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What is the subject of this talk?
Current work abourt:

Pushdown Automata of Level £ (£ > 0).
and their links with
Recurrent sequences of integers/words.
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What are the results of this talk?

Theorem

Let us consider a mapping f : A* — B*. The following
properties are equivalent:

1- f is computed by some pushdown automaton of level
k> 2.

2- fis a composition of k£ — 1 HDTOL sequences
g:A*—=Cl,...,0,.:C'_{ —=Cr,...,gk—1:C}_5 — B*.
Moreover the ¢, ..., gr_> can be chosen 1o be DIOLs.
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What are the results of this talk?

Coroliary 1

Let us consider a mapping f : A* — N. The following
properties are equivalent:

1- fis computed by some pushdown autfomaton of level 3.
2- f is composition of a DIOL sequence g : A* — C* by a
rational series h : C* — N,

3- There exists a finite family (f;);cpi ) Of Mmappings A* — N
fulfilling a system of polynomial recurrent relations and such
that f = f;.

Corollary 2

The equality problem is decidable for sequences of rational
numbers computed by pushdown automata of level 3.
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Some references on pushdown automata of level k:

Early works: (A. Aho JACM 68),(S. Greibach 70), (T. Ayashi 73),
(A. Maslov 74)

Complexity, hierarchy results: (W. Damm 82), (J. Engelfriet and
E.M. Schmidt 77)

Muchnik’s theorem: (Semenov 84), (Muchnik and Semenov
92), (Walukiewicz 02), (D. Berwanger and A. Blumensath 02)
Logical properties of k-dpda:(D. Caucal 02),(T. Knapik and D.
Niwinski and R Urzyczyn 02), (A. Carayol and S. Wohrle 03),
Links with sequences: (L. Lisovik and T. Karnaukh 03),(S. Fratani
and G. Sénizergues 06), (N. Marin 07).
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Definition 1 (k-iterated pushdown store) Lef I be a sef. We
define inductively the sef of k-iterated pushdown-stores over
I' by:

0—pds(T") = {e} (k+1)—pds(I') = (T'[k—pds(T")])* it —pds(l") = U k—pds(T).

The elementary operations that a k-pda can perform are:;

- pop Of level 5 (where 1 < 5 < k), which consists of popping
the leftmost letfter of level ;5 and all the structure which is
“above” this letter

- push of level 5 (where 1 < 5 < k), which consists of pushing a
new lefter C (or word CC’) in place of the leftmost letter D of
level ; and copying above this new letter C (or letters

C, C"),all the structure which was “above” the letter D.
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1.1-INTRODUCTION- AUTOMATA

Examples:
push, (SS’)
W = Sl [Tl [alagag]Tg [agal]]Sg [TQ [QS]TQ [agal]] —>
S[Tl [CLl CLQCLg]TQ [agal]]S’ [Tl [CLl CLQCLg]TQ [agal]]Sg [TQ [ag]TQ [CLQCLl]] .

i ; ush, (TT’
Sl _T1 [CL16L26L3]T2 [aga,l]]Sg [TQ [ag_TQ [agal]] P l—(> )

Sl :T[al CLQCLg]T/ [CLl CLQCLg]TQ [&2&1: ] S/ [Tl [a1 CLQCLg]TQ [agal]] SQ [TQ [ag]TQ [CLQCLl]] .

push;(aa’)
—

S1|Th|arazas]|Tz]azaq1]]S2 (T2 as]) T2 |aza1 ]
:Tl [aa’agag]Tg [agal]] SQ [TQ [ag]TQ [agal]]

CSR’07-EKATERINBURG- 06/09/2007



1.1-INTRODUCTION- AUTOMATA

pPOp,

Sl T1 :CL1 agag]TQ [agal]]Sg [TQ [ag]TQ [agal]] —
Sg T2 :ag]TQ [agal]].

PODPo

S1|Th|arazas]|Tz]aza1]]52 (T2 as]| T2 |aza1]] —
Sl T2 :agal]]Sg [TQ [CL3]T2 [CLQCLlH.

