlelast-
ing objects – that is lasting and repetitive lasting objects – although taking into account
event-like objects does not induce major difficulties.

2 These philosophers asserted that time is built from nature and that a moment is a ”passage of
the nature” [Whi20], that is, the set of all events occurringsimultaneously at that moment.

2 Preliminaries

2.1 Letters and S-letters

Each temporal objecte is represented by aletter e. By α, we denote thealphabetof
all letters. It is supposed to be linearly ordered accordingto the order of the letters in
their enumeration. For instance,α = {a, b, c } anda < b < c . #α denotes the
cardinality ofα.

An S-letteris a non-empty subset ofα. It defines synchronization points between
events. For instance,{a,c} is an S-letter meaning thata andc occur simultaneously.
By Sα = P(α) \ {{} }, we denote the set of S-letters whoseunderlyingalphabet isα
and name it the S-alphabet of all letters. For instance,

S{a,b,c} = {{a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} }.

2.2 S-words

An S-wordis a sequence of the S-letters, in other words an element of(Sα)∗. We sur-
round the sequences of the S-letters of an S-word by brackets([]). TheParikh vector
of a S-wordw is the vector−→w of N

#α whoseith coordinate is the number of occur-
rences of theith letter. The alphabetα(w) of a S-wordw is the set of letters appearing
in its S-letters.

Example 1.let α = {a, b, c, d } andw = [{a}{a,b}{a,c}{a,b,c}] .
α(w) = {a, b, c} and

→
w= (4, 2, 2, 0).

Letters in S-letters of an S-wordw can bemarkedwith the following bijective mark-
ing. For all lettersl ∈ α appearing inw, the first occurrence ofl is marked0, the second
1 and so on. Marking the S-wordw gives:

[{a_0}{a_1,b_0}{a_2,c_0}{a_3,b_1,c_1}] .
A possible meaning for S-words is the following. The marked letter l0 (and each

other appearance ofl with an even mark) indicates that the object associated withthe
letterl starts. Eachli with an odd mark indicates that the object stops.

As the marking of an S-word is bijective, we generally don’t write marks. However,
when dealing with subwords of S-words — which happens when handling incomplete
temporal descriptions — it will be informative to write the marks. For instance, given
two lasting objectsa andb, ”b starts strictly after the end ofa” could be written by the
complete S-word[{a}{a}{b}{b}]
(which is implicitly [{a_0}{a_1}{b_0}{b_1}])
or only described by[{a_1}{b_0}] as[{a_0}{a_1}] and[{b_0}{b_1}] are
implicit.

Hence our letters in S-letters are always marked (either implicitly or explicitly). The
marked-alphabetαM (L) of an S-wordw is the set of marked (or implicitly marked)
letters ofw.

2.3 S-languages

An S-languageis a set of S-words. Given an alphabetα, and a vector
→
w∈ N

#α (which
associates an integer to each letter), the set of all possible S-words is called theS-
universeof α and

→
w and is denoted byU(α,

→
w). Given an S-languageL, the alphabet

α(L) of L is the set of letters ofL and the marked-alphabetαM (L) of L is the set of
marked-letters appearing in the S-words ofL.

If, by hypothesis, we know that each object associated with aletterl occurs a finite
number of timesn then for each letterl , we have a maximum index of2n − 1. In that
case, S-words havefinite length and the S-universe of interest is the one associated with
the vector having as itsith coordinate the length of the S-word that depicts it. In these
cases, we do not mention the Parikh vector of the S-universe.

But S-languages are not always restricted to a finite S-universe: in [Sch07a] S-
languages over infinite S-words are used to deal with execution traces in distributed
systems. In this case the alphabet is finite but the alphabet of marked-letters is not (the
set of possible marks is infinite) and the Parikh vector cannot be defined, but the S-
universe is defined as the set of all possible S-words and is infinite.

An S-language will be represented either inextension, i.e. by giving the list of its
S-words (this is possible in the finite case only: finite language of finite S-words) or by
expressions over S-languages, which are calledS-expressions(not to be confused with
Lisp Sexpressions) using operators. Operations and expressions over S-languages will
be presented in Section 3.

