Sequences of level $1, 2, 3, \ldots, k, \ldots$

Géraud Sénizergues

LaBRI and University of Bordeaux 1

URL:http://dept-info.labri.u-bordeaux.fr/~ges

O-SUBJECT

What is the subject of this talk? Current work about:

> Pushdown Automata of Level k ($k \ge 0$). and their links with Recurrent sequences of integers/words.

O-SUBJECT

What are the results of this talk?

Theorem

Let us consider a mapping $f : A^* \to B^*$. The following properties are equivalent:

1- f is computed by some pushdown automaton of level $k \ge 2$.

2- f is a composition of k - 1 HDTOL sequences

 $g_1: A^* \to C_1^*, \dots, g_i: C_{i-1}^* \to C_i^*, \dots, g_{k-1}: C_{k-2}^* \to B^*.$ Moreover the g_1, \dots, g_{k-2} can be chosen to be DTOL's.

O-SUBJECT

What are the results of this talk?

Corollary 1

Let us consider a mapping $f : A^* \to \mathbb{N}$. The following properties are equivalent:

1- f is computed by some pushdown automaton of level 3. 2- f is composition of a DTOL sequence $g : A^* \to C^*$ by a rational series $h : C^* \to \mathbb{N}$.

3- There exists a finite family $(f_i)_{i \in [1,n]}$ of mappings $A^* \to \mathbb{N}$ fulfilling a system of polynomial recurrent relations and such that $f = f_1$.

Corollary 2

The equality problem is decidable for sequences of rational numbers computed by pushdown automata of level 3.

PLAN

O SUBJECT

1 INTRODUCTION

- 1.1 Automata
- 1.2 Recurrences
- 1.3 Problems
- 2 CLOSURE PROPERTIES
 - 2.1 Recurrences
 - 2.2 Composition

3 DECOMPOSITION PROPERTIES

- 3.1 Level 1
- 3.2 Level 2
- 3.3 Level 3
- 3.4 Level $k \ge 4$

4 PERSPECTIVES

- 4.1 Automata
- 4.2 Recurrences

Some references on pushdown automata of level k: Early works: (A. Aho JACM 68), (S. Greibach 70), (T. Ayashi 73), (A. Maslov 74) Complexity, hierarchy results: (W. Damm 82), (J. Engelfriet and E.M. Schmidt 77) Muchnik's theorem: (Semenov 84), (Muchnik and Semenov 92), (Walukiewicz 02), (D. Berwanger and A. Blumensath 02) Logical properties of k-dpda: (D. Caucal 02), (T. Knapik and D. Niwinski and P. Urzyczyn 02), (A. Carayol and S. Wöhrle 03), Links with sequences: (L. Lisovik and T. Karnaukh 03),(S. Fratani and G. Sénizergues 06), (N. Marin 07).

Definition 1 (k**-iterated pushdown store)** Let Γ be a set. We define inductively the set of k-iterated pushdown-stores over Γ by:

 $0-\mathrm{pds}(\Gamma) = \{\varepsilon\} \ (k+1)-\mathrm{pds}(\Gamma) = (\Gamma[k-\mathrm{pds}(\Gamma)])^* \ \mathrm{it}-\mathrm{pds}(\Gamma) = \bigcup_{k\geq 0} k-\mathrm{pds}(\Gamma).$

The elementary operations that a k-pda can perform are: - pop of level j (where $1 \le j \le k$), which consists of popping the leftmost letter of level j and all the structure which is "above" this letter

- push of level j (where $1 \le j \le k$), which consists of pushing a new letter C (or word CC') in place of the leftmost letter D of level j and copying above this new letter C (or letters C, C'), all the structure which was "above" the letter D.

Examples:

 $\omega := S_1[T_1[a_1a_2a_3]T_2[a_2a_1]]S_2[T_2[a_3]T_2[a_2a_1]] \stackrel{\text{push}_1(SS')}{\mapsto} \\ S[T_1[a_1a_2a_3]T_2[a_2a_1]]S'[T_1[a_1a_2a_3]T_2[a_2a_1]]S_2[T_2[a_3]T_2[a_2a_1]].$

