Conception Formelle : Module Modelisation et

Vérification

Travaux dirigés

Alain Griffault

Master 1 Informatique
Université Bordeaux 1
2007-2008
g

L1

@ First manipulation : simulation of models
© Second manipulation : validation with a model checker
© Formal design of a lift

@ Controller synthesis of a tank

L1

@ First manipulation : simulation of models

L1

First manipulation : simulation of models

The ALTARICA simulator
@ a-simulator is a basic tool to validate ALTARICA models.

@ You have first to describe your models in a file.

@ You can simulate all behaviors with respect to the semantic.

L1

First manipulation : simulation of models

o Electrical circuit (V1, V2 and their corrections).

@ Scheduler with and without priority.
@ Courses with and without broadcast.

© Second manipulation : validation with a model checker

Second manipulation : validation with a model checker

The ALTARICA checker acheck

@ acheck is part of the altatools that has been developped for
teaching reasons. Its successor arc is a more powerfull checker.

@ acheck encodes graphs as graphs, one one hand it is a limit to
deal with very big systems, on the oher hand, it permits that
all properties can be computed in a linear time in the size of
the graph.

@ To prove that M = P, you have to compute counter
examples for P.

o notP := any - P;
o notP := formula-describing-P-counter-examples;

and you have to check the result with test (notP, 0).

L1

Second manipulation : validation with a model checker

To do with acheck

You must validate all ALTARICA nodes for all examples.

@ Compute deadlock and notSCC properties.
@ Check for properties and output results in files.

@ For each properties witch is not satisfy, compute a counter
example and output it in dot format.

@ If the number of configurations is not so big, output in dot
format the reachability graph.

@ Output in files property’s cardinals.
You may also compute properties depending of the system’s type.
@ Electrical circuit : no loop of reactions.

@ Scheduler : the priority between pools of jobs is respected.

@ Courses : 3 students can’t write at the same time. I_,'I

© Formal design of a lift

Specifications

Informal description

The lift must be use in any building. Its design must no be
dependant on the number of floor.

@ At each floor, you may call the lift with a button.

@ In the lift, there are as many buttons than floors.

@ A lighting button means that this request is not yet satisfy.
@ When the lift stops, doors open automatically.

At each time, a software controller chooses the next thing to do
between : open a door, close a door, go up, go down or nothing.

.

L1

Specifications

The owner of the building wants that these requirements have been

proved.

o
2]
o
o
o
o
7]
o

When a button is push, it lights.

When the corresponding service is done, it lights off.
At each floor, the door is close if the lift is not here.
Each request must be honored a day.

The software opens the door at some floor only if there is
some requests for that floor.

If there is no request, the lift must stay at the same floor.
When the lift moves, it must stop where there is a request.

When there are several requests, the software must (if

necessary) continue in the same direction than its last move.

L1

How to modelize ?

@ With finite model-checking we can’t prove a property with
parameters. For that, we need theorem proving method. So we
need to fix the number of floors.

@ 1000 seems a good choice since no building in the world have
so much floors, but no model checker in the world can deal
with such model.

@ On the opposite, every model checker can deal with a building
with only one floor, but a lift is not usefull in such a building.

@ In addition, most of the properties are tautology for a one
floor building.

L1

How to modelize ?

The minimal number of floors

No requirements must be a tautology in the model. This means
that we have to choose the least number for witch any requirement
is not trivialy satisfy.

[4]

One floor is mandatory.
One floor is mandatory.
Two floors are mandatory.

Three floors are mandatory.

Two floors are mandatory.

Three floors are mandatory.

(2]
(3]
(%)
© Two floors are mandatory.
o
Q
o

Three (or four?) floors are mandatory.

We choose four floors to have more confidence. I_,'I

How to modelize ?

Open or close system

@ An open system is a system with free inputs representing the
environment’s information. This type of system is use when
the environment is not well described and when we want to
know in which kind of environment, the system is correct.

@ A close system is an open system and its environment
describe as a particular component of the whole system.

Users can only push button in this system. The better way to
describe users is to abstract them by the push action on button.

L1

How to modelize ?

Architecture or functionnal design ?

@ ALTARICA language is enough general for the two.

@ We have to convince the owner of the building. He is certainly
not an engineer, nor a computer scientist.

@ | think it is easier to convince him with an architecture model
witch is certainly less far to the real system than the
functionnale one.

L1

How to modelize ?

The system to model

How to modelize ?

