The equivalence problem
 for Deterministic PushDown Automata

Géraud Sénizergues
 FMI-Stuttgart

URL:http://www.informatik.unistuttgart.de/fmi/ti/mitarbeiter/Senizergues

O- Main result

Decision problem:
INSTANCE: A, B, two deterministic pushdown automata; QUESTION: $\mathrm{L}(A)=\mathrm{L}(B)$?

Raised in:
S. Ginsburg and S. Greibach, Deterministic Context-free languages,Information and Control,pages 620-648, 1966

O- Main result

G. Sénizergues, $L(A)=L(B)$?, Technical report, LaBRI, Université Bordeaux I, report nr1161-97, 1997, Pages 1-71.
G. Sénizergues. The Equivalence Problem for Deterministic Pushdown Automata is Decidable. In Proceedings ICALP 97, pages 671-681. Springer, LNCS 1256, 1997.
G. Sénizergues, $L(A)=L(B)$? In Proceedings INFINITY 97, pages 1-26. Electronic Notes in Theoretical Computer Science 9.

O- Main result

REFERENCE:
G. Sénizergues. $L(A)=L(B)$? decidability results from complete formal systems. Theoretical Computer Science, 251:1-166, 2001.

SUBMISSION PROCESS:
submitted: 26 May 1998;accepted: 13 June 2000.

CONTENTS:

1- Decidability of the equivalence problem;
pages 9-82
2- Simplifications of the logical system:
pages 82-104
3- Generalization to transducers $X^{*} \rightarrow(\mathbb{Z},+)$; pages 104-141

Plan

OMain result
IPREFIX MATRICES
1.1 Operations
1.2 Right-action
1.3 Linear identities
1.4 Linear independence
1.5 Two natural ideas:
1.5.1 Bases
1.5.2 Most general unifier
1.6 Example

2 DETERMINISTIC MATRICES
2.0 Deterministic grammars
2.1 Operations
2.2 Right-action
2.3 Linear identities
2.4 Linear independence
2.5 Two natural ideas:
2.5.1 Bases
2.5.2 Most general unifier

3 DEDUCTION SYSTEMS

3.1 Motivation

3.2 General definitions
3.3 Strategies

4 THE SYSTEM \mathcal{D}_{0}
4.1 Assertions and cost function
4.2 The rules
4.3 Example
4.4 Strategies

5 DECIDABILITY
5.1 Terminating strategy
5.2 System \mathcal{D}_{0} is complete.
5.3 Two semi-decision algorithms

6REFINEMENTS-EXTENSIONS

6.1 Complexity
6.2 Bisimulation
6.3 Transducers

7PERSPECTIVES

1.1-Prefix matrices- Operations

Let us remark:

$$
\left\langle\mathcal{P}\left(X^{*}\right), \cup, \cdot, \emptyset,\{\varepsilon\}\right\rangle \approx\langle\mathbb{B}\langle\langle X\rangle\rangle,+, \cdot, 0,1\rangle .
$$

We rather use the second notation.
We call a series $S=\sum_{w \in X^{*}} S_{w} \cdot w$ prefix-free iff: for every $u, v \in X^{*}$,

$$
\left(S_{u v}=1 \text { and } S_{u}=1\right) \Rightarrow v=\varepsilon .
$$

1.1-Prefix matrices- Operations

Definition 1 A row-vector $\left(A_{1}, \ldots, A_{i}, \ldots, A_{m}\right) \in(\mathbb{B}\langle\langle X\rangle\rangle)^{n}$ is said prefix-free iff
1-the supports of the A_{i} 's are disjoint
$2-\sum_{i=1}^{n} A_{i}$ is prefix-free.
Definition 2 A matrix $A \in(\mathbb{B}\langle\langle X\rangle\rangle)^{n \times m}$ is said prefix-free iff every row-vector $\left(A_{i, 1}, \ldots, A_{i, j}, \ldots, A_{i, m}\right)$ is prefix-free.

Example 3 Some prefix matrices:

$$
\left(\begin{array}{lll}
a b & 0 & a^{*} c
\end{array}\right),\left(\begin{array}{lll}
a b & 0 & a^{*} c \\
1 & 0 & 0 \\
a b c & a b d & a^{*} c d
\end{array}\right),\left(\begin{array}{l}
a \\
a b^{*} c \\
a b c+a c
\end{array}\right)
$$

1.1-Prefix matrices- Operations

Product: defined as usual.
Let $A, B \in(\mathbb{B}\langle\langle X\rangle\rangle)^{1 \times m}$ and $1 \leq j_{0} \leq m$.
If $A=\left(a_{1}, \ldots, a_{j}, \ldots, a_{m}\right), B=\left(b_{1}, \ldots, b_{j}, \ldots, b_{m}\right)$ then
$A \nabla_{j_{0}} B=\left(a_{1}+a_{j_{0}} \cdot b_{1}, \ldots, a_{j_{0}-1}+a_{j_{0}} \cdot b_{j_{0}-1}, 0, a_{j_{0}+1}+a_{j_{0}} \cdot b_{j_{0}+1}, \cdots, a_{m}+a_{j_{0}} \cdot b_{m}\right)$

$$
\nabla_{j_{0}}^{*}(A)=\left(a_{j_{0}}^{*} \cdot a_{1}, \cdots, a_{j_{0}}^{*} \cdot a_{j_{0}-1}, 0, a_{j_{0}}^{*} \cdot a_{j_{0}+1}, \cdots, a_{j_{0}}^{*} \cdot a_{m}\right)
$$

1.1-Prefix matrices- Operations

We denote by $\mathrm{D} \mathbb{B}_{n, m}\langle\langle X\rangle\rangle$ the set of prefix matrices (which will turn out to be a particular case of Deterministic matrices).