Suppose for instance that we have two independent objectsa andb, each occurring
once. They are represented by S-words[{a}{a}] and[{b}{b}] respectively. The
S-universe is the S-language containing all the possibilities of combining these two
objects that is all the S-words having(2, 2) as Parikh vector. This S-language has 13
S-words, given by the Delannoy numberD(2, 2) [Slo], which depicts the 13 possible
relationships between two intervals on a line and well-known in artificial reasoning
community as Allen’s relations [All81, All83]. We shall seein Section 3 that this S-
language can be represented by themixof the two S-words:[{a}{a}] X [{b}{b}] .

So, for justtwo objectsa andb, each occurring once and without any specific con-
straint (other that ”the beginning of an object occurs strictly before its end”), we have a
set of 13 possibilities (S-words) for combining them. Now ifconstraints exist between
the objects, we will get an S-language which is a subset of these 13 possibilities. Each
subset of the S-universe corresponds to specific constraints.

Example 2.For instance, if we add the constraints thatb must start strictly aftera and
end after than or at the same time asa, we get the following S-language with 4 possi-
bilities: L1 = {[{a}{b}{a,b}], [{a}{a}{b}{b}], [{a}{a,b}{b}],

[{a}{b}{a}{b}]} .

There are213 S-languages included in the S-universe; the whole part represents the
absence of constraint; the empty part represents incompatible constraints.

where is [{a}{a}] and is [{b}{b}]

[{b}{a}{b}{a}]

[{b}{a,b}{a}]

[{b}{b}{a}{a}]

[{a,b}{b}{a}]

[{b}{a}{a}{b}]

[{a}{b}{a,b}]

[{a,b}{a,b}]

[{a}{a}{b}{b}]

[{a}{a,b}{b}]

[{a}{b}{a}{b}]

[{a}{b}{a,b}]

[{a}{b}{b}{a}]

[{a,b}{b}{a}]

Figure 2: The 13 relations between two intervals on a line

3 Operations and expressions on S-languages

3.1 Classical operations on languages

From one point of view, S-languages are a special case of formal languages. Conse-
quently, all classical operations on formal languages apply [RS96]. In particular, the
boolean operations (union, intersection, complement), concatenation, mirror are de-
fined in the usual way considering that S-letters are the letters of the S-words. In the
classical framework, letters are basic objects which cannot be decomposed. In the S-
languages framework, the letters of the S-words are S-letters, i.e. sets of letters which
we may want to compose or decompose. Expressions over S-languages will be refered
to as S-expressions (not to be confused withLisp Sexpressions (Sexpr . The classical
projection would be to project over a sub-alphabet of S-letters: it erases S-letters.

3.2 S-projection

In the S-language framework, we may define the S-projection over a sub-alphabet of
letters which erases letters inside the S-letters of a S-word. The same extension can be
considered for morphisms and inverse morphisms.

TheS-projectionof an S-wordw over the alphabetα, denoted byw|α is the S-word
obtained by erasing fromw all occurrences of letters which are not inα and then every
S-letter which has become empty.

Example 3.Let w = [{a,c}{a,b}{c,d}{a,b,c}] andα = {a, b}.
w|α = [{a}{a,b}{a,b}] .

The S-projection of an S-language is the set of the S-projections of its S-words.

3.3 The join operation

Consider two S-languagesL1, L2 over respective alphabetsα(L1) andα(L2). Each
S-languageLi represents temporal constraints which restrict the S-universeU(α(Li)).
joining the two languagesL1 andL2 consists in constrainingU(α(L1) ∪ α(L2)) with
the union of the constraints of both languages. The join operation will be denoted by
the symbolJ .

Example 4.RecallL1 = {[{a}{b}{a,b}], [{a}{a}{b}{b}], [{a}{a,b}{b}],

[{a}{b}{a}{b}]} of Example 2. The languageL2 ={[{a}{a,c}{c}]} can be
described by the constraint ”c starts whena stops”.L1JL2 yields the S-language
{[{a}{b}{a,c}{b,c}], [{a}{b}{a,c}{b}{c}], [{a}{b}{a,c }{c}{b}],

[{a}{b}{a,b,c}{c}], [{a}{b}{b}{a,c}{c}]} .