The hierarchy of the model

@ To convice the owner, the hierarchy must reflect the real
building.

@ A top-down analyse permits to discover :
© Four floors and a lift.
@ A door and four buttons in the lift.
© A door and a button in each floor.

L1

Task of modelling and validation

What kind of button ?

Numerous choice for a button. Analyze of the required
functionnalities is necessary :

@ A push button including a light and not a switch button.

@ A signal to light off the button. Is it always possible to
(send/receive) this signal or not ?

L1

Task of modelling and validation

An ALTARICA model of a button

/* A Button reacts to

* - actions of users
* - a signal to light off (even if it is off)
*/

node Button
state light : bool : public;
event push : public;

off;
trans true |- push -> light := true;
true |- off -> light := false;

init light := false;
edon

L1

Task of modelling and validation

Button’s semantic

light=true @ (push)

(off) (push)

1ight=false@ (off)

#
#

Task of modelling and validation

What kind of door?

Numerous choice for a door. Analyze of the required
functionnalities is necessary :

@ An unique signal to alternativally open and close the door.

@ A signal to close the door (even if the door is close), and
another signal to open the door (even if the door is open).

L1

Task of modelling and validation

An ALTARICA model of a door

/* A Door reacts to:
* - a signal to open the door
* - a signal to close the door
*/
node Door
state
closed : bool : public;
event
open, close : public;
trans
true |- open -> closed := false;
true |- close -> closed := true;
init
closed := true;
edon) ISI

Task of modelling and validation

Door’s semantic

closed=false‘@ (open)

(close) | (open)

closed=true@ (close)

#
#

Task of modelling and validation

How to built a floor?

@ A floor contains a button and a door.

@ We can send the off signal to the button when the
corresponding request is satisfy.
@ We have to chose the meaning for “the service is done”

¢ The opening instant.
o The closing instant.

L1

Task of modelling and validation

An ALTARICA model of a floor

/* A floor is made of a door and a button.
* We need a meaning for "the service is done"
* - it can be the opening instant
* - it can be the closing instant
* We choose the closing instant
* to send the {\tt off} signal
*/
node Floor
sub B : Button;

D : Door;
event close;
trans “D.closed |- close —> ;
sync <close, D.close, B.off>;

edon

L1

Task of modelling and validation

Floor's semantic

B.light=true,D.closed=false
B.light=false,D.closed=false

>) (D.open,D.open) (B.push,B.push)

(close,B.off,D.close) / (D.open,D.open)

[
B.light=false,D.closed=true) 0O (D.open,D.open)

\iB.push,B.push)

B.light=true,D.closed=true [=> ()) (B.push,B.push)

L1

#
#
#

Task of modelling and validation

How to built a lift ?

@ A lift contains four buttons and a door.

@ A lift moves only if its door is closed.

@ We can send the off signal to the appropriate button when
the corresponding request is satisfy.

@ We have to chose the meaning for “the service is done”.

o The opening instant.
@ The closing instant.

We made the same choice as for the floor.

L1

Task of modelling and validation

An ALTARICA model of a lift

/* A 1ift contains one button peer floor (4) and a door.
* Same choices as for the Floor component.
*/
node Lift
state floor : [0,3] : parent; init floor := 0;
sub D : Door; BO, Bi, B2, B3 : Button;
event up, down, closeO, closel, close2, close3;
trans D.closed |- up -> floor := floor + 1;
D.closed |- down -> floor := floor - 1;
“D.closed & floor = 0 |- close0 -> ;
“D.closed & floor = 1 |- closel -> ;
“D.closed & floor = 2 |- close2 -> ;
“D.closed & floor = 3 |- close3 -> ;
sync <closeO, D.close, BO.off>;
<closel, D.close, Bl.off>;
<close2, D.close, B2.off>;
<close3, D.close, B3.off>; ISI

edon

Task of modelling and validation

Lift's semantic

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Task of modelling and validation

Lift's validation

/*

state properties : 2

any_s = 128
initial = 1

any_t = 928
self_epsilon = 128
self = 448
epsilon = 128
* not_deterministic = 0O
*/
TEST (dead=0) [PASSED]
TEST (notSCC=0) [PASSED]

*
*
*
*
*
* # transition properties : 5
*
*
*
*
*

Task of modelling and validation

How is the building ?

The building contains four floors and one lift.

@ The lift's door and a floor’s door open and close
synchronously.

@ open is possible at some floor only is there is some request to
that floor.

