Master 1

Conception Formelle

Alain Griffault

LaLlf1RI

Année 2009-2010

© The ARC tool
@ First manipulation : basics of ALTARICA
© Second manipulation : validation with a model checker

@ Formal design of a lift

© The ARC tool

The ARC tool

ARC : The ALTARICA Checker

@ Infos at http ://altarica.labri.fr/wiki/tools :arc

@ You have to modify your environment
(.bashr_export) .

PATH=$PATH :/net/autre/LABRI/griffaul/AltaRica Tool

@ $§ arc is a command interpreter.

4

s/bi

L1

The ARC tool

ARC : few commands

@ arc>help : is a very usefull command.

@ arc>load : to read a model or a specification.
@ arc>list : to display objects known by ARC.
°

arc>flatten : to compute a node’s semantic as a
leaf.

@ arc>run : to simulate an ALTARICA node.

@ arc>sequences : to generate scenarii.

@ arc>exit : to quit the ALTARICA checker.

L1

The ARC tool

ARC : classical usage

@ You have to describe your model in a file (.alt) and load it.
@ You have to describe requirements in a file (.spe) and load it.

@ You have to understand results.

e First manipulation : basics of ALTARICA

First manipulation : basics of ALTARICA

Refer to lesson’s slides for the syntax.
@ Minimal and FIFO nodes

@ Electrical circuit (V1, V2 and corrections).

@ Scheduler with and without priority.

@ Courses with and without broadcast.
Test various commands such as :

@ $ help, load, list,

@ $ run to simulate a node.

First manipulation : basics of ALTARICA

Requirements : first example

with nodename [, nodename]* do
quot () > ’$NODENAME.dot’;
show(all) > ’$NODENAME.res’;
done

@ $ more nodename.dot

@ $§ dot -Tpdf nodename.dot > nodename.pdf

L1

© Second manipulation : validation with a model checker

L1

Second manipulation : validation with a model checker

The ALTARICA checker ARC

@ ARC is a very powerfull model-checker for ALTARICA.

@ Users can choose to encode models as graphs or as BDD. The
fisrt one permits that all properties can be computed in a
linear time in the size of the graph, and the second one
permits to deal with very big systems.

@ To prove that M = P, you have to compute counter
examples for P.

@ notP := any - P;
e notP := formula-describing-P-counter-examples ;

and you have to check the result with test (notP, 0).

L1

Second manipulation : validation with a model checker

To do with ARC

You must validate all ALTARICA nodes for all examples.

@ Compute deadlock and notSCC properties.
@ Check for properties and output results in files.

@ For each properties witch is not satisfy, compute a counter
example and output it in dot format.

@ If the number of configurations is not so big, output in dot
format the reachability graph.

@ Output in files property's cardinals.
You may also compute properties depending of the system's type.
@ Electrical circuit : no loop of reactions.

@ Scheduler : the priority between pools of jobs is respected.

@ Courses : 3 students can't write at the same time. I_o'l

@ Formal design of a lift

Specifications

Informal description

The lift must be use in any building. Its design must no be
dependant on the number of floor.

@ At each floor, you may call the lift with a button.

@ In the lift, there are as many buttons than floors.

@ A lighting button means that this request is not yet satisfy.
@ When the lift stops, doors open automatically.

At each time, a software controller chooses the next thing to do
between : open a door, close a door, go up, go down or nothing.

L1

Specifications

The owner of the building wants that these requirements have been
proved.

© When a button is push, it lights.

@ When the corresponding service is done, it lights off.
© At each floor, the door is close if the lift is not here.
@ Each request must be honored a day.

© The software opens the door at some floor only if there is
some requests for that floor.

@ If there is no request, the lift must stay at the same floor.
@ When the lift moves, it must stop where there is a request.

@ When there are several requests, the software must (if
necessary) continue in the same direction than its last move.

"Ll

How to modelize ?

e With finite model-checking we can't prove a property with
parameters. For that, we need theorem proving method. So we
need to fix the number of floors.

@ 1000 seems a good choice since no building in the world have
so much floors, but no model checker in the world can deal
with such model.

@ On the opposite, every model checker can deal with a building
with only one floor, but a lift is not usefull in such a building.

@ In addition, most of the properties are tautology for a one

floor building.

L1

How to modelize ?

The minimal number of floors

No requirements must be a tautology in the model. This means
that we have to choose the least number for witch any requirement
is not trivialy satisfy.