Lemma 4 Let $A \in \mathrm{D}_{n, m}\langle\langle X\rangle\rangle, B \in \mathrm{D}_{m, s}\langle\langle X\rangle\rangle$. Then
$A \cdot B \in \mathbb{D}_{n, s}\langle\langle X\rangle\rangle$
Lemma 5 Let $A, B \in \mathbb{D}_{1, m}\langle\langle X\rangle\rangle$ and $1 \leq j_{0} \leq m$. Then
$1-A \nabla_{j_{0}} B \in \mathbb{B}_{1, m}\langle\langle X\rangle\rangle$
$2-\nabla_{j_{0}}^{*}(A) \in \mathrm{D} \mathbb{B}_{1, m}\langle\langle X\rangle\rangle$

1.2- Prefix matrices- Right-action

Definition 6 Let $S=\sum_{w \in X^{*}} S_{w} \cdot w$ and $u \in X^{*}$. Then

$$
S \bullet u=\sum_{w \in X^{*}} S_{u \cdot w} \cdot w,
$$

(i.e. $S \bullet u$ is the left-quotient of S by u, or the residual of S by u).
This right-action is extended componentwise to matrices.
Lemma 7 Let $A \in \mathrm{DB}_{n, m}\langle\langle X\rangle\rangle$ and $u \in X^{*}$. Then
$A \bullet u \in \mathrm{D} \mathbb{B}_{n, m}\langle\langle X\rangle\rangle$

1.2- Prefix matrices- Right-action

Lemma 8 Let $S \in \mathrm{D}_{1, m}\langle\langle W\rangle\rangle, T \in \mathbb{B}_{m, s}\langle\langle W\rangle\rangle$ and $u \in W^{*}$. Exactly one of the following cases is true:
(1) $\exists j, S_{j} \bullet u \notin\{\emptyset, \epsilon\}$ in this case $(S \cdot T) \bullet u=(S \bullet u) \cdot T$.
(2) $\exists j_{0}, \exists u^{\prime}, u^{\prime \prime}, u=u^{\prime} \cdot u^{\prime \prime}, S_{j_{0}} \bullet u^{\prime}=\epsilon$; in this case $(S \cdot T) \bullet u=T_{j_{0}, *} \bullet u^{\prime \prime}$.
(3) $\forall j, \forall u^{\prime} \preceq u, S_{j} \bullet u=\emptyset, S_{j} \bullet u^{\prime} \neq \epsilon$;
in this case $(S \cdot T) \bullet u=\emptyset=(S \bullet u) \cdot T$.

1.3- Prefix matrices- Linear identities

Fundamental remark((Meitus 1989)):
Let $S_{1}, \ldots, S_{j}, \ldots, S_{m} \in \mathrm{D} \mathbb{B}\langle\langle X\rangle\rangle$ and let $\vec{\alpha}, \vec{\beta} \in \mathrm{D}_{1, m}\langle\langle X\rangle\rangle$
such that
(0) $\sum_{j=1}^{m} \alpha_{j} \cdot S_{j}=\sum_{j=1}^{m} \beta_{j} \cdot S_{j}$

Then one of cases (1),(2) must occur:
(1) $\vec{\alpha}=\vec{\beta}$
(2) $\exists j_{0} \in[1, m], \exists \vec{\gamma} \in \mathrm{D} \mathbb{B}_{1, m}\langle\langle X\rangle\rangle, \gamma_{j_{0}}=0$, such that
$S_{j_{0}}=\sum_{1 \leq j \leq m} \gamma_{j} \cdot S_{j}$.

1.3- Prefix matrices- Linear identities

Sketch of proof: Let $S=\left(S_{j}\right)_{1 \leq j \leq m} \in \mathrm{DB}_{m, 1}\langle\langle X\rangle\rangle$.
Suppose that $\vec{\alpha} \neq \vec{\beta}$. Let us consider

$$
u=\min \{\vec{\alpha} \Delta \vec{\beta}\} .
$$

Then there exists, $j_{0} \in[1, m]$, such that

$$
\vec{\alpha} \bullet u=\epsilon_{j_{0}}^{m} \Leftrightarrow \beta_{j_{0}} \bullet u \neq \epsilon_{j_{0}}^{m} .
$$

Let us suppose, for example, that $\vec{\alpha} \bullet u=\epsilon_{j_{0}}^{m}$ while $\vec{\beta} \bullet u \neq \epsilon_{j_{0}}^{m}$ and let $\vec{\gamma}=\vec{\beta} \bullet u$. Let $u \operatorname{act}(\mathrm{by} \bullet$) on both sides of hypothesis (0):

$$
\begin{equation*}
(\vec{\alpha} \cdot S) \bullet u=(\vec{\beta} \cdot S) \bullet u . \tag{1}
\end{equation*}
$$

Using lemma 8 we obtain:

$$
\begin{equation*}
(\vec{\alpha} \cdot S) \bullet u=S_{j_{0}} . \tag{2}
\end{equation*}
$$

Let us examine now the righthand-side of equality (1). Let $u^{\prime} \prec u$. By minimality of $u, \vec{\beta} \bullet u^{\prime}$ is a unit iff $\vec{\alpha} \bullet u^{\prime}$ is a unit. But if $\vec{\alpha} \bullet u^{\prime}$ is a unit, then $\vec{\alpha} \bullet u=\emptyset^{m}$, which is false. Hence $\vec{\beta} \bullet u^{\prime}$ is not a unit. By lemma 8

$$
\begin{equation*}
(\vec{\beta} \cdot S) \bullet u=(\vec{\beta} \bullet u) \cdot S . \tag{3}
\end{equation*}
$$

Let us plug equalities (2) and (3) in equivalence (1) and let us define $\vec{\gamma}=\vec{\beta} \bullet u$. We obtain:

$$
S_{j_{0}}=\vec{\gamma} \bullet S \text {, where } \vec{\gamma} \neq \epsilon_{j_{0}}^{m} .
$$

Using Arden's lemma we get:

$$
S_{j_{0}}=\sum_{j \neq j_{0}} \gamma_{j_{0}}^{*} \gamma_{j} \cdot S_{j} \text { i.e. } S_{j_{0}}=\overrightarrow{\gamma^{\prime}} \bullet S
$$

where $\overrightarrow{\gamma^{\prime}}=\nabla_{j_{0}}^{*}(\vec{\gamma})$, hence $\gamma_{j_{0}}^{\prime}=0 . \diamond$

1.4.1-Prefix matrices- Bases

A subset $\mathrm{V} \subseteq \mathrm{DB}\langle\langle X\rangle\rangle$ is said to be a prefix space iff it is closed under linear combinations (with prefix vector of coefficients).
A set $\mathcal{F}=\left\{S_{1}, \ldots, S_{m}\right\}$ (where $m=\operatorname{Card} \mathcal{F}$) is called:

- a generating subset of V iff

$$
\mathrm{V}=\left\{\sum_{j=1}^{m} \alpha_{j} \cdot S_{j} \mid \vec{\alpha} \in \mathrm{D}_{1, m}\langle\langle X\rangle\rangle\right\} .
$$

- a linearly independent set if, for every $\vec{\alpha}, \vec{\beta} \in \mathrm{DB}_{1, m}\langle\langle X\rangle\rangle$,

$$
\vec{\alpha} \cdot \vec{S}=\vec{\beta} \cdot \vec{S} \Leftrightarrow \vec{\alpha}=\vec{\beta}
$$

- a base of V iff, it is both a generating set of V and it is linearly independent.

