Bottom-up rewriting is inverse recognizability preserving

Irène Durand and Géraud Sénizergues

LaBRI and University of Bordeaux 1

URL:http://dept-info.labri.u-bordeaux.fr/~ges

RTA'07-PARIS-JUNE 2007

PLAN

O TITLE

1 RECALLS

1.1 Semi-Thue systems
1.2 Term rewriting systems

2 INTRODUCTION

- 2.1 Problems
- 2.2 Motivation
- 2.3 Known results
- 2.4 New results
- 2.5 Methods
 - 2.5.1 Marking
 - 2.5.2 Simulation

3 MARKED DERIVATIONS

3.1 Semi-Thue systems

3.2 Term rewriting systems

4 BOTTOM-UP DERIVATIONS

4.1 Bottom-up derivations

4.2 Bottom-up systems

4.3 Known subclasses

5 PRESERVATION of RATIONALITY

5.1 THE result

5.2 The proof

5.2.1 General idea

5.2.2 Auxiliary system

5.2.3 Simulation lemmas

5.2.4 Conclusion

6 COMPLEXITY/DECIDABILITY

6.1 Bottom-up property

6.2 Strong bottom-up property

7 PERSPECTIVES

1.1-RECALLS-SEMI-THUE SYSTEMS

A rewrite rule over the alphabet A is a pair

 $\ell \to r$

of words in A^* .

A semi-Thue system is a pair (S, A) where S a set of rewrite rules built upon the alphabet A.

For every $f, g \in A^*$,

 $f \rightarrow_{S} g$

iff there exists $\ell \to r \in S$ and $\alpha, \beta \in A^*$ such that

$$f = \alpha \ell \beta \& g = \alpha r \beta.$$

We call \rightarrow^*_S the derivation generated by S.

1.2-RECALLS- TERM-REWRITING SYSTEMS

A rewrite rule is a pair

 $\ell \to r$

of terms in $\mathcal{T}(\mathcal{F}, \mathcal{V})$ which satisfy $\mathcal{V}ar(r) \subseteq \mathcal{V}ar(\ell)$. A term rewriting system is a pair $(\mathcal{R}, \mathcal{F})$ where \mathcal{F} is a signature and \mathcal{R} a set of rewrite rules over the signature \mathcal{F} . For every $s, t \in \mathcal{T}(\mathcal{F}, \mathcal{V})$,

 $s \rightarrow_{\mathcal{R}} t$

iff there exists $\ell \to r \in \mathcal{R}$ a context C[] and a substitution σ such that

$$s = C[\ell\sigma] \& t = C[r\sigma].$$

We call $\rightarrow^*_{\mathcal{R}}$ the derivation generated by \mathcal{R} .

2.1-INTRODUCTION- PROBLEMS

Given a system \mathcal{R} and a set of terms T, we define

$$(\rightarrow^*_{\mathcal{R}})[T] = \{ s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow^*_{\mathcal{R}} t \text{ for some } t \in T \}$$

Problem: under which hypothesis over \mathcal{R} does it hold that, for every recognizable set T, $(\rightarrow_{\mathcal{R}}^*)[T]$ is recognizable too.

2.2-INTRODUCTION- MOTIVATIONS

-rational subsets of a monoid $M = A^* / \leftrightarrow_S^*$ application to resolution of equations with rational constraints in M.

-decidability of the accessibility problem for $\rightarrow_{\mathcal{R}}$

-decidability of the common-ancestor problem for $\rightarrow_{\mathcal{R}}$

-sequentiality problems:

- computation of a needed redex in a term t w.r.t. \mathcal{R}
- \bullet decidability of the sequentiality property for ${\cal R}$

-decidability of the termination problem.

Two kinds of results.

First kind: syntactical condition over ${\mathcal R}$

Generic theorem:

if \mathcal{R} has property P, then, for every recognizable set T,

 $(\rightarrow^*_{\mathcal{R}})[T]$ is recognizable too.

First kind references (syntax):

- cancellation rules Benois-Sakarovitch, IPL 86
- basic semi-Thue systems Benois, RTA 87
- left-basic semi-Thue systems Sakarovitch, PHD, 79
- ground term-rewriting systems

Dauchet-Heuillard-Lescanne-Tison, Inf. and Comput. 87

- linear shallow term-rewriting systems Comon, LICS 95
- linear growing term-rewriting systems Jacquemard, RTA 96
- left-linear growing term-rewriting systems

Nagaya-Toyama, Inf. and Comput. 02

- left-linear inverse finite-path overlapping TRS Takai-Kaji-Seki,Sci. Math. Jap., 2006

Second kind: use a special strategy in derivations Generic theorem (for the strategy S): For every TRS \mathcal{R} and every recognizable set T, $(\sincesses \mathcal{R})[T]$ is recognizable too.