One floor is mandatory.
One floor is mandatory.
Two floors are mandatory.
Three floors are mandatory.
Two floors are mandatory.

Two floors are mandatory.

000000

Three floors are mandatory.

@ Three (or four?) floors are mandatory.

We choose four floors to have more confidence. I_.'I

How to modelize ?

Open or close system

@ An open system is a system with free inputs representing the
environment’s information. This type of system is use when
the environment is not well described and when we want to
know in which kind of environment, the system is correct.

@ A close system is an open system and its environment
describe as a particular component of the whole system.

Users can only push button in this system. The better way to
describe users is to abstract them by the push action on button.

<

L1

How to modelize ?

Architecture or functionnal design ?

@ ALTARICA language is enough general for the two.

@ We have to convince the owner of the building. He is certainly
not an engineer, nor a computer scientist.

@ | think it is easier to convince him with an architecture model
witch is certainly less far to the real system than the
functionnale one.

L1

How to modelize ?

The system to model

How to modelize ?

The hierarchy of the model

@ To convice the owner, the hierarchy must reflect the real
building.
@ A top-down analyse permits to discover :

© Four floors and a lift.
@ A door and four buttons in the lift.
@ A door and a button in each floor.

L1

Task of modelling and validation

What kind of button ?

Numerous choice for a button. Analyze of the required
functionnalities is necessary :

@ A push button including a light and not a switch button.

@ A signal to light off the button. Is it always possible to
(send/receive) this signal or not?

L1

Task of modelling and validation

An ALTARICA model of a button

/* A Button reacts to

* - actions of users
* - a signal to light off (even if it is off)
*/

node Button
state 1light : bool : public;
event push : public;
off;
trans true |- push -> light
true |- off -> light
init light := false;
edon

true;
false;

L1

Task of modelling and validation

Button's semantic

light=true Epush

éff})ush

light=Ffalse [g> off

Task of modelling and validation

What kind of door?

Numerous choice for a door. Analyze of the required
functionnalities is necessary :

@ An unique signal to alternativally open and close the door.

@ A signal to close the door (even if the door is close), and
another signal to open the door (even if the door is open).

L1

Task of modelling and validation

An ALTARICA model of a door

/* A Door reacts to:
* - a signal to open the door
* - a signal to close the door
*/
node Door
state
closed : bool : public;
event
open, close : public;
trans
true |- open -> closed := false;
true |- close -> closed := true;
init
closed := true;
edon) ISI

Task of modelling and validation

Door's semantic

closed=false [g> open

o

closed=true [g> Dclose

Task of modelling and validation

How to built a floor?

@ A floor contains a button and a door.

@ We can send the off signal to the button when the
corresponding request is satisfy.

@ We have to chose the meaning for “the service is done”

e The opening instant.
e The closing instant.

L1

Task of modelling and validation

An ALTARICA model of a floor

/* A floor is made of a door and a button.

* We need a meaning for "the service is done"
* - it can be the opening instant
* - it can be the closing instant
* We choose the closing instant
* to send the "off" signal
*/
node Floor
sub B : Button;

D : Door;

event close, open;

trans “D.closed |- close -> ;
D.closed |- open -> ;

sync <close, D.close, B.off>;
<open, D.open>; ISI

P~ Al A

Task of modelling and validation

Floor's semantic

B.light=true,D.closed=true,_idle=0 @(B.push, B.push)

M D.open)

B.light=true,D.closed=false,_idle=0

(close, B.off, D‘.@opm D.open)

Ell g REREDIEER AEE (0520 @(B.push, B.push) [(B.push, B.push)

B.light=false,D.closed=true,_idle=0

&

L1

Task of modelling and validation

How to built a lift?

@ A lift contains four buttons and a door.

o A lift moves only if its door is closed.

@ We can send the off signal to the appropriate button when
the corresponding request is satisfy.

@ We have to chose the meaning for “the service is done”.

e The opening instant.
e The closing instant.

We made the same choice as for the floor.

L1

Task of modelling and validation

An ALTARICA model of a lift

/* A 1ift contains one button peer floor (4) and a door.
* Same choices as for the Floor component.
*/
node Lift
state floor : [0,3] : parent; init floor := O;
sub D : Door; BO, B1, B2, B3 : Button;
event up, down, close0O, closel, close2, close3, open;
trans D.closed |- up -> floor := floor + 1;
D.closed |- down -> floor := floor - 1;
“D.closed & floor = 0 |- close0 —> ;
“D.closed & floor = 1 |- closel -> ;
“D.closed & floor = 2 |- close2 -> ;
“D.closed & floor = 3 |- close3 —> ;
D.closed |- open -> ;
sync <closeO, D.close, BO.off>;
<closel, D.close, Bl.off>;
D.
n

<close2, close, B2.off>;
CrlAaan ~1l A~ R2A AFFN .