 $S_{1}[T_{1}[a_{1}a_{2}a_{3}]T_{2}[a_{2}a_{1}]]S_{2}[T_{2}[a_{3}]T_{2}[a_{2}a_{1}]] \stackrel{\text{push}_{2}(TT')}{\mapsto} \\S_{1}[T_{1}[a_{1}a_{2}a_{3}]T'[a_{1}a_{2}a_{3}]T_{2}[a_{2}a_{1}]]S'[T_{1}[a_{1}a_{2}a_{3}]T_{2}[a_{2}a_{1}]]S_{2}[T_{2}[a_{3}]T_{2}[a_{2}a_{1}]].$

 $S_{1}[T_{1}[a_{1}a_{2}a_{3}]T_{2}[a_{2}a_{1}]]S_{2}[T_{2}[a_{3}]T_{2}[a_{2}a_{1}]] \stackrel{\text{push}_{3}(aa')}{\mapsto} \\S_{1}[T_{1}[aa'a_{2}a_{3}]T_{2}[a_{2}a_{1}]]S_{2}[T_{2}[a_{3}]T_{2}[a_{2}a_{1}]]$

 $S_{1}[T_{1}[a_{1}a_{2}a_{3}]T_{2}[a_{2}a_{1}]]S_{2}[T_{2}[a_{3}]T_{2}[a_{2}a_{1}]] \stackrel{\text{pop}_{1}}{\mapsto} S_{2}[T_{2}[a_{3}]T_{2}[a_{2}a_{1}]].$

 $S_1[T_1[a_1a_2a_3]T_2[a_2a_1]]S_2[T_2[a_3]T_2[a_2a_1]] \stackrel{\text{pop}_2}{\mapsto} S_1[T_2[a_2a_1]]S_2[T_2[a_3]T_2[a_2a_1]].$

 $S_{1}[T_{1}[a_{1}a_{2}a_{3}]T_{2}[a_{2}a_{1}]]S_{2}[T_{2}[a_{3}]T_{2}[a_{2}a_{1}]] \stackrel{\text{pop}_{3}}{\mapsto} S_{1}[T_{1}[a_{2}a_{3}]T_{2}[a_{2}a_{1}]]S_{2}[T_{2}[a_{3}]T_{2}[a_{2}a_{1}]]$

Definition 2 (k-pdas**)** Let $k \ge 1$, let $POP = \{pop_j | j \in [k]\},$ $PUSH(\Gamma) = \{push_j(\gamma) | \gamma \in \Gamma^+, j \in [k]\},$ and $TOPSYMS(\Gamma) = \Gamma^{\leq k} - \{\varepsilon\}.$

A *k*-iterated pushdown automaton over a terminal alphabet B is a 6-tuple $\mathcal{A} = (Q, B, \Gamma, \delta, q_0, Z_0)$ where

- Q is a finite set of states, $q_0 \in Q$ denoting the initial state,
- Γ is a finite set of pushdown-symbols, $Z_0 \in \Gamma$ denoting the initial symbol,
- the transition function δ is a map from $Q \times (B \cup \{\varepsilon\}) \times TOPSYMS(\Gamma)$ into the set of finite subsets of $Q \times (PUSH(\Gamma) \cup POP)$.

The automaton \mathcal{A} is said *deterministic* iff, for every $q \in Q, \gamma \in \Gamma^{\leq k} - \{\varepsilon\}, b \in B$

$$\operatorname{Card}(\delta(q,\varepsilon,\gamma)) \leq 1 \text{ and } \operatorname{Card}(\delta(q,b,\gamma)) \leq 1,$$
 (1)

$$\operatorname{Card}(\delta(q,\varepsilon,\gamma)) = 1 \Rightarrow \operatorname{Card}(\delta(q,b,\gamma)) = 0.$$
 (2)

 $\mathcal{A} \text{ is called strongly deterministic iff, for every } q \in Q, \gamma \in \Gamma^{\leq k} - \{\varepsilon\}$

$$\sum_{\bar{b} \in \{\varepsilon\} \cup B} \operatorname{Card}(\delta(q, \bar{b}, \gamma)) \le 1$$
(3)

Definition 3 (k**-computable mapping)** A mapping $f: A^* \mapsto B^*$ is called k-computable iff there exists a strongly deterministic k-pda \mathcal{A} , over a pushdown-alphabet Γ , such that Γ contains k - 1 symbols $\gamma_1, \gamma_2, \ldots, \gamma_{k-1}$, the alphabet A is a subset of Γ_k and for all $w \in A^*$:

$$(q_0, f(w), \gamma_1[\gamma_2 \dots [\gamma_{k-1}[w]] \dots]) \vdash^*_{\mathcal{A}} (q_0, \varepsilon, \varepsilon).$$

One denotes by $S_k(A^*, B^*)$ the set of k-computable mappings from A^* to B^* .