There are two special cases for the join operation: the first case occurs when the
alphabets of the two languages are identical, then the join corresponds to the intersection
of the two languages; the second case occurs when the alphabets are disjoint and is
described below.

3.3.1 The mix operation (join with disjoint alphabets)

In the case of disjoint alphabets, the join operation is a kind of shufflethat we callmix
and denote byX: it considers all possibilities of ordering independent letters.

In the case whereL1 = [{a}{a}] andL2 = [{b}{b}] , the S-language corre-
sponding toL1JL2 (already seen in Section2.3) can be obtained by applying thetwo
rewrite rules

{a}{b} -> {a,b}

{a,b} -> {b}{a}
on the concatenation ofL1 andL2 which is [{a}{a}{b}{b}] . The lattice (shown
in Figure 3.3.1) obtained by applying the rewrite rules contains all the S-words ofL1 X
L2. Note that these S-words are the same as the one in Figure 2.3.

This principle generalizes to any number of letters and S-languages with any cardi-
nality.

A mix expression is a compact way of representing an S-universe (all the possi-
bilities for a given set of temporal objects). S-universes are usually very big (so big
that we can’t compute them in practice) so the mix is an indispensable tool to handle
S-languages. Very often the computation of the language corresponding to a mix expres-
sion will lead to a combinatorial explosion. Consequently,such computation should be
avoided as much and as long as possible. The idea is to first perform every possible
simplifications which could prune part of the search space.

{a}{b} −> {a,b}

{a,b} −> {b}{a}

{a}{a}{b}{b}

{a}{a,b}{b}

{a}{b}{a}{b}

{a,b}{a}{b} {a}{b}{a,b}

{a,b}{a,b} {a}{b}{b}{a}

{a,b}{b}{a}

{b}{a}{a}{b}

{b}{a}{b}{a}

{b}{a,b}{a}

{b}{b}{a}{a}

{b}{a}{a,b}

Figure 3: Lattice of the mix operation

3.3.2 Join operation (with intersecting alphabets)

In the general case, the alphabets have a non-empty intersection (α(L1) ∩ α(L2) 6= ∅).
The basic operation is defined on S-words. Letf andg two S-words.
If α(f) ∩ α(g) = ∅ thenfJg = fXg as defined above. Otherwise, letβ = α(f) ∩

α(g) 6= ∅. If the projectionsf|β andg|β differ then the constraints inherent to the two
words are incompatible andfJg = {}. Otherwise, the S-words are compatible and
fJg is the S-language containing all S-wordsh written overα(f)∪α(g) which satisfy
h|α(f) = f andh|α(g) = g. Let for instance
f = [{a,c}{a,b}{c,d}{a,b,c}] and
g = [{e}{a,e,f}{e}{a,b}{f}{a,b,f}{e}] .
Thenβ = {a,b} , f|β = [{a}{a,b}{a,b}] = g|β and
fJg = {[{e}{a,c,e,f}{e}{a,b}{c,d,f}{a,c,b,f}{e}],

[{e}{a,c,e,f}{e}{a,b}{c,d}{f}{a,c,b,f}{e}],

[{e}{a,c,e,f}{e}{a,b}{f}{c,d}{a,c,b,f}{e}]} .
However, we can give a more compact representation using themix operation:

[{e}{a,c,e,f}{e}{a,b}] . ([{c,d}] X [{f}]) . [{a,b,c,f}{e }]

The join operation extends to languages: the join of two S-languages is the union of
the joins of an S-word of the first language and an S-word of thesecond. A description
of the algorithm can be found in [Sch07b]. Our implementation provides both a recur-
sive and an iterative version of it. The join algorithm is a crucial in the S-languages set-
ting because solving a problem described by a set of constraints {E1, E2, ... En}

consists in computing the S-language corresponding to the S-expression
E = E1 J E2 J ... J En .