L1

Task of modelling and validation

Lift's semantic

==

=

— ==

Al il Tl

Task of modelling and validation

Lift's validation

/*

*
*
*
*
*
*
*
*
*
*
*
*

Properties for node : Lift
state properties : 2

any_s = 128
initial =1

trans properties : 5

epsilon = 128
self_epsilon = 128
not_deterministic = 0
any_t = 864

* self = 384

*/
TEST (dead=0) [PASSED]
TEST (notSCC=0) [PASSED] ISI

Task of modelling and validation

How is the building ?

The building contains four floors and one lift.

@ The lift's door and a floor's door open and close
synchronously.

@ open is possible at some floor only is there is some request to
that floor.

@ The lift move up (resp. down) only if there is an up (resp.
down) request.

L1

Task of modelling and validation

An ALTARICA model of a building (1)

/* The building contains four floors and one lift.
* - The two doors open and close synchronously.
* - open only if some request to that floor exists.
* - up only if some up request exists.
* - down only if some down request exists.
*/
node Buildingl
sub
FO, F1, F2, F3 : Floor;
L : Lift;)

L1

Task of modelling and validation

An ALTARICA model of a building (2)

flow

requestUp, requestDown : bool : private;

request0, requestl, request2, request3 : bool : private
assert

request0 = (L.BO.light | FO.B.light);

requestl = (L.Bl.light | F1.B.light);
request2 = (L.B2.light | F2.B.light);
request3 = (L.B3.light | F3.B.light);

requestUp = ((L.floor=0&(request3|request2|requestl))
(L.floor=1&(request3|request2)) |
(L.floor=2&(request3)));
((L.floor=3&(requestO|requestl|request2))
(L.floor=2&(requestO|requestl)) |
(L.floor=1&(request0)));

requestDown

L1

Task of modelling and validation

An ALTARICA model of a building (3)

event down, up, open0O, openl, open2, open3;
trans (L.floor=0) & requestO |- open0 -> ;
(L.floor=1) & requestl |- openl -> ;
(L.floor=2) & request2 |- open2 -> ;
(L.floor=3) & request3 |- open3 -> ;

requestDown |- down ->

requestUp |- up ->
sync <up, L.up>;

<down, .down>;

IL
<open0, L.open, FO.open>;
<openl, L.open, Fl.open>;
<open2, L.open, F2.open>;
<open3, L.open, F3.open>;
<L.closeO, FO.close>;
<L.closel, Fl.close>;
<L.close2, F2.close>;

<L.close3, F3.close>; ISI

PR

Task of modelling and validation

Too big to draw the graph.

Building's validation

/*

*
*
*
*
*
*
*
*
*
*
*
*

Properties for node : Buildingl
state properties : 2

any_s = 1792
initial = 1

trans properties : 5

epsilon = 1792
self_epsilon = 1792
not_deterministic = 0
any_t = 19032

* self = 9216

*/
TEST (dead=0) [PASSED] ISI
TEQT A+ C=N) MAQCSEN]

Task of modelling and validation

Too big to draw the graph.

Building's specific validation

/*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

Properties for node : Buildingl
state properties : 8

levelO
levell
level2 = 448
level3 = 448
open0 = 192
openl 192
open2 192
open3d 192

448
448

trans property : O

L1

*
~

Verification of safety properties

P1 : When a button is push, it lights.

Property P1

// Safety properties
with Buildingl, Building2, Building3, Building4DF, Buildin;
// When a button is push, it lights.

notP1 := tgt(label FO.B.push)-[F0.B.light] |
tgt(label L.BO.push)-[L.BO.light] |

tgt(label F1.B.push)-[F1.B.1light] |

tgt(label L.B1l.push)-[L.B1.1light] |

|

|

|

tgt(label F2.B.push)-[F2.B.light]
tgt(label L.B2.push)-[L.B2.light]
tgt(label F3.B.push)-[F3.B.light]
tgt(label L.B3.push)-[L.B3.light] ;
test(notP1,0) > ’$NODENAME.P1°;
traceP1 := trace(initial,any_t,notP1);
dot (src(tracePl) |tgt(tracePl), traceP1l) ISI
> SNODENAME-P1 dot’ :

Verification of safety properties

P1 : When a button is push, it lights.