@ The lift move up (resp. down) only if there is an up (resp.
down) request.

L1

Task of modelling and validation

An ALTARICA model of a building (1)

/* The building contains four floors and one lift.
* - The two doors open and close synchronously.
* - open only if some request to that floor exists.
* - up only if some up request exists.
* - down only if some down request exists.
o/
node Buildingl
sub
FO, F1, F2, F3 : Floor;
L : Lift;

L1

Task of modelling and validation

An ALTARICA model of a building (2)

flow

requestUp, requestDown : bool : private;

request0, requestl, request2, request3 : bool : private;j

assert
requestO
requestl =
request2
request3
requestUp

requestDown

(L
(L
(L
(L

.BO.light | F0.B.light);
.B1.light | F1.B.light);
.B2.light | F2.B.light);
.B3.1light | F3.B.light);

(@
(L
(L

(L
(L
(L

.floor=0& (request3|request2|requestl))
.floor=1&(request3|request2))
.floor=2&(request3))) ;
.floor=3&(requestO0|requestl|request2))
.floor=2&(requestO|requestl))
.floor=1&(request0))) ;

L1

Task of modelling and validation

An ALTARICA model of a building (3)

event open0O, openl, open2, open3, up, down;

trans (L.floor=0)&request0&L.D.closed |- open0O -> ;
(L.floor=1)&requesti&L.D.closed |- openl -> ;
(L.floor=2)&request2&L.D.closed |- open2 -> ;
(L.floor=3)&request3&L.D.closed |- open3 -> ;

requestDown |- down ->

requestUp |- up ->
sync <up, L.up>;

<down, L.down>;

<open0O, L.D.open, FO.D.open>;

<openl, L.D.open, F1.D.open>;

<open2, L.D.open, F2.D.open>;

<open3, L.D.open, F3.D.open>;
<L.close0O, FO.close>;
<L.closel, Fl.close>;
<L.close2, F2.close>;
<L.close3, F3.close>; ISI

adon

Task of modelling and validation

Too big to draw the graph.

Building's validation

/*

state properties : 2

any_s = 1792
initial = 1

any_t = 19032
self_epsilon = 1792
self = 9216
epsilon = 1792
* not_deterministic = 0O
*/
TEST(dead=0) [PASSED]
TEST (notSCC=0) [PASSED] g

*
*
*
*
*
* # transition properties : 5
*
*
*
*
*

Task of modelling and validation

Too big to draw the graph.

Building's specific validation

state property : 8

levelO
levell
level2
level3

*
*

* 448
*

*

*

* openO

*

*

*

*

*

*

448

448

448
192
192
192
192

openl
open2
open3

transition property : O

Verification of safety properties

P1 : When a button is push, it lights.

Property P1

// Safety properties
with Buildingl, Building2, Building3 do

// When a button is push, it lights.

P1 := tgt(label FO.B.push)-[F0.B.light]
tgt(label L.BO.push)-[L.B0O.1light]
tgt (label F1.B.push)-[F1.B.light]
tgt(label L.Bl.push)-[L.B1.1light]
tgt (label F2.B.push)-[F2.B.light]
tgt(label L.B2.push)-[L.B2.1light]
tgt(label F3.B.push)-[F3.B.light]
tgt (label L.B3.push)-[L.B3.light] ;

test(P1,0) > ’$NODENAME.P1°;

traceP1 := trace(initial,any_t,P1);

dot (src(tracePl) |tgt (tracePl), tracePl)

> 2$NODENAME.P1.dot’;

L1

Verification of safety properties

P1 : When a button is push, it lights.

Buildingl : Property P1
TEST(P1=0) [PASSED]

Verification of safety properties

P2 : When the corresponding service is done, it lights off.

// Safety properties
with Buildingl, Building2, Building3 do

// When the corresponding service is done,

// the button lights off.

P2 := tgt(label FO.close)&[requestO] |
tgt(label Fl.close)&[requestl] |
tgt(label F2.close)&[request2] |
tgt (label F3.close)&[request3]

test (P2,0) > ’$NODENAME.P2’;

traceP2 := trace(initial,any_t,P2);

dot (src(traceP2) |tgt (traceP2), traceP2)

> ’*$NODENAME.P2.dot’;

b

done

L1

Verification of safety properties

P2 : When the corresponding service is done, it lights off.

Buildingl : Property P2
TEST (P2=0) [PASSED]

Verification of safety properties

P3 : At each floor, the door is close if the lift is not here.