1.4.1-PrefiX MAtRices- Bases

Proposition 9 Every finitely generated prefix space has a base. Moreover this base is unique.

Question: For what kind of series (i.e. languages) is the base of $\mathfrak{V}(\mathcal{F})$ computable from the set \mathcal{F} ?

1.4.2- PrefiX matrices- Most general unifier

Let $\vec{\alpha}, \vec{\beta} \in \mathrm{DB}_{1, m}\langle\langle X\rangle\rangle$. We call unifier for the pair $(\vec{\alpha}, \vec{\beta})$ any matrix $U \in \mathrm{DB}_{m, n}\langle\langle X\rangle\rangle(n \geq 1)$ such that:

$$
\vec{\alpha} \cdot U=\vec{\beta} \cdot U .
$$

It is said to be a Most General Unifier iff, every unifier has the form $U \cdot T$ for some matrix $T \in \mathbb{D}_{n, s}$ (where $s \geq 1$).

1.4.2- PrefiX matrices- Most general unifier

Proposition 10 Every pair of prefix row-vectors $(\vec{\alpha}, \vec{\beta})$ has a
MGU. This MGU is unique
(except in the case where $0_{m, 1}$ is a MGU).
Question: For what kind of series (i.e. languages) is the MGU computable from the pair of prefix row-vectors ?

1.5- Prefix matrices- Example

A linear equation:

$$
a b \cdot U_{1}+0 \cdot U_{2}+a a b \cdot U_{3}, 0 \cdot U_{1}+a b c \cdot U_{2}+(a a b+a b d) \cdot U_{3} .
$$

Computation of a MGU: applying $\bullet a b$ on both sides:

$$
U_{1}, c \cdot U_{2}+d \cdot U_{3}
$$

substituting U_{1} by the r.h.s:

$$
a b c \cdot U_{2}+(a a b+a b d) \cdot U_{3}, a b c \cdot U_{2}+(a b d+a a b) \cdot U_{3},
$$

hence:

$$
M G U\left((a b, 0, a a b),(0, a b c,(a a b+a b d))=\left(\begin{array}{cc}
c & d \\
\varepsilon & 0 \\
0 & \varepsilon
\end{array}\right)\right.
$$

1.5- Prefix matrices- EXample

A prefix column vector:

$$
S=\left(\begin{array}{l}
\left(c a^{*} b+d\right) a^{*} c \\
a^{*} b a^{*} c \\
a^{*} c
\end{array}\right)
$$

This vector is a solution of:

$$
a b \cdot S_{1}+0 \cdot S_{2}+a a b \cdot S_{3}, 0 \cdot S_{1}+a b c \cdot S_{2}+(a a b+a b d) \cdot S_{3} .
$$

Hence it is obtained by substitution from the MGU:

$$
\begin{gathered}
S_{1}=c S_{2}+d S_{3} \\
\mathrm{~V}\left(\left\{S_{1}, S_{2}, S_{3}\right\}\right)=\mathrm{V}\left(\left\{S_{2}, S_{3}\right\}\right)
\end{gathered}
$$

A base of $\mathrm{V}\left(\left\{S_{1}, S_{2}, S_{3}\right\}\right)$ is $\left\{S_{3}\right\}$.

2.0- Deterministic matrices- Deterministic grammars

(Harrison-Havel,JCSS 1973):

Definition 11 Let $G=\langle X, V, P\rangle$ be some context-free grammar.
G is said strict deterministic iff there exists some equivalence relation \smile over $X \cup V$ such that
1- X is some class mod -
2- $\forall v_{1}, v_{1}^{\prime} \in V, \forall \alpha \in(X \cup V)^{*}, \forall w, w^{\prime} \in V^{*}$,
if

$$
v_{1} \smile v_{1}^{\prime}, v_{1} \rightarrow \alpha w_{1}, v_{1}^{\prime} \rightarrow \alpha w_{1}^{\prime}
$$

then ($w_{1}=w_{1}^{\prime}=\epsilon$ and $v_{1}=v_{1}^{\prime}$) or
$\exists v_{2}, v_{2}^{\prime} \in(X \cup V), w_{2}, w_{2}^{\prime} \in(X \cup V)^{*}$,

$$
v_{2} \smile v_{2}^{\prime}, w_{1}=v_{2} w_{2}, w_{1}^{\prime}=v_{2}^{\prime} w_{2}^{\prime}
$$

2.0- Deterministic matrices- Deterministic grammars

Theorem 12 (Harrison-Havel,73) A language $L \subseteq X^{*}$ is recognized (by empty stack) by some dpda iff it is generated by some strict-deterministic context-free grammar.

2.1-Deterministic matrices- Operations

Definition 13 A series $S \in \mathbb{B}\left\langle\left\langle V^{*}\right\rangle\right\rangle$ is said deterministic iff, for every words $\alpha, w_{1}, w_{1}^{\prime} \in V^{*}$ such that
$\alpha \cdot w_{1}, \alpha \cdot w_{1}^{\prime} \in \operatorname{supp}(S)$
either $w_{1}=w_{1}^{\prime}=\epsilon$
or $\left(\exists v_{2}, v_{2}^{\prime} \in V, w_{2}, w_{2}^{\prime} \in V^{*}\right.$, such that

$$
v_{2} \smile v_{2}^{\prime}, w_{1}=v_{2} w_{2}, w_{1}^{\prime}=v_{2}^{\prime} w_{2}^{\prime} .
$$

Intuition: a deterministic series is a generalized configuration of the initial pushdown automaton.

Definition 14 A row-vector $\left(S_{1}, \ldots, S_{i}, \ldots, S_{m}\right)$ is said
deterministic iff
1-The supports of the S_{i} 's are disjoint
$2-\sum_{j=1}^{m} S_{i}$ is deterministic.

Definition 15 A matrix of dimension $(n, m),\left(S_{i, j}\right)_{1 \leq i \leq n, 1 \leq j \leq m}$ is said deterministic iff every one of its row-vectors is deterministic.

We denote by $\mathrm{D} \mathbb{B}_{n, m}\langle\langle V\rangle\rangle$ the set of deterministic matrices.