Buildingl : Property P1
TEST(notP1=0) [PASSED]

Verification of safety properties

P2 : When the corresponding service is done, it lights off.

Property P2

// Safety properties
with Buildingl, Building2, Building3, Building4DF, Building
// When the corresponding service is done,
// the button lights off.
notP2 := tgt(label FO.close)&[request0] |
tgt(label Fl.close)&[requestl] |
tgt(label F2.close)&[request2] |
tgt(label F3.close)&[request3] ;
test (notP2,0) > ’$NODENAME.P2’;
traceP2 := trace(initial,any_t,notP2);
dot (src(traceP2) |tgt (traceP2), traceP2)
> ’$NODENAME-P2.dot’;

done

L1

Verification of safety properties

P2 : When the corresponding service is done, it lights off.

Buildingl : Property P2
TEST(notP2=0) [PASSED]

Verification of safety properties

P3 : At each floor, the door is close if the lift is not here.

Property P3

// Safety properties
with Buildingl, Building2, Building3, Building4DF, Building
// At each floor, the door is close
// if the 1lift is not here.
notP3 := ([L.floor!=0] - [F0.D.closed]) |
([L.floor!=1] - [F1.D.closed]) |
([L.floor!=2] - [F2.D.closed]) |
([L.floor!'=3] - [F3.D.closed]) ;
test (notP3,0) > ’$NODENAME.P3’;
traceP3 := trace(initial,any_t,notP3);
dot (src(traceP3) | tgt (traceP3), traceP3)
> ’$NODENAME-P3.dot’;

done

1

Verification of safety properties

P3 : At each floor, the door is close if the lift is not here.

Buildingl : Property P3
TEST (notP3=0) [PASSED]

Verification of safety properties

P5 : The software opens the door at some floor only if there is some
requests for that floor.

Property P5

// Safety properties
with Buildingl, Building2, Building3, Building4DF, Buildin;
// The software opens the door at some floor
// only if there is some requests for that floor.
notP5 := (label FO.D.open - rsrc([request0])) |
(label F1.D.open - rsrc([requesti])) |
(label F2.D.open - rsrc([request2])) |
(label F3.D.open - rsrc([request3])) ;
test(notP5,0) > ’$NODENAME.P5’;
traceP5 := trace(initial,any_t,src(notP5));
ceP5 := reach(src(traceP5) ,traceP5|notP5);
dot (ceP5, (traceP5|notP5)) > ’$NODENAME-P5.dot’;

done) ISI

Verification of safety properties

P5 : The software opens the door at some floor only if there is some
requests for that floor.

Buildingl : Property P5
TEST (notP5=0) [PASSED]

Verification of safety properties

P6 : If there is no request, the lift must stay at the same floor.

Property P6

// Safety properties
with Buildingl, Building2, Building3, Building4DF, Building
// If there is no request,

// the 1lift must stay at the same floor.

notP6 := (label L.up | label L.down) -

rsrc([requestO|requestl|request2|request3]);

test (notP6,0) > ’$NODENAME.P6’;

traceP6 := trace(initial,any_t,src(notP6));

ceP6 := reach(src(traceP6) ,traceP6|notP6);

dot (ceP6, traceP6|notP6) > ’$NODENAME-P6.dot’;
done

L1

Verification of safety properties

P6 : If there is no request, the lift must stay at the same floor.

Buildingl : Property P6
TEST (notP6=0) [PASSED]

Verification of safety properties

P7 : When the lift moves, it must stop where there is a request.

Property P7

// Safety properties
with Buildingl, Building2, Building3, Building4DF, Buildin;
// When the lift moves,
// it must stop where there is a request.
notP7 := (label L.up | label L.down) &
rsrc([L.floor=0 & requestO] |
[L.floor=1 & requestil] |
[L.floor=2 & request2] |
[L.floor=3 & request3]) ;
test (notP7,0) > ’$NODENAME.P7’;
traceP7 := trace(initial,any_t,src(notP7));
ceP7 := reach(src(traceP7) ,traceP7|notP7);
dot (ceP7, (traceP7|notP7)) > ’$NODENAME-P7.dot’

done) ISI

e

Verification of safety properties

P7 : When the lift moves, it must stop where there is a request.