Property P3

// Safety properties
with Buildingl, Building2, Building3 do

// At each floor, the door is close

// if the 1lift is not here.

P3 := ["FO0.D.closed & L.floor!=0] |
["F1.D.closed & L.floor!=1] |
["F2.D.closed & L.floor!=2] |
["F3.D.closed & L.floor!=3] ;

test(P3,0) > ’$NODENAME.P3’;

traceP3 := trace(initial,any_t,P3);

dot (src(traceP3) |tgt (traceP3), traceP3)

> $NODENAME.P3.dot’;

done

L1

Verification of safety properties

P3 : At each floor, the door is close if the lift is not here.

Buildingl : Property P3
TEST(P3=0) [PASSED]

Verification of safety properties

P5 : The software opens the door at some floor only if there is some
requests for that floor.

Property P5

// Safety properties
with Buildingl, Building2, Building3 do
// The software opens the door at some floor
// only if there is some requests for that floor.
P5 := (label FO.D.open - rsrc([request0])) |
(label F1.D.open - rsrc([requestl])) |
(label F2.D.open - rsrc([request2])) |
(label F3.D.open - rsrc([request3])) ;
test(P5,0) > ’$NODENAME.P5’;
traceP5 := trace(initial,any_t,src(P5));
ceP5 := reach(src(traceP5),traceP5|P5) ;
dot (ceP5, (traceP5|P5)) > >$NODENAME.P5.dot’;
done

L1

Verification of safety properties

P5 : The software opens the door at some floor only if there is some
requests for that floor.

Buildingl : Property P5
TEST(P5=0) [PASSED]

Verification of safety properties

P6 : If there is no request, the lift must stay at the same floor.

Property P6

// Safety properties
with Buildingl, Building2, Building3 do
// If there is no request,
// the lift must stay at the same floor.
P6 := (label L.up | label L.down) -
rsrc([requestO|requestl|request2|request3]);
test(P6,0) > ’$NODENAME.P6’;
traceP6 := trace(initial,any_t,src(P6));
ceP6 := reach(src(traceP6),traceP6|P6) ;
dot (ceP6, (traceP6|P6)) > ’>$NODENAME.P6.dot’;
done

L1

Verification of safety properties

P6 : If there is no request, the lift must stay at the same floor.

Buildingl : Property P6
TEST (P6=0) [PASSED]

Verification of safety properties

P7 : When the lift moves, it must stop where there is a request.

Property P7

// Safety properties
with Buildingl, Building2, Building3 do
// When the 1lift moves,
// it must stop where there is a request.
P7 := (label L.up | label L.down) &
rsrc([L.floor=0 & request0] |
[L.floor=1 & requestl] |
[L.floor=2 & request2] |
[L.floor=3 & request3]) ;
test (P7,0) > ’$NODENAME.PT7°;
traceP7 := trace(initial,any_t,src(P7));
ceP7 := reach(src(traceP7),traceP7|P7);
dot (ceP7, (traceP7|P7)) > ’$NODENAME.P7.dot’;

done
v

L1

Verification of safety properties

P7 : When the lift moves, it must stop where there is a request.

Buildingl : Property P7

TEST(P7=0) [FAILED] actual size = 1026

Verification of safety properties

Property P7 : a counter example

#
#
#
#

Verification of safety properties

Property P7 : a correction

d7 1
a7 3
/* - the 1lift moves if no request for the current flopr.
*/
node Building?2
d25 1
a25 3
event openO, openl, open2, open3;
up < {open0O, openl, open2, open3};
down < {openO, openl, open2, open3};

L1

Verification of safety properties

Building2 : Properties P1, P2, P3, P5, P6 and P7
TEST(P1=0) [PASSED]

TEST (P2=0) [PASSED]
TEST(P3=0) [PASSED]
TEST (P5=0) [PASSED]

TEST(P6=0) [PASSED]

TEST(P7=0) [PASSED]

Verification of safety properties

P8 : When there are several requests, the software must (if neces-
sary) continue in the same direction than its last move.

Property P8

// Safety properties
with Buildingl, Building2, Building3 do
// When there are several requests,
// the software must (if necessary) continue
// in the same direction than its last move.
P8 := 1label L.up & rsrc(src(label L.down)) |
label L.down & rsrc(src(label L.up)) ;
test(P8,0) > ’$NODENAME.P8’;
traceP8 := trace(initial,any_t,src(P8));
ceP8 := reach(src(traceP8),traceP8|P8);
dot (ceP8, (traceP8|P8)) > ’$NODENAME.P8.dot’;
done

L1

Verification of safety properties

P8 : When there are several requests, the software must (if neces-
sary) continue in the same direction than its last move.