The particular case where Card(A) = Card(B) = 1 was studied in (Fratani-Senizergues 2006).

Example 4 Fibonnaci sequence. F(n+2) = F(n+1) + F(n), F(1) = F(0) = 1.Suppose A fulfils the rules:

$$S_1[\varepsilon] \to_{\mathcal{A}} b; \quad S_2[\varepsilon] \to_{\mathcal{A}} \varepsilon;$$
$$S_1[F\Omega] \to_{\mathcal{A}} S_1[\Omega] S_2[\Omega]; \quad S_2[F\Omega] \to_{\mathcal{A}} S_1[\Omega].$$

Then we have

$$S_1[\varepsilon] \to_{\mathcal{A}} b = b^{F_0}.$$
$$S_1[F] \to_{\mathcal{A}} S_1[\varepsilon] S_2[\varepsilon] \to_{\mathcal{A}}^2 b\varepsilon = b^{F_1}.$$

$$S_1[F^{n+2}] \rightarrow_{\mathcal{A}} S_1[F^{n+1}]S_2[F^{n+1}]$$
$$\rightarrow_{\mathcal{A}} S_1[F^{n+1}]S_1[F^n]$$
$$\rightarrow_{\mathcal{A}}^* b^{F_{n+1}}b^{F_n}$$
$$= b^{F_{n+2}}.$$

Example 5 Factorial sequence. $u(n+1) = (n+1) \cdot u(n), \ u(0) = 1.$ Suppose A fulfils the rules:

 $\bar{S}[\varepsilon] \to_{\mathcal{A}} b; \quad S[T_1[\varepsilon]\Omega] \to_{\mathcal{A}} \bar{S}[\Omega]; \quad S[T_2[\varepsilon]\Omega] \to_{\mathcal{A}} \varepsilon$ $S[T_2[F\Omega']\Omega] \to_{\mathcal{A}} S[\Omega]S[T_2[\Omega']\Omega]; \quad S[T_1[F\Omega']\Omega] \to_{\mathcal{A}} S[T_2[F\Omega']T_1[\Omega']\Omega]$

Then we have

$$S[T_1[\varepsilon]] \rightarrow^2_{\mathcal{A}} b = b^{u(0)}.$$

$$S[T_2[F^n]\Omega] \rightarrow^*_{\mathcal{A}} (S[\Omega])^n$$

$$S[T_1[F^{n+1}]] \rightarrow^*_{\mathcal{A}} S[T_2[F^{n+1}]T_1[F^n]]$$

$$\rightarrow^*_{\mathcal{A}} (S[T_1[F^n]])^{n+1}$$

$$\rightarrow^*_{\mathcal{A}} (b^{u(n)})^{n+1}$$

$$= b^{u(n+1)}.$$

Some references on recurrent sequences of integers/words: Linear recurrences: (J. Berstel and C. Reutenauer 88) P-recurrences: (R.P. Stanley 80), (M. Petkovšek, H.S. Wilf and D. Zeilberger 96)

Sequences and finite automata: (J.P. Allouche and J. Shallit 03)

L-systems: (L. Kari and G. Rozenberg and A. Salomaa 97)

Definition 6 (N-rational formal power series) A mapping

 $f: A^* \to \mathbb{N}$ is \mathbb{N} -rational iff there is an homomorphism $M: A^* \to \mathbb{N}^{d \times d}$ and two vectors L in $\mathbb{B}^{1 \times d}$ and T in $\mathbb{B}^{d \times 1}$ such that, for every $w \in A^*$

 $f(w) = L \cdot M(w) \cdot T.$

Definition 7 (Polynomial recurrent relations) Given a finite index set I = [1, n] and a family of mappings $f_i : A^* \to \mathbb{N}$ (for $i \in I$), we call system of polynomial recurrent relations a system of the form

 $f_i(aw) = P_{i,a}(f_1(w), f_2(w), \dots, f_n(w))$ for all $i \in I, a \in A, w \in A^*$

where $P_i \in \mathbb{N}[X_1, X_2, \dots, X_n]$.