Buildingl : Property P7
TEST(notP7=0) [FAILED] actual size = 1026

L1

Verification of safety properties

Property P7 : a counter example

L1

Verification of safety properties

Property P7 : a correction
d7 1
a7 3
/* - the lift moves if no request for the current floor.
*/
node Building2
d25 1
a2 1
event {down, up} < {openO, openl, open2, open3};

L1

Verification of safety properties

Building2 : Properties P1, P2, P3, P5, P6 and P7

TEST(notP1=0) [PASSED]
TEST (notP2=0) [PASSED]
TEST (notP3=0) [PASSED]
TEST(notP5=0) [PASSED]

TEST (notP6=0) [PASSED]

TEST (notP7=0) [PASSED]

Verification of safety properties

P8 : When there are several requests, the software must (if neces-
sary) continue in the same direction than its last move.

Property P8

// Safety properties
with Building2, Building3, Building4DF, Building4NDF, Buil
// When there are several requests,

// the software must (if necessary) continue

// in the same direction than its last move.
notP8 := 1label L.up & rsrc(src(label L.down)) |

label L.down & rsrc(src(label L.up)) ;

test (notP8,0) > ’$NODENAME.PS’;

traceP8 := trace(initial,any_t,src(notP8));

ceP8 := reach(src(traceP8) ,traceP8|notP8);

dot (ceP8, (traceP8|notP8)) > ’$NODENAME-PS.dot’;
done

L1

Verification of safety properties

P8 : When there are several requests, the software must (if neces-
sary) continue in the same direction than its last move.

Building2 : Property P8
TEST (notP8=0) [FAILED] actual size = 180

L1

Verification of safety properties

Property P8 : a counter example

Verification of safety properties

Property P8 : a correction

do 1
a9 4
/* - last move of the lift is record in a variable.
* - this variable is use to control moves
*/
node Building3
al2 1
state climb : bool; init climb := false;
d32 2
a33 4
climb & requestUp |- uwp > ;
“climb & requestDown |- down -> ;
“climb&~requestDown&requestUp |- up -> climb:=true;
climb&~requestUp&requestDown |- down —> climb:=fa%se;

Verification of safety properties

Building3 : Properties P1, P2, P3, P5, P6, P7 and P8

TEST(notP1=0) [PASSED]
TEST (notP2=0) [PASSED]
TEST (notP3=0) [PASSED]
TEST(notP5=0) [PASSED]
TEST (notP6=0) [PASSED]

TEST (notP7=0) [PASSED]

TEST (notP8=0) [PASSED]

Verification of liveness properties

P4 : Each request must be honored a day.

with Building3, Building4DF, Building4NDF, Building5NDF do
// Preliminary properties for P4
// we remove "self" to don’t

// take
waitBO
waitB1
waitB2

waitB3 :=
waitFO :=

waitF1

waitF2 :=
waitF3 :

done

account redondancy '"push" events

:= rsrc([L.BO.1light])&rtgt ([L.BO.light])-self;
:= rsrc([L.B1.1ight])&rtgt([L.B1.1light])-self;
:= rsrc([L.B2.1light])&rtgt ([L.B2.1light])-self;
rsrc([L.B3.light])&rtgt ([L.B3.1light])-self;
rsrc([F0.B.1light])&rtgt ([FO.B.light])-self;
:= rsrc([F1.B.1light])&rtgt ([F1.B.1light])-self;
rsrc([F2.B.1light])&rtgt ([F2.B.1light])-self;
rsrc([F3.B.1light])&rtgt ([F3.B.light])-self;

<

L1

Verification of liveness properties

P4 : Each request must be honored a day.

Property P4

// Liveness properties
with Building3 do
// Each request must be honored a day.
notP4 := loop(any_t, waitBO) |
loop(any_t, waitB1l) |
loop(any_t, waitB2) |
loop(any_t, waitB3) |
loop(any_t, waitF0) |
|
|

loop(any_t, waitF1)

loop(any_t, waitF2)

loop(any_t, waitF3) ;
test(notP4,0) > ’$NODENAME.P4’;
traceP4 := trace(initial,any_t,src(notP4));
ceP4 := reach(src(traceP4) ,traceP4|notP4); ISI
dot (ceP4d (+racePld|lnotP4)) > ENODENAME-P4A dot’ -

Verification of liveness properties

P4 : Each request must be honored a day.