2.1-Deterministic matrices- Operations

```
Lemma 16 Let \(A \in \mathbb{D}_{n, m}\langle\langle V\rangle\rangle, B \in \mathbb{D}_{m, s}\langle\langle V\rangle\rangle\). Then \(A \cdot B \in \mathrm{DB}_{n, s}\langle\langle V\rangle\rangle\)
Lemma 17 Let \(A, B \in \mathrm{DB}_{1, m}\langle\langle V\rangle\rangle\) and \(1 \leq j_{0} \leq m\). Then
1- \(A \nabla_{j_{0}} B \in \mathbb{D}_{1, m}\langle\langle V\rangle\rangle\)
\(2-\nabla_{j_{0}}^{*}(A) \in \mathbb{B}_{1, m}\langle\langle V\rangle\rangle\)
```


2.2- Deterministic matrices- Right-Action

We define a σ-right-action \odot of the monoid X^{*} over the semi-ring $\mathbb{B}\left\langle\left\langle V^{*}\right\rangle\right\rangle$ by: for every $w \in V^{*}, u \in X^{*}$,

$$
w \odot u=\sum_{\substack{ \\w \xrightarrow{w} \in V^{*} \\{ }_{l m}^{*} u \cdot w^{\prime}}} w^{\prime}
$$

for every $S \in \mathbb{B}\left\langle\left\langle V^{*}\right\rangle\right\rangle, u \in X^{*}$,

$$
\left(\sum_{w \in V^{*}} S_{w} \cdot w\right) \odot u=\sum_{w \in V^{*}} S_{w} \cdot(w \odot u) .
$$

This right-action is extended componentwise to matrices.

2.2- Deterministic matrices- Right-action

Lemma 18 Let $A \in \mathbb{D}_{n, m}\langle\langle V\rangle\rangle$ and $u \in X^{*}$. Then
$A \odot u \in \mathbb{D B}_{n, m}\langle\langle V\rangle\rangle$

Lemma 19 Let $S \in \mathbb{D}_{1, m}\langle\langle W\rangle\rangle, T \in \mathbb{B}_{m, s}\langle\langle W\rangle\rangle$ and $u \in W^{*}$. Exactly one of the following cases is true:
(1) $\exists j, S_{j} \odot u \notin\{\emptyset, \epsilon\}$
in this case $(S \cdot T) \odot u=(S \odot u) \cdot T$.
(2) $\exists j_{0}, \exists u^{\prime}, u^{\prime \prime}, u=u^{\prime} \cdot u^{\prime \prime}, S_{j_{0}} \odot u^{\prime}=\epsilon$;
in this case $(S \cdot T) \odot u=T_{j_{0}, *} \odot u^{\prime \prime}$.
(3) $\forall j, \forall u^{\prime} \preceq u, S_{j} \odot u=\emptyset, S_{j} \odot u^{\prime} \neq \epsilon$;
in this case $(S \cdot T) \odot u=\emptyset=(S \odot u) \cdot T$.

2.2- Deterministic matrices- Right-action

A map $\varphi: V \rightarrow \mathbb{B}\left\langle\left\langle X^{*}\right\rangle\right\rangle$ is defined by:

$$
\varphi(v)=\sum_{v \odot u=\epsilon} u
$$

This map is extended as a σ-additive semi-ring homorphism $\varphi: \mathbb{B}\langle\langle V\rangle\rangle \rightarrow \mathbb{B}\langle\langle X\rangle\rangle$ by

$$
\varphi\left(\sum_{w \in V^{*}} S_{w} \cdot w\right)=\sum_{w \in V^{*}} S_{w} \cdot \varphi(w) .
$$

We set

$$
S \equiv T \text { iff } \varphi(S)=\varphi(T) .
$$

2.2- Deterministic matrices- Right-Action

> Lemma 20 For every
> $S \in \mathrm{D} \mathbb{B}_{n, m}\langle\langle V\rangle\rangle, T \in \mathbb{D}_{m, s}\langle\langle V\rangle\rangle, u \in X^{*}$,
> $1-\varphi(S \cdot T)=\varphi(S) \cdot \varphi(T)$
> $2-\varphi(S \odot u)=\varphi(S) \bullet u$

2.3- Deterministic matrices- Linear identities

Fundamental remark:
Let $S_{1}, \ldots, S_{j}, \ldots, S_{m} \in \mathrm{DB}\langle\langle X\rangle\rangle$ and let $\vec{\alpha}, \vec{\beta} \in \mathrm{D}_{1, m}\langle\langle X\rangle\rangle$
such that
(0) $\sum_{j=1}^{m} \alpha_{j} \cdot S_{j} \equiv \sum_{j=1}^{m} \beta_{j} \cdot S_{j} S$

Then one of cases (1),(2) must occur:
(1) $\vec{\alpha} \equiv \vec{\beta}$
(2) $\exists j_{0} \in[1, m], \exists \vec{\gamma} \in \mathrm{DB}_{1, m}\langle\langle X\rangle\rangle, \gamma_{j_{0}}=0$, such that
$S_{j_{0}} \equiv \sum_{1 \leq j \leq m} \gamma_{j} \cdot S_{j}$.

2.4.1-Deterministic matrices- Bases

A subset $\mathrm{V} \subseteq \mathbb{D B}\langle\langle V\rangle\rangle$ is said to be a deterministic space iff it is closed under linear combinations (with deterministic vector of coefficients).
A set $\mathcal{F}=\left\{S_{1}, \ldots, S_{m}\right\}$ (where $m=\operatorname{Card} \mathcal{F}$) is called:

- a generating subset of V iff

$$
\mathrm{V}=\left\{\sum_{j=1}^{m} \alpha_{j} \cdot S_{j} \mid \vec{\alpha} \in \mathbb{D}_{1, m}\langle\langle V\rangle\rangle\right\} .
$$

- a linearly independent set if, for every $\vec{\alpha}, \vec{\beta} \in \mathrm{D}_{1, m}\langle\langle V\rangle\rangle$,

$$
\vec{\alpha} \cdot \vec{S}=\vec{\beta} \cdot \vec{S} \Leftrightarrow \vec{\alpha} \equiv \vec{\beta}
$$

- a base of V iff, it is both a generating set of V and it is linearly independent.

2.4.1- Deterministic matrices- Bases

Proposition 21 Every finitely generated deterministic space has a base. Moreover this base is unique (up to the equivalence \equiv).

It is unkown whether linear independence is a decidable property. It is unknown whether the base of $\mathrm{V}(\mathcal{F})$ is computable from the set \mathcal{F}.

2.4.2- Deterministic matrices- Most general unifier

Let $\vec{\alpha}, \vec{\beta} \in \mathrm{DB}_{1, m}\langle\langle V\rangle\rangle$. We call unifier for the pair $(\vec{\alpha}, \vec{\beta})$ any matrix $U \in \mathrm{DB}_{m, n}\langle\langle V\rangle\rangle(n \geq 1)$ such that:

$$
\vec{\alpha} \cdot U \equiv \vec{\beta} \cdot U .
$$

It is said to be a Most General Unifier iff, every unifier is equivalent (mod \equiv) to $U \cdot T$ for some matrix $T \in \mathrm{D} \mathbb{B}_{n, s}$ (where $s \geq 1$).