Definition 8 (catenative recurrent relations) Given a finite set I and a family of mappings indexed by $I, f_i : A^* \to B^*$ (for $i \in I$), we call system of catenative recurrent relations over the family $(f_i)_{i \in I}$ a system of the form

$$f_i(aw) = \prod_{j=1}^{\ell(i,a)} f_{\alpha(i,a,j)}(w) \text{ for all } i \in I, a \in A, w \in A^*$$

where $\ell(a,i) \in \mathbb{N}, \alpha(i,a,j) \in I$.

When Card(B) = 1, $f : A^* \to B^*$ fulfils a system of catenative recurrent relations iff f is a rational series.

Definition 9 (recurrent relations in M) Given a finite set I and a family of mappings indexed by I, $f_i : A^* \to M$ (for $i \in I$), we call system of recurrent relations in M over the family $(f_i)_{i \in I}$, a system of the form

$$f_i(aw) = \prod_{j=1}^{\ell(i,a)} f_{\alpha(i,a,j)}(w) \text{ for all } i \in I, a \in A, w \in A^*$$

where $\ell(a, i) \in \mathbb{N}$, $\alpha(i, a, j) \in I$ and the symbol \prod stands for the extension of the binary product in M to an arbitrary finite number of arguments.

The monoid $(Hom(C^*, C^*), \circ, Id)$ will be of particular interest for studying mappings of level $k \ge 3$.

The following notion turns out to be crucial for describing all *k*-computable mappings as compositions of simpler mappings.

Definition 10 (Kari-Rozenberg-Salomaa 1997) Let $f: A^* \to B^*$. The mapping f is called a HDTOL sequence iff there exists a finite alphabet C, a homomorphism $H: A^* \to Hom(C^*, C^*)$, an homomorphism $h \in Hom(C^*, B^*)$ and a letter $c \in C$ such that, for every $w \in A^*$

$$f(w) = h(H^w(c)).$$

(here we denote by H^w the image of w by H).

1.3-INTRODUCTION- PROBLEMS

Problem 1: Find characterisations of k-computable sequences.
Problem 2: Solve the equality problem for k-computable sequences. i.e. the following decision problem:

INPUT: two s-deterministic k-automata \mathcal{A}, \mathcal{B} . QUESTION: Do these automata compute the same mapping $A^* \to B^*$?

2.1-CLOSURE PROPERTIES-RECURRENCES

Theorem 11 (Fratani-Sénizergues 06)

0- For every $f \in S_{k+1}$, $k \ge 1$, and every integer $c \in \mathbb{N}$, the sequences Ef (the shift of f), $f + \frac{c}{1-X}$, belong to S_{k+1} ; if $\forall n \in \mathbb{N}$, $f(n) \ge c$ then $f - \frac{c}{1-X}$ belongs to S_{k+1} ; the sequence defined by $0 \mapsto c, n+1 \mapsto f(n)$ belongs to S_{k+1} . 1- For every $f, g \in S_{k+1}$, $k \ge 1$, the sequence f + g belongs to S_{k+1} .

2- For every $f, g \in S_{k+1}$, $k \ge 2$, $f \odot g$ (the ordinary product), belongs to S_{k+1} and for every $f' \in S_{k+2}$, f'^g belong to S_{k+2} . 3- For every $f \in S_{k+1}$, $g \in S_k$, $k \ge 2$, $f \times g$ (the convolution product) belongs to S_{k+1} .

4- For every $g \in S_k$, $k \ge 2$, the sequence f defined by: f(0) = 1and $f(n+1) = \sum_{m=0}^{n} f(m) \cdot g(n-m)$ (the convolution inverse of $1 - X \times f$) belongs to S_{k+1} . 5- For every $k \ge 2$ and for every system of recurrent equations expressed by polynomials in $\mathbb{S}_{k+1}[X_1, \ldots, X_p]$, with initial conditions in \mathbb{N} , every solution belongs to \mathbb{S}_{k+1} .

2.2-CLOSURE PROPERTIES-COMPOSITION

Theorem 12

For every $f \in S_k(A^*, B^*)g \in S_\ell(B^*, C^*)$, $k, l \ge 2$, $f \circ g$ (the sequence composition) belongs to $S_{k+\ell-1}(A^*, C^*)$.