3.4 Example

The following example is inspired by [Rev96]. Consider a setof 6 trains named{A, B, C, D, E, F}

with the following set of temporal constraints.

1. A, B andE reach the platform at the same time
2. A leaves beforeB.
3. A leaves after or at the same time asCbut before the arrival ofD.
4. DandF arrive at the same time asB is leaving.
5. E andD leave at the same time.

We consider the following problem: how many platforms are necessary to satisfy
constraints 1 to 5. We formalize the problem into the S-languages framework. For each
train, we consider the event corresponding to the time during which the train remains
at the platform. Because of security reasons, we do not allowthat a train to arrive on a
track from which a train is currently leaving.

Our alphabet isα = {a, b, c , d, e, f }, one letter for each train. The S-universe is
the S-language represented by the following mix expression
[{a}{a}] X [{b}{b}] X [{c}{c}] X [{d}{d}] X [{e}{e}] X [{f}{f }]

which means that we have 6 lasting temporal objects. The S-universe contains

D(2, 2, 2, 2, 2, 2) = D(26) = 308682013

S-words [Slo]. The five constraints can be expressed by the following five S-expressions:
1. E1 = [{a,b,e}] . ([{a}] X [{b}] X [{e}])
2. E2 = ([{a}] X [{b}]) . [{a}{b}]
3. E3 = (([{a}] X [{c}{c}]) . [{a}{d}{d}]) U

(([{a}] X [{c}]) . [{a,c}{d}{d}])
4. E4 = [{b}{b,d,f}] . ([{f}] X [{d}])
5. E5 = ([{e}] X [{d}]) . [{d,e}]

3.5 Simplifying S-expressions

For solving a set of constraints{E1, E2, ... En} , one must evaluate the S-expression
E1 J E2 ... J En . In general, it is not tractable to evaluate the S-languagesLi cor-
responding to theEi and then joining them because the intermediate S-languagesare
much too big. The key idea is to simplify toe until it becomes reasonable to compute
the final S-language. Finding simplifications and proving they are correct is a difficult
domain which is not completely explored. The first kind of simplifications results from
classical properties of the operators like associativity,commutativity, idempotence and
distributivity. The other simplifications concern the joinoperation or its special cases
(mix, intersection). For instance, the intersection of twolanguages with disjoint alpha-
bets is empty; the join of a language with its S-universe is the language itself.

For our trains example of Section 3.4,SLS is able to simplify the S-expression
which evaluates to an S-language containing 24 S-words of length between 5 and 7.
The final language can be written usig mix as:

E = ([{c}{c}] X [{a,b,e}]).[{a}].[{b,d,f}].([{f}] X [{e,d }]) U

([{a,b,e}] X [{c}]).[{a,c}].[{b,d,f}].([{f}] X [{e,d}])

In order to solve our problem, we have to recall the good interpretation of what this
S-language depicts (the possible relationships between the periods where trains are
stopped at a platform), then to find insideE an S-word which minimizes the meeting
or interleaving between these periods. The first choice is totake([{c}{c}{a,b,e}])

from the left sub-S-expression([{c}{c}] X [{a,b,e}]) which isolates the trainC.
The new S-expression isE’=[{c}{c}{a,b,e}{a}{b,d,f}].([{f}] X [{e,d}])

and contains only 3 S-words. First,Cstops and leaves, thenA, B, E arrive all at the same
time, then we need at least three tracks. ButA leaves only before the arrival ofD and
F, then we need one more track. The answer of the problem is thenthat 4 tracks are
enough; 4 tracks are also sufficient for all S-words ofE’ .

4 Implementation of S-languages

It will not take long to justify the choice of the Common Lisp language to implement
the theory of S-languages: the domain is typically symbolicas opposed to numeric;
the data are highly hierarchical which justifies an object-oriented language; in addition,
multiple inheritance is very useful for factoring properties and associated methods for
simplifying S-expressions.

4.1 Implementation of basic objects

The basicSLS objects are letters(letter) , marked letters(mletter) , S-letters
(sletter) , alphabets for all the different kinds of letters(alphabet, malphabet) ,
S-words(sword) .