2.4.2- Deterministic matrices- Most general unifier

Proposition 22 Every pair of prefix row-vectors $(\vec{\alpha}, \vec{\beta})$ has a MGU. This MGU is unique (up to equivalence (mod \equiv), and with the exception of the case where $0_{m, 1}$ is a $M G U$).

- The MGU is computable from the pair of prefix row-vectors .
- This will be a corollary of the main result ... hence not directly usable in its proof! We shall merely adapt the underlying idea.

3.1-Deduction systems- Motivation

Let P be a set of equations such that, every equation is implied by the others. When can we conclude that they are all true?

3.1-Deduction systems- Motivation

3.2- Deduction systems- General definitions

General philosophy of (Harrison-Havel-Yehudai79), (Courcelle 83).

Let us call deduction system any triple $\mathcal{D}=\langle\mathcal{A}, H, \vdash-\rangle$ where

- \mathcal{A} is a denumerable set called the set of assertions
- $H: \mathcal{A} \rightarrow \mathbb{N} \cup\{\infty\}$ is the cost-function
$-\vdash-$, the deduction relation is a subset of $\mathcal{P}_{f}(\mathcal{A}) \times \mathcal{A}$ such that the following axioms are satisfied:
(A 1) $\forall(P, A) \in \vdash-$, (inf $\{H(p), p \in P\}<H(A))$ or $(H(A)=\infty)$.
(A 2) $\vdash-$ is recursively enumerable.

We call proof in the system \mathcal{D}, any subset $P \subseteq \mathcal{A}$ fulfilling :

$$
\forall p \in P, \exists Q \subseteq P, Q \vdash-p
$$

3.2- Deduction systems- General definitions

If P is a proof, then $\forall A \in P, H(A)=\infty$.

3.3- Deduction systems- Strategies

Informal definition:
A strategy is a "method" allowing to enlarge every "partial proof" P into a partial proof Q with $P \subset Q$.
Notice: this method needs not be computable.

4.1-The system \mathcal{D}_{0} - Assertions and cost function

Set of assertions:

$$
\mathcal{A}=\mathbb{N} \times \mathrm{DRB}\langle\langle V\rangle\rangle \times \mathrm{DRB}\langle\langle V\rangle\rangle
$$

The "cost-function":

$$
H\left(n, S, S^{\prime}\right)=n+2 \cdot \operatorname{Div}\left(S, S^{\prime}\right)
$$

Where the divergence between S and S^{\prime}, is defined by:

$$
\left.\operatorname{Div}\left(S, S^{\prime}\right)=\inf \left\{\mid u \| u \in \varphi(S) \Delta \varphi\left(S^{\prime}\right)\right)\right\}
$$

4.2-The system \mathcal{D}_{0} - The rules

(RO)

$$
\{(p, S, T)\} \Vdash-(p+1, S, T)
$$

for $p \in \mathbb{N}, S, T \in \operatorname{DR} \mathbb{B}\langle\langle V\rangle\rangle$

(R1)

$$
\{(p, S, T)\} \Vdash-(p, T, S)
$$

for $p \in \mathbb{N}, S, T \in \operatorname{DR} \mathbb{B}\langle\langle V\rangle\rangle$,
(R2)

$$
\left\{\left(p, S, S^{\prime}\right),\left(p, S^{\prime}, S^{\prime \prime}\right)\right\} \mid \vdash-\left(p, S, S^{\prime \prime}\right)
$$

for $p \in \mathbb{N}, S, S^{\prime}, S^{\prime \prime} \in \operatorname{DRB}\langle\langle V\rangle\rangle$,
(R3)

$$
\emptyset \mid \vdash-(0, S, S)
$$

for $S \in \operatorname{DRB}\langle\langle V\rangle\rangle$,

4.2-The system \mathcal{D}_{0} - The rules

(RO)

$$
\{(p, S, T)\} \Vdash-(p+1, S, T)
$$

for $p \in \mathbb{N}, S, T \in \operatorname{DRB}\langle\langle V\rangle\rangle$,

(R1)

$$
\{(p, S, T)\} \Vdash-(p, T, S)
$$

for $p \in \mathbb{N}, S, T \in \operatorname{DR} \mathbb{B}\langle\langle V\rangle\rangle$,

(R2)

$$
\left\{\left(p, S, S^{\prime}\right),\left(p, S^{\prime}, S^{\prime \prime}\right)\right\} \Vdash-\left(p, S, S^{\prime \prime}\right)
$$

for $p \in \mathbb{N}, S, S^{\prime}, S^{\prime \prime} \in \operatorname{DRB}\langle\langle V\rangle\rangle$,
(R3)

$$
\emptyset \mid \vdash-(0, S, S)
$$

for $S \in \operatorname{DRB}\langle\langle V\rangle\rangle$,

4.2-The system \mathcal{D}_{0} - The rules

(R'3)

$$
\emptyset \mid \vdash-(0, S, T)
$$

for $S \in \operatorname{DR} \mathbb{B}\langle\langle V\rangle\rangle, T \in\{\emptyset, \epsilon\}, S \equiv T$,
(R4)

$$
\{(p+1, S \odot x, T \odot x) \mid x \in X\} \mid \vdash-(p, S, T)
$$

$$
\text { for } p \in \mathbb{N}, S, T \in \operatorname{DR} \mathbb{B}\langle\langle V\rangle\rangle,(S \not \equiv \epsilon \wedge T \not \equiv \epsilon),
$$

(R5)

$$
\left\{\left(p, S, S^{\prime}\right)\right\} \Vdash-\left(p+2, S \odot x, S^{\prime} \odot x\right)
$$

for $p \in \mathbb{N}, S, T \in \operatorname{DRB}\langle\langle V\rangle\rangle, x \in X$,
(R6)

$$
\begin{gathered}
\left\{\left(p, S \cdot T^{\prime}+S^{\prime}, T^{\prime}\right)\right\} \mid \vdash-\left(p, S^{*} \cdot S^{\prime}, T^{\prime}\right) \\
\text { for } p \in \mathbb{N},\left(S, S^{\prime}\right) \in \mathrm{DR}_{1,2}\langle\langle V\rangle\rangle, T^{\prime} \in \operatorname{DR} \mathbb{B}\langle\langle V\rangle\rangle, S \not \equiv \epsilon,
\end{gathered}
$$