Proved in (Fra-Sen06) in the case where Card(A) = Card(B) = Card(C) = 1. But extension is straighforward.

Theorem 13 The elements of $S_1(A^*, B^*)$ are exactly the generalized sequential mappings from A^* to B^* .

Theorem 14 (N. Marin 2007) Let us consider a mapping $f: A^* \to B^*$. The following properties are equivalent: $1 - f \in S_2(A^*, B^*)$ 2- There exists a finite family $(f_i)_{i \in [1,n]}$ of mappings $A^* \to B^*$ which fulfils a system of catenative recurrent relations and such that $f = f_1$ 3- f is a HDTOL sequence.

Theorem 15 Let us consider a mapping $f : A^* \to B^*$. The following properties are equivalent:

 $l\text{-} f \in \mathbb{S}_3(A^*, B^*)$

2- f is a composition of a DT0L sequence $g: A^* \to C^*$ by a HDT0L sequence $h: C^* \to B^*$.

Corollary 16 Let us consider a mapping $f : A^* \to \mathbb{N}$. The following properties are equivalent:

 $l\text{-} f \in \mathbb{S}_3(A^*, \mathbb{N})$

2- f is composition of a DTOL sequence $g: A^* \to C^*$ by a rational series $h: C^* \to \mathbb{N}$.

3- There exists a finite family $(f_i)_{i \in [1,n]}$ of mappings $A^* \to \mathbb{N}$ fulfilling a system of polynomial recurrent relations and such that $f = f_1$.

Definition 17 Let \mathbb{S} be a set of mappings $A^* \to \mathbb{N}$. We denote by $\mathcal{D}(\mathbb{S})$ the set of mappings of the form:

$$f(w) = g(w) - h(w) \quad \text{for all } w \in A^*,$$

for some mappings $g, h \in S$. We denote by $\mathcal{F}(S)$ the set of mappings of the form:

$$f(w) = \frac{g(w) - h(w)}{f'(w) - g'(w)}$$
 for all $w \in A^*$,

for some mappings $f, g, f', g' \in \mathbb{S}$.

Using point 3 of corollary 16 we can prove the following

Theorem 18 The equality problem is decidable for sequences in $\mathcal{F}(\mathbb{S}_3(A^*, \mathbb{N}))$.

The method consists, in a way similar to (Senizergues, ICALP'99) or (Honkala, 2000), in reducing such an equality problem to deciding whether some polynomial belongs to the ideal generated by a finite set of other polynomials.

Main ideas in the proof of theorem 15. Idea 1: for every $u \in 2 - pds(\Gamma)$

$$\Phi(u): (pSq) \mapsto \prod_{i=1}^{n} (p_i S_i q_i)$$

iff

$$pS[u\Omega]q \to_{\mathcal{A}}^{*} \prod_{i=1}^{n} (p_i S_i[\Omega]q_i).$$

lf :

$$p_i S[v\Omega] q_i \to_{\mathcal{A}}^* \prod_{j=1}^{n_i} (r_{i,j} S'_{i,j}[\Omega] s_{i,j}),$$

then

$$pS[u \cdot v \cdot \Omega]q \to_{\mathcal{A}}^{*} \prod_{i=1}^{n} \prod_{j=1}^{n_{i}} (r_{i,j}S'_{i,j}[\Omega]s_{i,j}).$$

i.e.

$$\Phi(u \cdot v) = \Phi(u) \circ \Phi(v).$$

Based on this observation: define, for $w \in \Gamma^*$,

$$H_T^w := \Phi(T[w]).$$

Family $(H_T^w)_{T\in\Gamma}$ should fulfill a compositional recurrence.

push₂: $pS[T[w]]q \rightarrow_{\mathcal{A}} p_1S[T_1[w]T_2[w]]q$

 $\Phi(T[w])(pSq) = \Phi(T_1[w]T_2[w])(p_1Sq)$

 $\Phi(T[w])(pSq) = (\Phi(T_1[w]) \circ \Phi(T_2[w]))(p_1Sq)$

i.e.

 $H_T^w(pSq) = (H_{T_1}^w \circ H_{T_2}^w)(pSq)$ push_1: $pS[T[w]]q \rightarrow_{\mathcal{A}} p_1S_1[T[w]]r \cdot rS_2[T[w]]q$

 $H_T^w(pSq) = H_T^w(p_1S_1r) \cdot H_T^w(rS_2q)$

Mixed recurrence rules .