Second kind references (strategy):

- one-pass term rewriting

Fulop-Jurvanen-Steinby-Vagvolgyi, MFCS 98

- concurrent term rewriting

Seynhaeve-Tison-Tommasi, FCT 99

- "bottom-up derivations"

Rety-Vuotto, JSC 05.

2.4-INTRODUCTION- NEW RESULTS

We define a new notion of k-bottom-up derivation, denoted by $_{k} \rightarrow_{\mathcal{R}}^{*}$.

Theorem 1 Let \mathcal{R} be some linear rewriting system over the signature \mathcal{F} , let T be some recognizable subset of $\mathcal{T}(\mathcal{F})$ and let $k \geq 0$. Then, the set $(\ _k \rightarrow_{\mathcal{R}}^*)[T]$ is recognizable too.

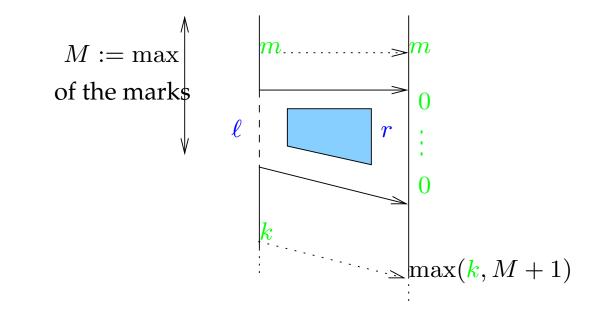
We then introduce the class of Bottom-Up systems as the class of all systems for which the above strategy is complete.

2.5-INTRODUCTION- METHODS

 Define a marking operation: the marks are integers that measure the amount of top-down (i.e. "forbidden") sequence of rules.
Bottom-up derivation are those derivations with small marks.
Reduce the preservation property to the same property for ground sytems: a bottom-up derivation can be simulated by

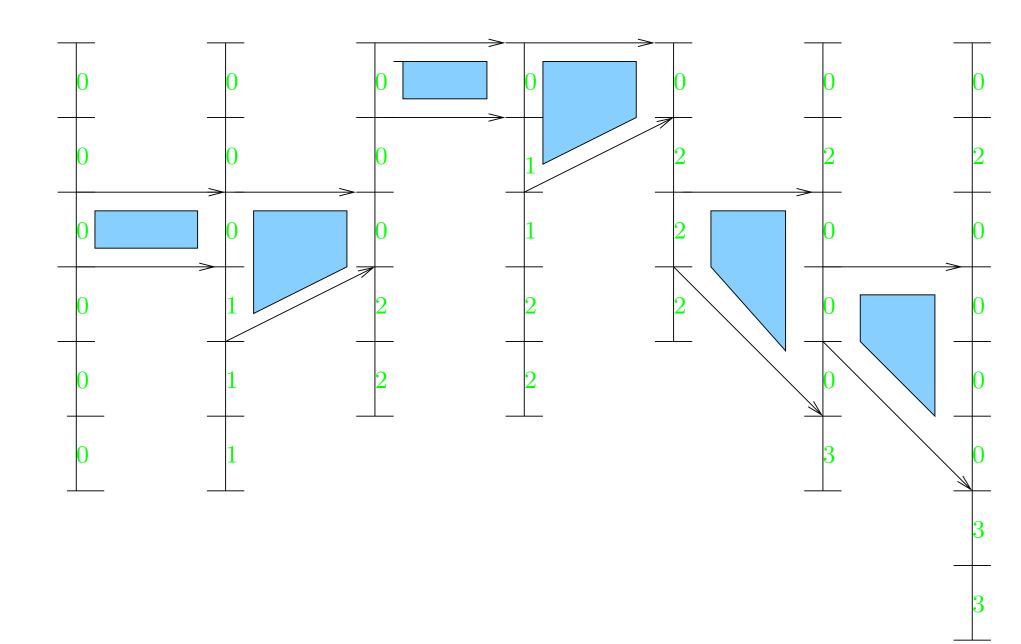
a ground derivation.

