Conception Formelle : Module Modelisation et Vérification Travaux dirigés Alain Griffault Master 1 Informatique Université Bordeaux 1 2007-2008 Outline 1 First manipulation : simulation of models Second manipulation: validation with a model checker 3 Formal design of a lift Controller synthesis of a tank First manipulation : simulation of models The ALTARICA simulator • a-simulator is a basic tool to validate ALTARICA models. • You have first to describe your models in a file. • You can simulate all behaviors with respect to the semantic. 9 First manipulation : simulation of models • Electrical circuit (V1, V2 and their corrections). • Scheduler with and without priority. • Courses with and without broadcast.

Outline

- 1 First manipulation : simulation of models
- 2 Second manipulation : validation with a model checker
- Formal design of a lift
- Controller synthesis of a tank

Second manipulation: validation with a model checker

The ALTARICA checker acheck

- acheck is part of the altatools that has been developped for teaching reasons. Its successor arc is a more powerfull checker.
- acheck encodes graphs as graphs, one one hand it is a limit to deal with very big systems, on the oher hand, it permits that all properties can be computed in a linear time in the size of the graph.
- To prove that $M \models P$, you have to compute counter examples for ${\sf P}$

 - . notP := any P;
 . notP := formula-describing-P-counter-examples;

and you have to check the result with test(notP, 0).

Second manipulation: validation with a model checker

To do with acheck

You must validate all $A {\it LTARICA}$ nodes for all examples.

- Compute deadlock and notSCC properties.
- Check for properties and output results in files.
- For each properties witch is not satisfy, compute a counter example and output it in dot format.
- \bullet If the number of configurations is not so big, output in dot format the reachability graph.
- Output in files property's cardinals.

You may also compute properties depending of the system's type.

- Electrical circuit : no loop of reactions.
- Scheduler : the priority between pools of jobs is respected.
- Courses: 3 students can't write at the same time.

Outline

- First manipulation : simulation of models
- 2 Second manipulation : validation with a model checker
- 3 Formal design of a lift
- Controller synthesis of a tank

Specifications

Informal description

The lift must be use in any building. Its design must no be dependant on the number of floor.

- At each floor, you may call the lift with a button.
- In the lift, there are as many buttons than floors.
- A lighting button means that this request is not yet satisfy.
- When the lift stops, doors open automatically.

At each time, a software controller chooses the next thing to do between : open a door, close a door, go up, go down or nothing.

9

Specifications

The owner of the building wants that these requirements have been proved.

Requirements

- When a button is push, it lights.
- When the corresponding service is done, it lights off.
- At each floor, the door is close if the lift is not here.
- Each request must be honored a day.
- The software opens the door at some floor only if there is some requests for that floor.
- If there is no request, the lift must stay at the same floor.
- When the lift moves, it must stop where there is a request.
- When there are several requests, the software must (if necessary) continue in the same direction than its last move.

•