Let us make definition of H_T^w correct.

Definition 19 (equivalences associated with a k-pda) Let $\mathcal{A} = (Q, B, \Gamma, \delta, q_0, Z_0)$ be a k-iterated pushdown automaton, with $k \geq 3$. We define binary relations $\equiv_{\mathcal{A},i} by$: 1- for every $w, w' \in k - pds(\Gamma)$,

$$w \equiv_{\mathcal{A},1} w' \Leftrightarrow (\forall p, q \in Q, \mathcal{L}(\mathcal{A}, pwq) \neq \emptyset \Leftrightarrow \mathcal{L}(\mathcal{A}, pw'q) \neq \emptyset)$$

2- for every
$$w, w' \in (k-1) - pds(\Gamma)$$
,

 $w \equiv_{\mathcal{A},2} w' \Leftrightarrow (\forall S \in \Gamma, \forall v \in (k-1) - \mathrm{pds}(\Gamma), S[w \cdot v] \equiv_{\mathcal{A},1} S[w' \cdot v])$

3- for every $w, w' \in (k-2) - pds(\Gamma)$,

$$w \equiv_{\mathcal{A},3} w' \Leftrightarrow (\forall T \in \Gamma, T[w] \equiv_{\mathcal{A},2} T[w'])$$

Lemma 20 Let $\mathcal{A} = (Q, B, \Gamma, \delta, q_0, Z_0)$ be a k-iterated pushdown automaton, with $k \ge 3$. 1- For every $j \in \{1, 2, 3\}, \equiv_{\mathcal{A}, j}$ is a regular equivalence relation. 2- For every $j \in \{1, 2\}, \equiv_{\mathcal{A}, j}$ is a congruence.

1- Each class is definable by a MSO formula $\Phi(w)$, over $(k - j + 1) - pds(\Gamma)$. We then use the fact that the definable subsets of $k - pds(\Gamma)$ are exactly the *k*-recognizable subsets of $k - pds(\Gamma)$ ((Fratani, PHD, 2005)). 2- Easy.

Correct definition of H_t^w :

 $\mathcal{W}:=\{(pS[e]q)\mid p,q\in Q,S\in \Gamma_1,e\in 2-\mathrm{pds}(\Gamma)/\equiv_{\mathcal{A},2}\}.$ If W=(pS[e]q) and

$$(pS[T[w]\Omega]q) \to_{\mathcal{A}}^{+} \prod_{j=1}^{\ell(i,W)} p_{i,j}S_{i,j}[\Omega]q_{i,j}$$
(4)

and

$$\forall j \in [1, \ell(i, W)], \forall t \in e \ \operatorname{L}(p_{i,j} S_{i,j}[t] q_{i,j}) \neq \emptyset$$
(5)

then

$$(pS[e]q) \mapsto \prod_{j=1}^{\ell(i,W)} p_{i,j} S_{i,j}[e]q_{i,j}.$$
(6)

otherwise

$(pS[e]q) \mapsto (pS[e]q).$ (7)

We obtain a recurrence of the form: Let $T \in \Gamma$, $d \in 1 - pds(\Gamma) / \equiv_3$, $a \in \Gamma$, $w \in 1 - pds(\Gamma)$ and W = pS[e]q). There exists an integer $\ell(i, a, d, W) \in [1, 2]$ and for every $j \in [1, \ell(i, a, d, W)]$ there exist indices $\alpha(i, a, d, W, j), \beta(i, a, d, W, j) \in \Gamma$, words $\omega_{i,a,d,W,j} \in \Gamma^{\leq 2}$, letters $V_{i,a,d,W,j} \in W$ and an alphabetic homomorphism $\Phi_{i,a,d,W,j} \in Hom(\mathcal{W}^*, \mathcal{W}^*)$ such that

$$w \in d \Rightarrow H_i^{aw}(W) = \prod_{j=1}^{\ell(i,a,d,W)} H_{\alpha(i,a,d,W,j)}^{\omega_{i,a,d,W,j}\cdot w} \circ \Phi_{i,a,d,W,j} \circ H_{\beta(i,a,d,W,j)}^{\omega_{i,a,d,W,j}\cdot w}(V_{i,a,d,W,j})$$

$$(8)$$

Idea 2: transform this mixed recurrence into a compositional recurrence

Here is a mixed recurrence for f(n) := n!

$$\Phi(n) := \lambda u.(n! \times u); \quad P(n) := \lambda u.(n \times u)$$

$$\Phi(n+1) = P(n) \bullet \Phi(n)$$

$$P(n+1) = P(n) + I$$

$$\Phi(0) = I$$

$$P(0) = Z$$

where $I := \lambda u.u$ and $Z := \lambda u.0$. ($\Phi, P, I, Z \in HOM(\{F_1\}^*, \{F_1\}^*)$).