3.1-MARKED DERIVATIONS- UNARY TERMS



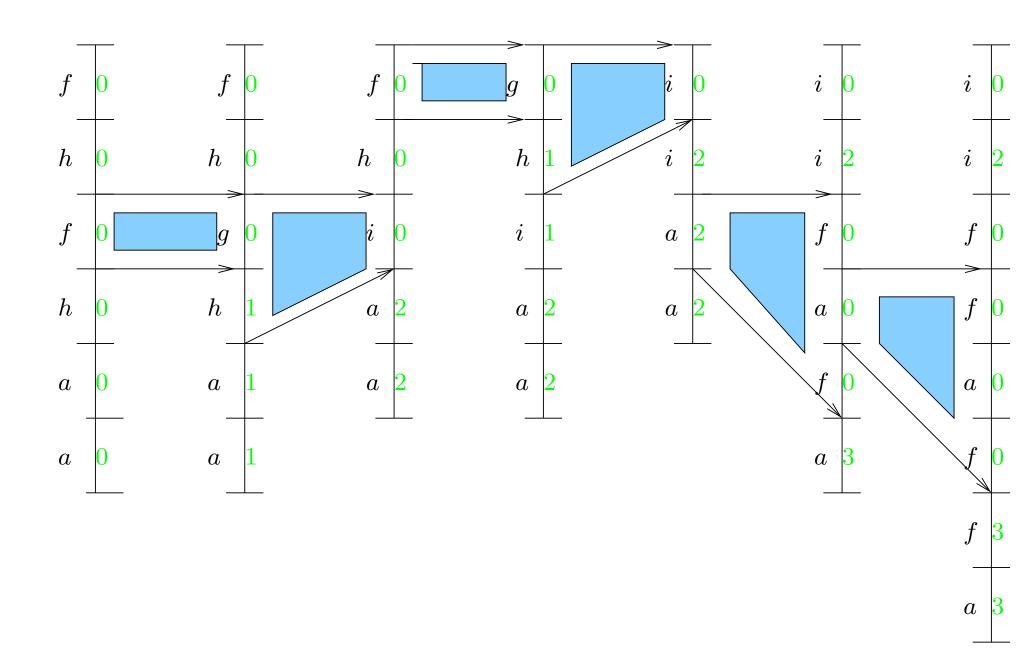
3.1-MARKED DERIVATIONS- UNARY TERMS

A derivation graph.