Building3 : Property P4
TEST(notP4=0) [FAILED] actual size = 4536

Verification of liveness properties

Property P4 : a counter example

L1

Verification of liveness properties

P4a : Each request must be honored a day, if the lift moves some-
times.

with Building3, Building4DF, Building4NDF, Building5NDF do
// A new version of P4: Each request must be
// honored a day, if the lift moves sometimes.
move := label L.up | label L.down;
notP4a := loop(move, waitBO)
loop(move, waitB1)

|
|
loop(move, waitB2) |
loop(move, waitB3) |
loop(move, waitFO0) |
loop(move, waitF1l) |
loop(move, waitF2) |
loop(move, waitF3) ;
test (notP4a,0) > ’$NODENAME.P4a’; ISI
traceP4a := trace(initial,any_t,src(notP4a));

Verification of liveness properties

P4a : Each request must be honored a day, if the lift moves some-
times.

Building3 : Property P4a
TEST (notP4a=0) [PASSED]

Non determinism and failures

A door with explicit failures

/* A Door reacts to:

* - a signal to open the door

* - a signal to close the door

* the reaction can lead to a stucked state

* determinism is used to modelize the failure
*/
node DoorDF

state closed : bool : public;
stucked : bool;
event open, close, failure : public;

trans not stucked |- open -> closed := false;
not stucked |- close -> closed := true;
not stucked |- failure -> stucked := true;
stucked |- open, close ->; I:I
®

init <closed := true, stucked := false;

Non determinism and failures

A door with explicit failures

closed=false stucked=false [g= >open

%:%pen

failure | closed=true,stucked=false aclose

ﬁ ure

closed=false,stucked=true = N
closed=true,stucked=true pen

Non determinism and failures

A door with non determinism failures

/* A Door reacts to:
* - a signal to open the door
* - a signal to close the door

* the reaction can lead to a stucked state
* non determinism is used to modelize the failure

*/
node DoorNDF
state closed : bool : public;
stucked : bool;
event open, close : public;
trans not stucked |- open -> closed :
not stucked |- close -> closed :
true |- open, close -> stucked :
init <closed := true, stucked := false;

edon

false;
true;
true;

L1

Non determinism and failures

A door with non determinism failures

closed=false,stucked=false Eopen

Nvﬁ’e”

close open | closed=true,stucked=false aclose

'@A/dose

closed=false,stucked=true m open
closed=true,stucked=true S0P

Non determinism and failures

A floor with explicit failures

/* A floor is made of a door and a button.
* We need a meaning for "the service is done"
* - it can be the opening instant
* - it can be the closing instant
*
*

*

We choose the closing instant
to send the "off" signal

*/

node FloorDF
sub B : Button; D : DoorDF;
event close, open;

trans “D.closed |- close —> ;
D.closed |- open -> ;
sync <close, D.close, B.off>;
<close, D.failure, B.off>; I:I
®

<open, D.open>;

Non determinism and failures

A floor with non determinism failures

/* A floor is made of a door and a button.
* We need a meaning for "the service is done"
* - it can be the opening instant
* - it can be the closing instant
*
*

*

We choose the closing instant
to send the "off" signal

*/

node FloorNDF
sub B : Button; D : DoorNDF;
event close, open;

trans “D.closed |- close -> ;
D.closed |- open -> ;
sync <close, D.close, B.off>;
<open, D.open>; I:I
)

edon

Non determinism and failures

A floor with explicit failures

Properties for node : FloorDF
state properties : 2

any_s = 8
initial = 1

epsilon = 8
self_epsilon = 8
not_deterministic = 0
any_t = 28

1f = 15
o L1

*
*
*
*
*
*
* # trans properties : 5
*
*
*
*
*
*

Non determinism and failures

A floor with non determinism failures

Properties for node : FloorNDF
state properties : 2

any_s = 8
initial =

|
[

epsilon = 8
self_epsilon = 8
not_deterministic = 8

*

*

*

*

*

*

* # trans properties : 5
*

*

*

*

* any_t = 28
*

1f = 15
e L1

Non determinism and failures

A lift with explicit failures
d4 1
ad 1
node LiftDF
dé 2
a7 3
sub D : DoorDF;
BO, B1, B2, B3 : Button;
event up, down, closeO, closel, close2, close3,openj
al8 4

<closeO, D.failure, BO.off>;
<closel, D.failure, Bl.off>;
<close2, D.failure, B2.off>;
<close3, D.failure, B3.off>;

<open, D.failure>;

LT .