To prevent combinatorial explosion we use the well-known technique ofhash-
consing: each element of each object category is represented by a unique Lisp object;
there is a list for each category of object; the objects are stored in the list correspond-
ing to its category. When the creation of an object is required, a look-up is done in the
corresponding list; if an object with equal components (in theeq sense) is found such
object is returned; otherwise a new object is constructed and stored in the list. Here is
the example of themletter case.

(defmethod make-mletter ((string string) &optional (mark 0))
(let * ((letter (make-letter string))

(name (name letter)))
(or (find-object name (mletters * spec *)

:test (lambda (name mletter)
(and (eq name (name mletter))

(= mark (mark mletter)))))
(let ((mletter (make-instance ’mletter :letter letter

:mark mark)))
(setf (mletters * spec *)

(append (mletters * spec *) (list mletter)))
mletter))))

This technique has also the advantage that SLS basic objectsareeq-comparable
which improves time performance.

aletter word

letter mletter sletter sword

Figure 4: Classes for basicSLS objects

The hierarchy of the classes describing basicSLSobjects is presented in Figure 4.1.
Note that an S-letter, being a sequence of letters, is itselfa word (but not an S-word).

4.2 Implementation of S-expressions

The classalanguage contains all objects which describe languages. A language can
be represented by its set of words (language , word) or by an expression. An ex-
pression is defined recursively: it is either a concretelanguage or an expression
with an operator and whose arguments are expressions. Note the use of themixin

language

word

lunion lintersection

ljoin mix

mirror starconcatenation

commutative−mixin idem−mixin op−lexpr

Lexpr

alanguage

unary−lexprassoc−lexpr

gljoin

bool−mixin

ic−mixin

Figure 5: Class hierarchy for representing S-languages

classes to capture properties which help simplifying expressions. For instance, the pri-

mary methodclean-args normalizes the arguments of an associative S-expression.
The secondary methods complete this task according to the other properties of an oper-
ator. For instance, if the operator is idempotent, we can remove duplicated or equivalent
arguments.

(defmethod clean-args ((lexpr assoc-lexpr)) ...)
(defmethod clean-args :before ((lexpr fold-mixin))

(setf (args lexpr)
(remove-duplicates (args lexpr) :test #’equivalent))

lexpr)

4.3 Specifications forSLS

SLS handles a set of specifications that can be loaded interactively. A specification
consists of a signature, possibly a set of variables, followed by a list ofSLS objects.
SLS objects are S-words, S-expressions, S-languages, Problems (set of S-expressions
which correspond to constraints). In a same specification, one stores objects from a
common S-universe.

Figure 4.3 shows an example of such a specification. That specification contains
the train problem of Section 3.4. It also shows how to specifyS-word, S-expressions or
S-languages in extension.

Figure 6: Example of anSLS specification

4.4 The graphical interface

A graphical user interface helps the user load his/her data (S-words, S-expressions,
S-languages) and apply operations on it. It is written usingthe McCLIM[SM02] sys-
tem which is the free implementation of theCLIM specification. A snapshot of the
SLS window after loading thetrain.txt specification is shown Figure 7. All the
commands are either accessible from the command line in the top window or from
menus, classified according the type of object they operate on. Here we have applied
the commandSolve (also in theProblem menu) which transforms the set of con-
straints of the problem into a (when possible) simplified S-expression which becomes
the current S-expression. Next we have applied theSlanguage Sexpr command
(also in theSexpr menu) which computes the S-language corresponding to the cur-
rent S-expression and invoked theCardinality Slanguage command (also in
theSLanguage menu) which prints the cardinality of the current S-language. Finally,
with theMembership To Slanguage , we verify that the current S-word belongs
to the current S-language. The final look of the window is shown in Figure 8.

Figure 7: First snapshot ofSLS

SLScontains altogether 6000 lines ofCommon Lisp of which around 1200 corre-
spond to the graphical interface. One the project page,http://dept-info.labri.

u-bordeaux.fr/˜idurand/SLS/ , one can find a description of the project, a User’s
Manual, an archive with the latest source and executable files for a few architectures.