4.2-The system \mathcal{D}_{0} - The rules

(R'3)

$$
\emptyset \downharpoonright-(0, S, T)
$$

for $S \in \operatorname{DR} \mathbb{B}\langle\langle V\rangle\rangle, T \in\{\emptyset, \epsilon\}, S \equiv T$,
(R4)

$$
\begin{aligned}
& \{(p+1, S \odot x, T \odot x) \mid x \in X\} \mid \vdash-(p, S, T) \\
& \text { for } p \in \mathbb{N}, S, T \in \operatorname{DR} \mathbb{B}\langle\langle V\rangle\rangle,(S \not \equiv \epsilon \wedge T \not \equiv \epsilon),
\end{aligned}
$$

(R5)

$$
\left\{\left(p, S, S^{\prime}\right)\right\} \Vdash-\left(p+2, S \odot x, S^{\prime} \odot x\right)
$$

for $p \in \mathbb{N}, S, T \in \mathrm{DR} \mathbb{B}\langle\langle V\rangle\rangle, x \in X$,
(R6)

$$
\begin{gathered}
\left\{\left(p, S \cdot T^{\prime}+S^{\prime}, T^{\prime}\right)\right\} \mid \vdash-\left(p, S^{*} \cdot S^{\prime}, T^{\prime}\right) \\
\text { for } p \in \mathbb{N},\left(S, S^{\prime}\right) \in \mathrm{DR}_{1,2}\langle\langle V\rangle\rangle, T^{\prime} \in \operatorname{DR} \mathbb{B}\langle\langle V\rangle\rangle, S \not \equiv \epsilon,
\end{gathered}
$$

4.2-The system \mathcal{D}_{0} - The rules

(R'3)

$$
\emptyset \downharpoonright-(0, S, T)
$$

for $S \in \operatorname{DR} \mathbb{B}\langle\langle V\rangle\rangle, T \in\{\emptyset, \epsilon\}, S \equiv T$,
(R4)

$$
\{(p+1, S \odot x, T \odot x) \mid x \in X\} \mid \vdash-(p, S, T)
$$

for $p \in \mathbb{N}, S, T \in \operatorname{DR} \mathbb{B}\langle\langle V\rangle\rangle,(S \not \equiv \epsilon \wedge T \not \equiv \epsilon)$,

(R5)

$$
\left\{\left(p, S, S^{\prime}\right)\right\} \Vdash-\left(p+2, S \odot x, S^{\prime} \odot x\right)
$$

for $p \in \mathbb{N}, S, T \in \operatorname{DRB}\langle\langle V\rangle\rangle, x \in X$,
(R6)

$$
\begin{gathered}
\left\{\left(p, S \cdot T^{\prime}+S^{\prime}, T^{\prime}\right)\right\} \mid \vdash-\left(p, S^{*} \cdot S^{\prime}, T^{\prime}\right) \\
\text { for } p \in \mathbb{N},\left(S, S^{\prime}\right) \in \mathrm{DR}_{1,2}\langle\langle V\rangle\rangle, T^{\prime} \in \operatorname{DR} \mathbb{B}\langle\langle V\rangle\rangle, S \not \equiv \epsilon,
\end{gathered}
$$

4.2-The system \mathcal{D}_{0} - The rules

(R'3)

$$
\emptyset \downharpoonright-(0, S, T)
$$

for $S \in \operatorname{DR} \mathbb{B}\langle\langle V\rangle\rangle, T \in\{\emptyset, \epsilon\}, S \equiv T$,
(R4)

$$
\{(p+1, S \odot x, T \odot x) \mid x \in X\} \mid \vdash-(p, S, T)
$$

$$
\text { for } p \in \mathbb{N}, S, T \in \operatorname{DR} \mathbb{B}\langle\langle V\rangle\rangle,(S \not \equiv \epsilon \wedge T \not \equiv \epsilon),
$$

(R5)

$$
\left\{\left(p, S, S^{\prime}\right)\right\} \Vdash-\left(p+2, S \odot x, S^{\prime} \odot x\right)
$$

for $p \in \mathbb{N}, S, T \in \operatorname{DRB}\langle\langle V\rangle\rangle, x \in X$,
(R6)

$$
\begin{gathered}
\left\{\left(p, S \cdot T^{\prime}+S^{\prime}, T^{\prime}\right)\right\} \mid \vdash-\left(p, S^{*} \cdot S^{\prime}, T^{\prime}\right) \\
\text { for } p \in \mathbb{N},\left(S, S^{\prime}\right) \in \mathrm{DR}_{1,2}\langle\langle V\rangle\rangle, T^{\prime} \in \operatorname{DR} \mathbb{B}\langle\langle V\rangle\rangle, S \not \equiv \epsilon,
\end{gathered}
$$

4.2-The system \mathcal{D}_{0} - The rules

(R7)

$$
\left\{\left(p, S, S^{\prime}\right),\left(p, T, T^{\prime}\right)\right\} \Vdash-\left(p, S+T, S^{\prime}+T^{\prime}\right)
$$

for $p \in \mathbb{N},(S, T),\left(S^{\prime}, T^{\prime}\right) \in \operatorname{DR} \mathbb{B}_{1,2}\langle\langle V\rangle\rangle$,
(R8)

$$
\left\{\left(p, S, S^{\prime}\right)\right\} \Vdash-\left(p, S \cdot T, S^{\prime} \cdot T\right)
$$

for $p \in \mathbb{N}, S, S^{\prime}, T \in \operatorname{DR} \mathbb{B}\langle\langle V\rangle\rangle$,
(R9)

$$
\left\{\left(p, T, T^{\prime}\right)\right\} \mid \vdash-\left(p, S \cdot T, S \cdot T^{\prime}\right)
$$

for $p \in \mathbb{N}, S, T, T^{\prime} \in \mathrm{DRB}\langle\langle V\rangle\rangle$,