Non determinism and failures

A lift with non determinism failures

d4 1
ad 1
node LiftNDF
dé 1
a6 2
sub D : DoorNDF;
BO, B1, B2, B3 : Button;)

L1

Non determinism and failures

A building with explicit failures

di2 1
al2 1
node Building4DF
di4 2
als 2
FO, F1, F2, F3 : FloorDF;
L : LiftDF;)

L1

Non determinism and failures

A building with non determinism failures

di2 1
al2 1
node Building4NDF
di4 2
ald 2
FO, F1, F2, F3 : FloorNDF;
L : LiftNDF;)

L1

Non determinism and failures

A building with explicit failures

Properties for node : Building4DF
state properties : 2

any_s = 140952
initial = 1

epsilon = 140952
self_epsilon = 140952
not_deterministic = 0
any_t = 1,45551e+06

*
*
*
*
*
*
* # trans properties : 5
*
*
*
*
*
* self = 782142
L1

Non determinism and failures

A building with non determinism failures

Properties for node : Building4NDF
state properties : 2

any_s = 140952
initial = 1

epsilon = 140952
self_epsilon = 140952
not_deterministic = 98892
any_t = 1,45551e+06

*
*
*
*
*
*
* # trans properties : 5
*
*
*
*
*
* self = 782142
L1

Non determinism and failures

Building4[DF,NDF] : Properties P1, P2, P3, P4a, P5, P6, P7 and

P8
TEST (notP1=0) [PASSED]

TEST (notP2=0) [PASSED]
TEST (notP3=0) [FAILED] actual size = 130200
TEST(notP4a=0) [FAILED] actual size = 90324
TEST (notP5=0) [PASSED]
TEST (notP6=0) [PASSED]

TEST (notP7=0) [FAILED] actual size = 43308

L1

TEST (notP8=0) [PASSED]

Non determinism and failures

Property P3 : a counter example

L1

Non determinism and failures

Property P3 : a correction
di2 1
al2 1
node BuildingbNDF
al9 1
doorsareclosed : bool : private;
a30 4
doorsareclosed = ((L.floor=0 & FO.D.closed) |
(L.floor=1 & F1.D.closed) |
(L.floor=2 & F2.D.closed) |
(L.floor=3 & F3.D.closed));

d36 4
a39 4
climb & requestUp & doorsareclosed |- up -> ;
“climb & requestDown & doorsareclosed |- down -> ; ISI

“climb& " requestDown&requestUp&doorsareclosed |- up

Non determinism and failures

BuildingbNDF : Properties P1, P2, P3, P4a, P5, P6, P7 and P8

TEST (notP1=0) [PASSED]
TEST (notP2=0) [PASSED]
TEST (notP3=0) [PASSED]
TEST (notP4a=0) [PASSED]
TEST (notP5=0) [PASSED]
TEST (notP6=0) [PASSED]

TEST (notP7=0) [PASSED]

TEST (notP8=0) [PASSED] |_.'|

Non determinism and failures

BuildingbNDF : validation

Properties for node : BuildingSNDF
state properties : 2

any_s = 10752
initial = 1

epsilon = 10752
self_epsilon = 10752
not_deterministic = 9216
any_t = 109050

*
*
*
*
*
*
* # trans properties : 5
*
*
*
*
*
* self = 56832
L1

Conclusion

The result

@ We have to precise some details in the informal description.
e What is a button and a door?
e What is the meaning of “The service is done” ?
@ We have to precise some requirements.
o What is the meaning of “Each request must be honored a
day” ?
@ After that, we have built a model of a lift which satisfy all the
requirements.

@ At the end, we have shown the power of non determinism to
represent failures.

L1

Conclusion

The different tasks

@ To obtain a validate small model is not easy.

@ To write logical properties is not easy too, but there is a lot of
reuse.

L1

Conclusion

Performances

NetBSD amd64 x86_64
62,45 real 60,63 user 0,98 sys
0 maximum resident set size
0 average shared memory size
0 average unshared data size
0 average unshared stack size
179729 page reclaims
45 page faults
0 swaps
4 block input operations
141 Dblock output operations
45 messages sent
127 messages received
0 signals received ISI
188 voluntary context switches

	The ARC tool
	First manipulation : basics of AltaRica
	Second manipulation : validation with a model checker
	Formal design of a lift