Building2 : Property P8
TEST(P8=0) [FAILED] actual size = 180

L1

Verification of safety properties

Property P8 : a counter example

#
#
#
#
#
#

Verification of safety properties

Property P8 : a correction

do 1
ag 4
/* - last move of the 1lift is record in a variable.
* - this variable is use to control moves
*/
node Building3
al2 1
state climb : bool; init climb := false;
d34 2
a3b 4
climb & requestUp |- uwp ->;
“climb & requestDown |- down -> ;
“climb& requestDown&requestUp |- up -> climb:=true;
climb&“requestUp&requestDown |- down -> climb:=false;

1

Verification of safety properties

Building3 : Properties P1, P2, P3, P5, P6, P7 and P8

TEST(P1=0) [PASSED]

TEST(P2=0) [PASSED]
TEST(P3=0) [PASSED]
TEST(P5=0) [PASSED]
TEST (P6=0) [PASSED]
TEST(P7=0) [PASSED]

TEST(P8=0) [PASSED]

Verification of liveness properties

P4 : Each request must be honored a day.

Auxilliary properties for P4

with Building3 do

// Preliminary properties for P4

// we remove "self" to don’t

// take account redondancy "push" events

waitBO := rsrc([L.BO.light])&rtgt ([L.BO.light])-self;
waitBl := rsrc([L.B1l.light])&rtgt([L.B1.1light])-self;
waitB2 := rsrc([L.B2.light])&rtgt ([L.B2.1light])-self;
waitB3 := rsrc([L.B3.1light])&rtgt([L.B3.1light])-self;
waitFO := rsrc([FO0.B.light])&rtgt ([FO.B.light])-self;
waitFl := rsrc([F1.B.light])&rtgt([F1.B.1light])-self;
waitF2 := rsrc([F2.B.light])&rtgt ([F2.B.light])-self;
waitF3 := rsrc([F3.B.light])&rtgt ([F3.B.light])-self;
done

L1

Verification of liveness properties

P4 : Each request must be honored a day.

Property P4

// Liveness properties
with Building3 do
// Each request must be honored a day.
P4 := loop(any_t, waitB0) |
loop(any_t, waitB1l) |
loop(any_t, waitB2) |
loop(any_t, waitB3) |
loop(any_t, waitF0) |
|
|

loop(any_t, waitF1)

loop(any_t, waitF2)

loop(any_t, waitF3)
test(P4,0) > ’$NODENAME. P4’;
traceP4 := trace(initial,any_t,src(P4));
ceP4 := reach(src(traceP4),traceP4|P4); ISI
dot (ceP4, (traceP4|P4)) > ’$NODENAME.P4.dot’;

Verification of liveness properties

P4 : Each request must be honored a day.

Building3 : Property P4
TEST(P4=0) [FAILED] actual size = 4536

Verification of liveness properties

Property P4 : a counter example

L1

#
#
#
#
#
#
#
#

Verification of liveness properties

P4a : Each request must be honored a day, if the lift moves some-
times.

Property P4a
with Building3 do
// A new version of P4: Each request must be
// honored a day, if the lift moves sometimes.
move := label L.up | label L.down;
P4a := loop(move, waitBO) |
loop(move, waitB1) |
loop(move, waitB2) |
loop(move, waitB3) |
loop(move, waitF0) |
loop(move, waitF1) |
loop(move, waitF2) |
loop(move, waitF3) ;
test(P4a,0) > ’$NODENAME.P4a’; ISI
traceP4a := trace(initial,any_t,src(P4a));

Verification of liveness properties

P4a : Each request must be honored a day, if the lift moves some-
times.

Building3 : Property P4a
TEST (P4a=0) [PASSED]

Conclusion

The result

@ We have to precise some details in the informal description.
¢ What is a button and a door?
o What is the meaning of “The service is done” ?
@ We have to precise some requirements.
¢ What is the meaning of “Each request must be honored a
day” 7
@ After that, we have built a model of a lift which satisfy all the
requirements.

L1

Conclusion

The different tasks
@ To obtain a validate small model is not easy.

@ To write logical properties is not easy too, but there is a lot of
reuse.

L1

@ Controller synthesis of a tank