5 Related work and perspectives

Objects and temporal constraints between them is a crucial matter in many domains
(artificial intelligence, linguistics, music,...). Making our software really usable in ap-
plications work requires work in two directions.

The problem of constraint satisfaction is intrisically exponential. In S-languages,
the mix operation is a way to avoid combinatorial explosion in some cases. For the
other cases, and in order to minimize the risk of combinatorial explosion, theoretical

Figure 8: Second snapshot ofSLS

work must be done for better simplifying S-expressions before calculating in extension
the corresponding S-language. When we can’t avoid combinatorial explosion, program-
ming should be as efficient as possible in terms of memory allocation and time compu-
tations. Many improvements may be done in that direction, particularly we haven’t yet
exploited the possibility of detecting and sharing equivalent expressions as we already
do for S-word, S-letters. Futhermore, we also plain to analyse in terms of S-expressions,
the convex, pointizable and Ord-Horn classes studied in theinterval algebra theory
[NB95].

At the outside level, much work needs to be done to allow non-computer scientists
to use the tool. Representing graphically S-words could be afirst step. Next we could
think of a tool for helping the user defining graphically constraints between objects
resulting in a set of S-words.

Acknowledgements

The authors would like to thank the referees for their constructive reports and Lucas
Saiu for his careful rereading.

References

[All81] James F. Allen. An interval-based representation of temporal knowledge. InPro-
ceedings of the Seventh International Joint Conference on Artificial Intelligence, pages
221–226, 1981.

[All83] James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832–843, 1983.

[AS03] Jean-Michel Autebert and Sylviane R. Schwer. On generalized delannoy paths.Jour-
nal on Discrete Mathematics, 16(2):208–223, 2003.

[DGV05] Mickael D. David, Dov M. Gabbay, and Lluis Vila.(eds). Elsevier, 2005.
[Ham69] C. L. Hamblin. Starting and stopping.The Monist, 53(3):410–425, 1969.
[Lig91] Gérard Ligozat. On generalized interval calculi.In AAAI, pages 234–240, 1991.
[NB95] Bernhard Nebel and Hans-Jürgen Bürckert. Reasoning about temporal relations: A

maximal tractable subclass of allen’s interval algebra.Journal of the ACM, 42(1):43–
66, 1995.

[Rev96] Joel Revault.Une modélisation par le graphe de la relation meet pour traiter des con-
traintes temporelles exprimées à l’aide d’intervalles.Phd thesis, Université de Nantes,
1996.

[RS96] G. Rozenberg and A. Salomaa.Handbook of Formal Languages: Word, Language,
Grammar, volume 58 ofLecture Notes in Computer Science. Springer, 1996.

[Sch02] Sylviane R. Schwer. S-arrangements avec répétition. Comptes Rendus de l’Académie
des Sciences, Mathématiques, 4:261–266, 2002.

[Sch07a] S. Schwer. Temporal reasoning without transitivetables. arXiv:0706.1290v1 [cs.AI],
June 2007.

[Sch07b] Sylviane R. Schwer. Traitement de la temporalitédes discours : une analysis situs. In
Information temporelle, procédures et ordre discursif, volume 18 ofCahiers Chronos.
Rodopi, Amsterdam, 2007.

[Slo] Neil Sloane, editor.The On-Line Encyclopedia of Integer Sequences, chapter A055203.
http://www.research.att.com/ njas/sequences/.

[SM02] Robert Strandh and Tim Moore. A free implementation of clim. In Proceedings of the
International Lisp Conference, San Francisco, California, October 2002.

[vBC90] P. van Beek and R. Cohen. Exact and approximate reasoning about temporal relations.
Computational Intelligence, 6:132–382, 1990.

[Vil82] Marc Vilain. A system for reasoning about time. InProceedings of the AAAI, pages
197–201, 1982.

[Whi20] Allan North Whitehead.The concept of nature. Cambridge University Press, Cam-
bridge, 1920.