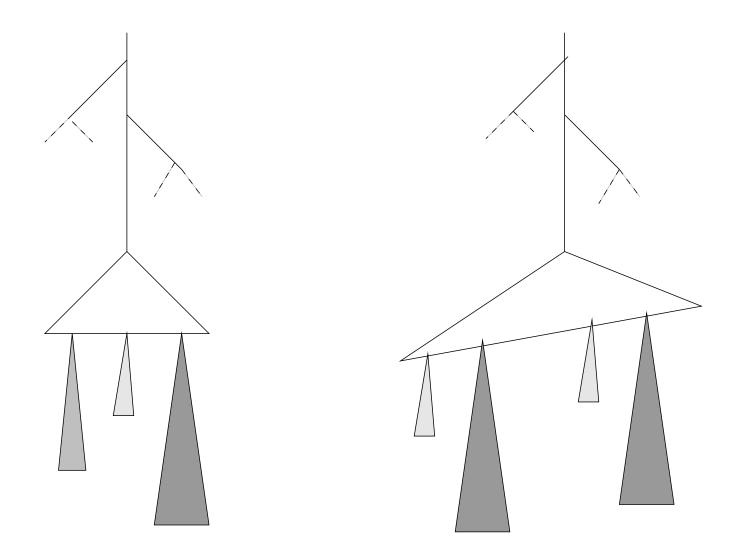


3.1-MARKED DERIVATIONS- UNARY TERMS

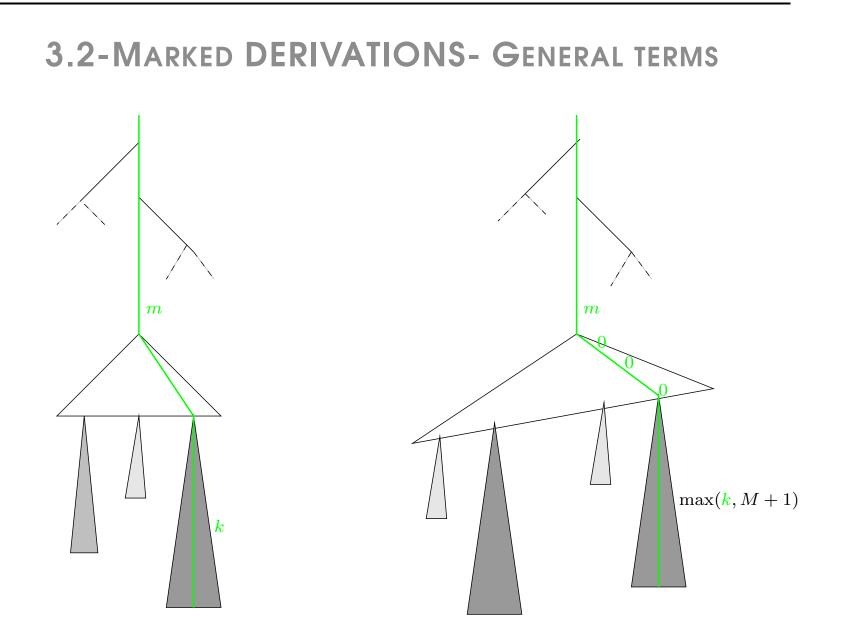
A derivation.

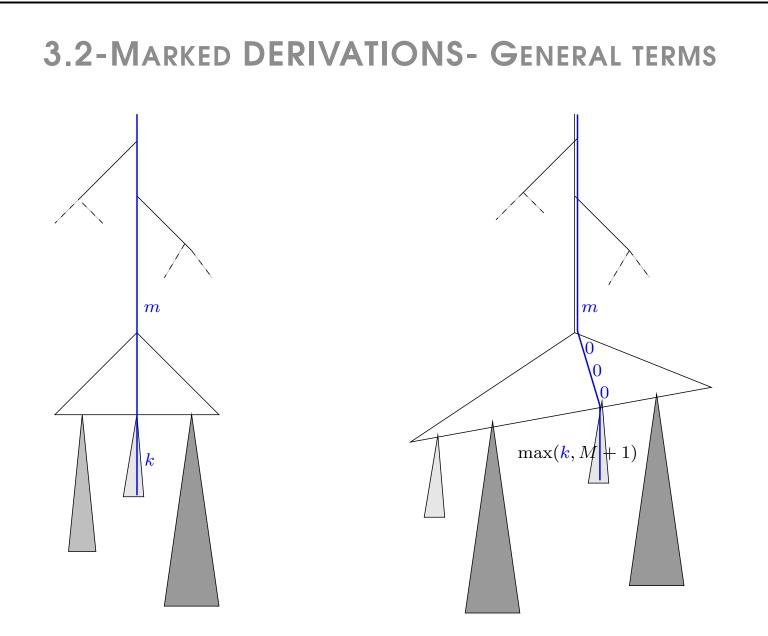


3.2-MARKED DERIVATIONS- GENERAL TERMS



RTA'07-PARIS-JUNE 2007





RTA'07-Paris-June 2007

Definition 2 A derivation $s \to_{\mathcal{R}}^* t$ is weakly bottom-up iff, in the corresponding marked derivation, for every application of rule, the minimum mark of the lhs is 0.

Let $k \ge 0$.

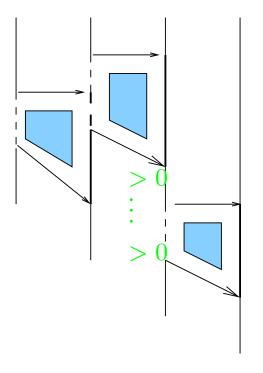
Definition 3 A derivation $s \to_{\mathcal{R}}^{*} t$ is k bottom-up iff, in the corresponding marked derivation, for every application of rule, the minimum mark of the lhs is 0 and the maximum mark of the term is $\leq k$.