4.3-The system \mathcal{D}_{0} - Example

$$
\left[q_{0} A \Omega \bar{q}\right] \equiv\left[q_{1} A \Omega \bar{q}\right]
$$

i.e., up to some series equivalent to \emptyset

$$
\left[q_{0} A q_{1}\right]\left[q_{1} \Omega \bar{q}\right]+\left[q_{0} A q_{2}\right]\left[q_{2} \Omega \bar{q}\right] \equiv\left[q_{1} A q_{1}\right]\left[q_{1} \Omega \bar{q}\right]+\left[q_{1} A q_{2}\right]\left[q_{2} \Omega \bar{q}\right]
$$

up to some series equivalent to \emptyset

$$
\left[q_{0} T^{3} A q_{1}\right]\left[q_{1} \Omega \bar{q}\right]+\left[q_{0} T^{3} A q_{2}\right]\left[q_{2} \Omega \bar{q}\right] \equiv\left[q_{1} T^{3} A q_{1}\right]\left[q_{1} \Omega \bar{q}\right]+\left[q_{1} T^{3} A q_{2}\right]\left[q_{2} \Omega \bar{q}\right]
$$

$$
\left\|\|_{\left(T_{C}(\mathbf{1})\right)}\right.
$$

$$
\begin{equation*}
\left[q_{0} T^{3} A q_{1}\right]\left[q_{1} B q_{1}\right]^{*}\left[q_{1} B q_{2}\right]+\left[q_{0} T^{3} A q_{2}\right] \equiv\left[q_{1} T^{3} A q_{1}\right]\left[q_{1} B q_{1}\right]^{*}\left[q_{1} B q_{2}\right]+\left[q_{1} T^{3} A q_{2}\right] \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& {\left[q_{0} T^{4} A q_{1}\right]\left[q_{1} B q_{1}\right]^{*}\left[q_{1} B q_{2}\right]+\left[q_{0} T^{4} A q_{2}\right] \equiv\left[q_{1} T^{4} A q_{1}\right]\left[q_{1} B q_{1}\right]^{*}\left[q_{1} B q_{2}\right]+\left[q_{1} T^{4} A q_{2}\right]} \\
& {\left[q_{0} T^{6} A q_{1}\right]\left[q_{1} B q_{1}\right]^{*}\left[q_{1} B q_{2}\right]+\left[q_{0} T^{6} A q_{2}\right] \equiv\left[q_{1} T^{6} A q_{1}\right]\left[q_{1} B q_{1}\right]^{*}\left[q_{1} B q_{2}\right]+\left[q_{1} T^{6} A q_{2}\right]} \\
& \begin{array}{c}
\left.\| q_{0} T^{6} A q_{1}\right]\left[q_{1} B q_{1}\right]^{*}\left[q_{1} B q_{2}\right]+\left[q_{0} T^{6} A q_{2}\right] \equiv
\end{array} \\
& {\left[q_{1} T^{4} q_{1}\right]\left[q_{1} e q_{1}\right]\left(\left[q_{0} T^{2} A q_{1}\right]\left[q_{1} B q_{1}\right]^{*}\left[q_{1} B q_{2}\right]+\left[q_{0} T^{2} A q_{2}\right]\right)} \tag{3}\\
& {\left[q_{0} T^{4} q_{0}\right] \equiv\left[q_{1} T^{4} q_{1}\right]} \tag{4}\\
& {\left[q_{0} T^{7} q_{0}\right] \equiv\left[q_{1} T^{7} q_{1}\right]} \\
& \| T_{B}^{+(4)} \\
& {\left[q_{0} T^{7} q_{0}\right] \equiv\left[q_{1} T^{4} q_{1}\right]\left[q_{1} e q_{1}\right]\left[q_{0} T^{3} q_{0}\right]} \\
& \text { (5) }\left(T_{c u t}\right) \epsilon \equiv \epsilon \\
& \left\|\| T_{C}(5)\right. \\
& {\left[q_{0} T^{4} q_{0}\right] \equiv\left[q_{1} T^{4} q_{1}\right]} \\
& T_{c u t}(4)
\end{align*}
$$

4.4- The system \mathcal{D}_{0} - Strategies

We suppose $X=\left\{x_{1}, x_{2}\right\}$.

$$
\begin{gathered}
\prod_{A} \\
A_{1} \\
A_{2} \\
\vdots \\
A_{n-1} \\
(\pi, S, T) \\
\swarrow \searrow \searrow \\
\left(\pi+1, S \odot x_{1}, T \odot x_{1}\right) \quad\left(\pi+1, S \odot x_{2}, T \odot x_{2}\right)
\end{gathered}
$$

$$
\begin{gathered}
T_{B}^{+} \\
\vdots \\
\left(\pi, S, \sum_{q \in Q}[\bar{p} z q] \cdot V_{q}\right. \\
\vdots \\
\vdots \\
\left(\pi+k_{1}, S \odot u, \sum_{q \in Q}([\bar{p} z q] \odot u) \cdot V_{q}\right. \\
\downarrow \\
\left(\pi+k_{1}-1, S \odot u, \sum_{q \in Q^{\prime}}([\bar{p} z q] \odot u) \cdot\left(S \odot u_{q}\right)\right. \\
\text { where } Q^{\prime}=\{q \in Q \mid[\bar{p} z q] \not \equiv \emptyset\} \text { and } u_{q}=\min (\varphi([\bar{p} z q]))
\end{gathered}
$$

T_{C} : an example.

$$
\begin{aligned}
\pi, \alpha_{1} S_{1}+\alpha_{2} S_{2}+\alpha_{3} S_{3} & \equiv \beta_{1} S_{1}+\beta_{2} S_{2}+\beta_{3} S_{3} \\
& \vdots \\
\pi+3, \gamma_{1} S_{1}+\gamma_{2} S_{2}+\gamma_{3} S_{3} & \equiv \delta_{1} S_{1}+\delta_{2} S_{2}+\delta_{3} S_{3} \\
& \downarrow \searrow \\
\pi+2, \gamma_{1} \hat{\beta}_{3}+\gamma_{3} & \equiv \delta_{1} \hat{\beta}_{3}+\delta_{3} \pi+2, \gamma_{2} \equiv \delta_{2}
\end{aligned}
$$

We know that first equation $\vdash-\pi+2, S_{1} \equiv \hat{\beta}_{3} S_{3}$, hence \{first equation, result of $\left.T_{C}\right\} \vdash-$ second equation.