 $f(n) = \Phi(n)(1).$

3.3-DECOMPOSITION PROPERTIES-Level 3 Let $\mathcal{W} := \{F_1, F_2\}.$

 $H: F_1 \mapsto F_1F_2; F_2 \mapsto \varepsilon, \quad \Pi_{2,1}: F_1 \mapsto F_1; F_2 \mapsto F_1$ $\Phi_1(n): F_1 \mapsto F_1^{n!}, F_2 \mapsto F_2; P_1(n):= F_1 \mapsto F_1^n, F_2 \mapsto F_2.$ Here is a compositional recurrence for n!

$$\Phi_1(n+1) = P_1(n) \circ \Phi_1(n)$$

$$P_1(n+1) = \pi_{2,1} \circ P_1(n) \circ H(n)$$

$$\Phi_1(0) = I(n)$$

$$P_1(0) = Z(n)$$

By this kind of trick we obtain a recurrence of the form:

$$\begin{split} w \in d &\Rightarrow \\ H_T^{aw} &= \psi_{i,a,d} \circ \prod_{W \in \mathcal{W}} (\prod_{j=1}^{\ell(i,a,d,W)} \theta_{i,a,d,W,j} \circ H_{\alpha(i,a,d,W,j)}^{\omega_{i,a,d,W,j} \cdot w} \circ \Phi_{i,a,d,W,j} \circ H_{\beta(i,a,d,W,j)}^{\omega_{i,a,d,W,j}} \circ \psi_{i,a,d,W,j} \circ H_{\beta(i,a,d,W,j)}^{\omega_{i,a,d,W,j}} \circ \Phi_{i,a,d,W,j} \circ H_{\beta(i,a,d,W,j)}^{\omega_{i,a,d,W,j}} \circ \psi_{i,a,d} \circ \psi_{i,a,d} \cdot (\prod_{j=1}^{\ell(i,a,d,W)} \theta_{i,a,d,W,j} \circ H_{\beta(i,a,d,W,j)}^{\omega_{i,a,d,W,j} \cdot w} \circ \Phi_{i,a,d,W,j} \circ \Phi_{i,a,$$

Difficult point: is this compositional recurrence terminating ? In fact no. idea 3: new index $i = (\mathcal{V}, \mathcal{T})$ where $\mathcal{V} \subseteq \mathcal{W}$.

$$H_i^w(W) := H_T(W)$$
 if $W \in \mathcal{V}$, $H_i^w(W) := W$ if $W \notin \mathcal{V}$.

Termination proof is technical.

Last technical point: eliminate the congruence $\equiv_{A,3}$ over Γ^* , in the compositional recurrence? Solution: (standard direct) product of \mathcal{A} (which computes the recurrence) by \mathcal{B} which computes the finite index congruence. Finally: we have proved that $(1) \Rightarrow (2)$. Converse: follows from composition theorem 12.

Main idea in the proof of corollary 16. Example: u(n) = F(F(n)) $F(n): 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 \dots$ $u(n): 1, 1, 2, 3, 8, 34, 377, \dots$

$$\left(\begin{array}{c}F(n+1)\\F(n)\end{array}\right) = \left(\begin{array}{cc}1&1\\1&0\end{array}\right)^n \cdot \left(\begin{array}{c}1\\1\end{array}\right)$$

so that

$$\left(\begin{array}{c}F(F(n)+1))\\u(n)\end{array}\right) = \left(\begin{array}{cc}1&1\\1&0\end{array}\right)^{F(n)}\cdot\left(\begin{array}{c}1\\1\end{array}\right)$$

Let us set
$$\begin{pmatrix} e(n) & f(n) \\ g(n) & h(n) \end{pmatrix} := \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{F(n)}$$

then

$$u(n) = g(n)$$

Since

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right)^{F(n+1)} = \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right)^{F(n)} \cdot \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right)^{F(n-1)}$$

we obtain the relation:

$$\left(\begin{array}{cc} e(n+1) & f(n+1) \\ g(n+1) & h(n+1) \end{array}\right) = \left(\begin{array}{cc} e(n) & f(n) \\ g(n) & h(n) \end{array}\right) \cdot \left(\begin{array}{cc} e(n-1) & f(n-1) \\ g(n-1) & h(n-1) \end{array}\right)$$

which gives a polynomial recurrence system defining u(n).