Notation:

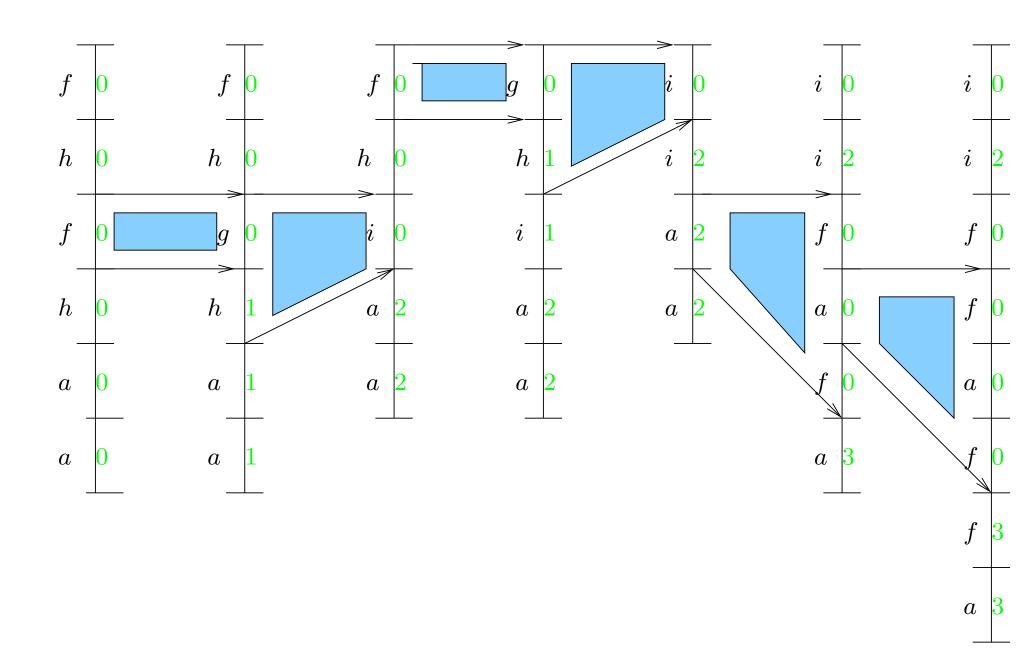
$$s_k \to_{\mathcal{R}}^* t$$

means that there exists a k bottom-up derivation from s to t.

A generic non weakly bottom-up derivation.

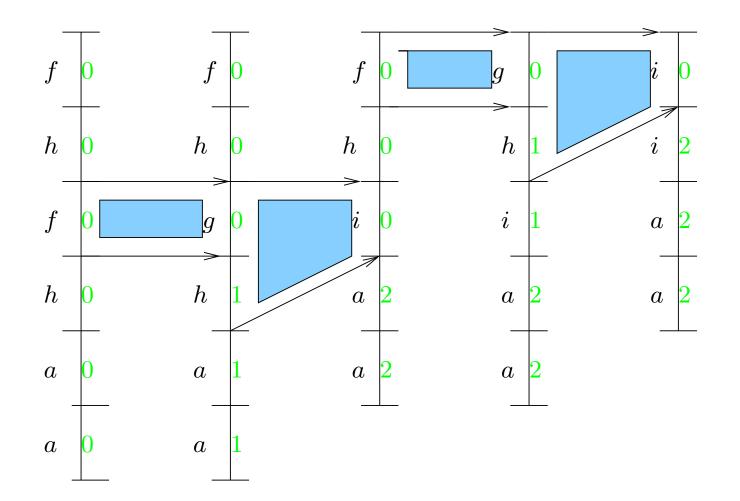


A concrete non weakly bottom-up derivation.



A concrete derivation:

- it is weakly bottom-up,
- it is not $\mathsf{BU}(1)$,
- it is BU(2),



4.2 -BOTTOM-UP DERIVATIONS- BOTTOM-UP SYSTEMS

Definition 4 Let $k \ge 0$. A system $(\mathcal{R}, \mathcal{F})$ is called k-Bottom-Up iff, it is linear and for every $s, t \in \mathcal{T}(\mathcal{F})$

$$s \to_{\mathcal{R}}^{*} t \Longrightarrow s_{k} \to_{\mathcal{R}}^{*} t$$

i.e. if \mathcal{R} is linear and the k-BU strategy is complete for \mathcal{R} .

4.3 -BOTTOM-UP DERIVATIONS- KNOWN SUBCLASSES

The following classes of systems are bottom-up:

- every left-basic semi-Thue system is $\mathsf{BU}(1)$
- every linear growing Term Rewriting system is BU(1)
- every linear FPO⁻¹ Term Rewriting system is in $\bigcup_{k>0} BU(k)$.

5.1-PRESERVATION OF RATIONALITY-THE RESULT

Theorem 1

Let \mathcal{R} be some linear rewriting system over the signature \mathcal{F} , let T be some recognizable subset of $\mathcal{T}(\mathcal{F})$ and let $k \geq 0$. Then, the set $(\ _k \rightarrow_{\mathcal{R}}^*)[T]$ is recognizable too.