4.4-The system \mathcal{D}_{0} - Strategies

${ }^{T} C$: general case.

$$
\begin{gathered}
\left(\pi_{1}, U_{1}, V_{1}\right) \\
\vdots \\
\left(\pi_{2}, U_{2}, V_{2}\right) \\
\vdots \\
\left(\pi_{D}, U_{D}, V_{D}\right) \\
\swarrow \downarrow \searrow \\
\mathcal{E}_{1} \ldots \mathcal{E}_{j} \ldots \mathcal{E}_{m}
\end{gathered}
$$

$$
\left[q_{0} A \Omega \bar{q}\right] \equiv\left[q_{1} A \Omega \bar{q}\right]
$$

i.e., up to some series equivalent to \emptyset

$$
\left[q_{0} A q_{1}\right]\left[q_{1} \Omega \bar{q}\right]+\left[q_{0} A q_{2}\right]\left[q_{2} \Omega \bar{q}\right] \equiv\left[q_{1} A q_{1}\right]\left[q_{1} \Omega \bar{q}\right]+\left[q_{1} A q_{2}\right]\left[q_{2} \Omega \bar{q}\right]
$$

$\left[q_{0} T T A \Omega \bar{q}\right] \equiv\left[q_{1} T T A \Omega \bar{q}\right]\left[q_{0} A \Omega \bar{q}\right] \equiv\left[q_{1} A \Omega \bar{q}\right]_{\epsilon} \equiv \epsilon$
t

$$
\left(T_{c u t}\right)
$$

up to some series equivalent to \emptyset

$$
\begin{align*}
& {\left[q_{0} T^{3} A q_{1}\right]\left[q_{1} \Omega \bar{q}\right]+\left[q_{0} T^{3} A q_{2}\right]\left[q_{2} \Omega \bar{q}\right] \equiv\left[q_{1} T^{3} A q_{1}\right]\left[q_{1} \Omega \bar{q}\right]+\left[q_{1} T^{3} A q_{2}\right]\left[q_{2} \Omega \bar{q}\right]} \\
& \left\|\|\left(T_{C}(\mathbf{1})\right)\right. \\
& {\left[q_{0} T^{3} A q_{1}\right]\left[q_{1} B q_{1}\right]^{*}\left[q_{1} B q_{2}\right]+\left[q_{0} T^{3} A q_{2}\right] \equiv\left[q_{1} T^{3} A q_{1}\right]\left[q_{1} B q_{1}\right]^{*}\left[q_{1} B q_{2}\right]+\left[q_{1} T^{3} A q_{2}\right]} \tag{2}
\end{align*}
$$

5.1-Decidability- Terminating strategy

The strategy $\mathcal{S}_{A B C}$ is a deterministic strategy, choosing for every branch to stop the construction of that branch or to add some new assertions (by means of
T_{A}, T_{B}, T_{C}).Transformation T_{C} has highest prority.
idea 1: Successive applications of T_{A}, T_{B} on a branch make it smooth: from some point, many assertions have both sides on a given deterministic space

$$
\mathrm{V}\left(S_{1}, \ldots, S_{n}\right)
$$

with n uniformly bounded (bound d_{0} :exponential)
idea 2: on a smooth (hypothetically) infinite branch, T_{C} must be applicable, with some uniform bound on the size of the result (bound $\Sigma_{0}+s_{0}$:not known to be p.r.)

5.2-Decidability- System \mathcal{D}_{0} IS Complete

Theorem 23 The system \mathcal{D}_{0} is complete.
Sketch of proof: From every true assertion $(0, S, T), \mathcal{S}_{A B C}$ constructs a proof-tree. If the tree is infinite, then it has some infinite branch. T_{C} cannot apply i.o. on that branch
(because its results are bounded). Hence an infinite suffix is smooth. But T_{C} is always applicable on such a path, hence $\mathcal{S}_{A B C}$ should apply T_{C} : contradiction! Hence the tree (hence the proof) is finite. \diamond

5.3- DeCIDAbILITY- Two semi-decision algorithms

Theorem 24 The equivalence problem for deterministic pushdown automata is decidable.

Sketch of proof: Let $S, T \in \operatorname{DR\mathbb {B}}\langle\langle V\rangle\rangle$.
$1-S \equiv T$ is semi-decidable: just enumerate the finite
\mathcal{D}_{0}-proofs, until you find a proof P containing ($0, S, T$).
$2-S \not \equiv T$ is semi-decidable: just enumerate the words $w \in X^{*}$, until you find a witness w such that $S \odot w=\varepsilon \Leftrightarrow T \odot w \neq \varepsilon$.
\diamond

6.1-REFINEMENTS-EXTENSIONS-Complexity

Theorem 25 (Stirling, ICALP'02)The equivalence problem for dpda's is primitive recursive.

6.2- REFINEMENTS-EXTENSIONS-BISIMULATION

Theorem 26 (Sénizergues, FOCS'98)The bisimulation problem for non-deterministic pushdown automata, with deterministic, decreasing ϵ-moves, is decidable.

To appear in (SIAM, 2005).

6.3- REFINEMENTS-EXTENSIONS-Transducers

Theorem 27 (Sénizergues, ICALP'99)The equivalence problem for deterministic pushdown transducers, from X^{*}, into a free group, is decidable.

Theorem 28 (Sénizergues, ICWL’O0, Kyoto)The equivalence problem for deterministic pushdown transducers, from X^{*}, into $(\mathbb{Q},+, \times)$, over two rational series S, T, which are supposed
1-〕-deterministic
2- but might be non- V-deterministic rational is decidable.

Work in progress.

7- PERSPECTIVES

Open question 0:
Is linear independence a decidable property?.
Open problem 1:
Develop the theory of prefix (resp. deterministic) matrices.
(Monoid of square matrices, deterministic spaces)
Open problem 2:
Find a non-trivial lower-bound for the complexity of the equivalence problem for dpda.
Open problem 3:
Find a better upper-bound for the complexity of the equivalence problem for dpda.

7- PERSPECTIVES

Open problem 4:
Show that the following problem is decidable:
INSTANCE: a deterministic pushdown transducer $X^{*} \rightarrow \mathbb{H}$ (the quaternions over \mathbb{Q}), and two rational \smile-deterministic, non- V-deterministic series $S, T \in \mathrm{RH}\langle\langle V\rangle\rangle$. QUESTION: Are the series S, T bisimilar?

7- PERSPECTIVES

i.e. does there exist a binary relation \mathcal{R} over $\operatorname{RH}\langle\langle V\rangle\rangle$ such that:
1- $\forall\left(U, U^{\prime}\right) \in \mathcal{R}, \forall x \in X$, and for every choice of $U_{1} \in U \odot x$, there exists a choice $U_{1}^{\prime} \in U^{\prime} \odot x$ such that $\left(U_{1}, U_{1}^{\prime}\right) \in \mathcal{R}$
$I^{\prime}-\forall\left(U, U^{\prime}\right) \in \mathcal{R}, \forall x \in X$, and for every choice of $U_{1}^{\prime} \in U^{\prime} \odot x$, there exists a choice $U_{1} \in U \odot x$ such that $\left(U_{1}, U_{1}^{\prime}\right) \in \mathcal{R}$
2- $\forall\left(U, U^{\prime}\right) \in \mathcal{R},\left(U \in \mathbb{H} \Rightarrow U=U^{\prime}\right)$.
$2^{\prime}-\forall\left(U, U^{\prime}\right) \in \mathcal{R},\left(U^{\prime} \in \mathbb{H} \Rightarrow U=U^{\prime}\right)$.