3.4-DECOMPOSITION PROPERTIES-LEVEL $k \ge 4$

Theorem 21 Let us consider a mapping $f : A^* \to B^*$. The following properties are equivalent: $1 - f \in S_k(A^*, B^*)$ 2- f is a composition of k - 1 HDTOL sequences $g_1 : A^* \to C_1^*, \dots, g_i : C_{i-1}^* \to C_i^*, \dots, g_{k-1} : C_{k-2}^* \to B^*$.

Moreover the g_1, \ldots, g_{k-2} can be chosen to be DTOL's.

3.4-DECOMPOSITION PROPERTIES-Level $k \geq 4$

Main idea in the proof of theorem 21.

Definition 22 (regular recurrent relations of order k) Let us consider a monoid $(M, \cdot, 1)$, a finite alphabet Γ , a finite set Iand a family of mappings indexed by I, $f_i : k - pds(\Gamma) \rightarrow M$ (for $i \in I$). We call system of regular recurrent relations of order k in M over the family $(f_i)_{i \in I}$, a system of equations of the form:

$$\forall i \in I, c \in k - pds(\Gamma) / \equiv, w \in k - pds(\Gamma),$$
$$(w \neq \varepsilon \& w \in c) \Rightarrow f_i(w) = \prod_{j=1}^{\ell(i,c)} f_{\alpha(i,c,j)}(\omega_{i,c,j}(w))$$
(10)

where $\ell(i,c) \in \mathbb{N}$, $\alpha(i,c,j) \in I$, $\omega_{i,c,j} \in PUSH(\Gamma) \cup POP$ and \equiv is a regular equivalence relation over $k - pds(\Gamma)$.

3.4-DECOMPOSITION PROPERTIES-Level $k \ge 4$

Definition of set of indices I and homomorphisms:

$$H_i^w: \hat{\mathcal{W}}^* \to \hat{\mathcal{W}}^*$$

(as for level 3). The family $(H_i^w)_{i \in I}$ fulfils a system of regular recurrent relations of order k in $Hom(\hat{W}^*, \hat{W}^*)$.

New difficulty: how to eliminate the equivalence $\equiv_{\mathcal{A},3}$ over $(k-2) - pds(\Gamma)$?

Solution: product of \mathcal{A} (which computes the recurrence) by \mathcal{B} which computes the finite index regular equivalence over $(k-2) - pds(\Gamma)$ (Fratani 2005, PHD).

4.1-PERSPECTIVES-AUTOMATA

P1: Study the equivalence problem for deterministic automata of level 2,3.

4.2-PERSPECTIVES-RECURRENCES

P2: Study the equivalence problem for strongly deterministic automata of level 3

P3: Study the decision problem: INPUT: one sequence $u \in \mathcal{D}(\mathbb{S}_k(A^*, \mathbb{N}))$. QUESTION: Do there exist a word $w \in A^*$ such that u(w) = 0? For k = 2, Card(A) = 1, known as the Pisot problem and open. For k = 3, Card(A) > 1, undecidable.

P4: Study the decision problem: INPUT: two sequences $u, v \in S_k(A^*, \mathbb{N})$. QUESTION: Are they almost equal ? i.e. $Card\{w \in A^* \mid u(w) \neq v(w)\} < \infty$? For k = 2, Card(A) = 1, easily seen decidable. P5: Is $\mathbb{S}_3(\mathbb{N},\mathbb{N})$ closed under convolution ? (true for $\mathbb{S}_2(\mathbb{N},\mathbb{N})$).

P6: Study the closure properties of $S_k(\mathbb{N}, \mathbb{N})$, $S_k(A^*, \mathbb{N})$, $\mathcal{D}(S_k(\mathbb{N}, \mathbb{N}))$, $\mathcal{F}(S_k(\mathbb{N}, \mathbb{N}))$, ...