Theorem 5 Let $k \ge 0$, let \mathcal{R} be some BU(k) rewriting system over the signature \mathcal{F} and let T be some recognizable subset of $\mathcal{T}(\mathcal{F})$. Then, the set $(\rightarrow_{\mathcal{R}}^*)[T]$ is recognizable too.

5.2.2-PRESERVATION OF RATIONALITY-CONSTRUCTION OF \mathcal{S}

General idea:

- Simulate a bottom-up derivation, by a derivation where the substitutions used have a bounded depth

- The deeper part of the substitution is replaced by a state of the finite automaton recognizing T.

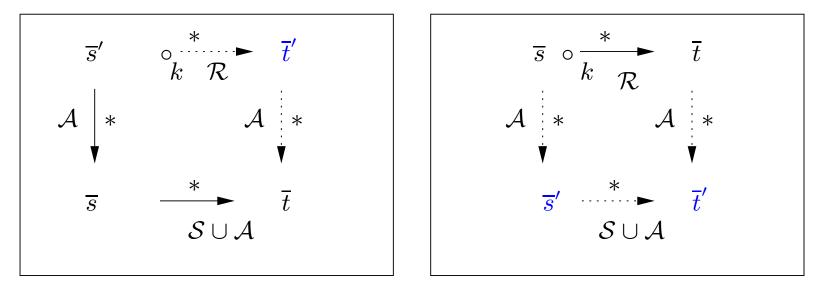
5.2.2-PRESERVATION OF RATIONALITY-CONSTRUCTION OF \mathcal{S}

Let d := $\max\{dpt(\ell) \mid \ell \rightarrow r \in \mathcal{R}\}$. The system *S*: consists of all the rules

$$\overline{\ell}\overline{\tau} \to r\overline{\overline{\tau}}$$

where $\ell \to r$ is a rule of $\mathcal{R}, \overline{\tau}, \overline{\overline{\tau}}$ are marked substitutions, with marks $\leq k$, $dpt(\overline{\tau}) \leq k \cdot d$ and $\overline{\ell}\overline{\tau} \to r\overline{\overline{\tau}}$ is a one-step, k - bu, marked derivation.

5.2.3-PRESERVATION OF RATIONALITY- SIMULATION LEMMAS



Lifting $\mathcal{S} \cup \mathcal{A}$

Projecting \mathcal{R}

5.2.4-PRESERVATION OF RATIONALITY- CONCLUSION

Since \mathcal{A} and \mathcal{S} are *ground* rewriting-systems, it is known that $\rightarrow^*_{\mathcal{S}\cup\mathcal{A}}$ inverse-preserves recognizability. By the simulation lemmas:

$$(_k \to^*_{\mathcal{R}})[T] = (\to^*_{\mathcal{S} \cup \mathcal{A}})[Q_f^{\leq k}] \cap \mathcal{T}(\mathcal{F})$$

Hence $({}_{k} \rightarrow^{*}_{\mathcal{R}})[T]$ is recognizable.

6.1-COMPLEXITY/DECIDABILITY- BOTTOM-UP

Theorem 6 The BU(1) property is undecidable for semi-Thue systems.

6.2-COMPLEXITY/DECIDABILITY- STRONG BOTTOM-UP

Definition 7 Let $k \ge 0$. A system $(\mathcal{R}, \mathcal{F})$ is called strongly k-Bottom-Up iff, it is linear and for every weakly bottom-up marked derivation

 $s = s_0 \to_{\mathcal{R}} s_1 \to_{\mathcal{R}} \ldots \to_{\mathcal{R}} s_i \to_{\mathcal{R}} \ldots \to_{\mathcal{R}} s_n = t$

if s_0 has only null marks, then all the s_i have all their marks $\leq k$.

Theorem 8 The SBU(k) property is decidable for Term Rewriting systems.

Follows easily from theorem 1.

4.3 - COMPLEXITY/DECIDABILITY- STRONG BOTTOM-UP

- every left-basic semi-Thue system is $\ensuremath{\mathsf{SBU}}(1)$
- every linear growing Term Rewriting system is ${\bf SBU}(1)$
- every linear FPO⁻¹ Term Rewriting system is in $\bigcup_{k>0} SBU(k)$.

7 - PERSPECTIVES

- Extend the notion and the results to left-linear, non right-linear systems

- Study a dual notion of top-down derivations