POD3

S1|Th|arazas]|Tz]aza1]]52 (T2 as]| T2 |aza1]] —
S1|Th|azas]Tz]aza1]]52 (T2 as]|T2|aza1 ]
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Definition 2 (k-pdas) Letk > 1, let POP = {pop, |j € [k]}.
PUSH(I') = {push;(v)|y € I'",j € [k]}, and

TOPSYMS(T) =Tk — {e}.

A k-iferated pushdown aufomarfon over a terminal alphabet
Bisao6-fuple A= (Q, B,1,46, qo, Z9) Where

e () is afinite set of states, qo € ) denoting the inifial state,

e [' is a finite sef of pushdown-symbols,Z, € I' denofing the
initial symbol,

e the fransifion function é is @ map from
Q x (BU{e}) x TOPSYMS(T') info the set of finite subsets
of Q@ x (PUSH(I') U POP).
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1.1-INTRODUCTION- AUTOMATA

The automaton A is said deferministic iff, for every
gEQ,yel=r—{e},beB

Card(d(q,e,7)) < 1 and Card(6(q,b,7)) <1, (1
Card(d(q,e,v)) =1 = Card(d(q,b,v)) = 0. (2)

A is called sfrongly deterministic iff, for every
q € Q),},Erﬁk_{g}

> Card(6(g,b,7)) <1 (3)

be{e}uB
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Definition 3 (k-computable mapping) A mapping

f: A* — B* Is called k-computable iff there exists a sfrongly
deterministic k-pda A, over a pushdown-alphabet I', such
thatT' confains k — 1 symbols v1,7, ...,v.—1. The alphabet A is
a subsef of I', and for all w € A*:

(q0, f(w),mly2 .- [ye—1lw]].. -])FZ (90,¢,¢€).

One denotfes by S, (A*, B*) the set of k-computable
mappings from A* fo B*,

The particular case where Card(A) = Card(B) = 1 was studied
in (Fratani-Senizergues 2006).
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1.1-INTRODUCTION- AUTOMATA

Example 4 fibonnaci sequence.
Fn+2)=F(n+1)+ F(n), F(1)=F(0)=1.
Suppose A fulfils the rules:

Sile] —a b; Sale] —a ¢

Sl[FQ] — A Sl[Q]SQ[Q], SQ[FQ] — A Sl[Q]

Then we have
Sile] —.4 b= b,

S1[F] — 4 S1[e]S2[e] —3 be = b,
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Sl [Fn—l—Q]

—A

l
;*

Sl [Fn+1]S2 [Fn—l—l]
Si[F" TS [F™]
bFn+1 bFn

pin+2,
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1.1-INTRODUCTION- AUTOMATA

Example § Facforial sequence.
un+1)=(n+1)- -u(n), u(0)=1.Suppose A fulfils the rules:

Sle] —a by S[Ti[e]Q] —4 S[Q]; S[T2[e]Q] —a e
Then we have
S[Ty[e]] =2 b= b0,
S|T2[F 0] =2 (S[92)"

SIM[F™] =4 S[T[F T [F]
=% (S[[FM])™
= ()

= puntl)

CSR’07-EKATERINBURG- 06/09/2007 16



1.2-INTRODUCTION- RECURRENCES

Some references on recurrent sequences of infegers/words:
Linear recurrences: (J. Berstel and C. Reutenauer 88)

P-recurrences:(R.P Stanley 80), (M. Petkovsek, H.S. Wilf and D.

Zeilberger 96)

Sequences and finite automata:(J.P Allouche and J. Shallit
03)
L-systems: (L. Kari and G. Rozenberg and A. Salomaa 97)

CSR’07-EKATERINBURG- 06/09/2007

17



Definition 6 (N-rational formal power series) A mapping

f : A* — N is N-rational iff there is an homomorphism

M : A* — N4 gnd two vectors L in BY*4 and T in B**! such
that, for every w € A*

flw)=L-M(w)-T.

Definition 7 (Polynomial recurrent relations) Given a finite
index set I = [1,n] and a family of mappings f; : A* — N (for
1 € 1), we call system of polynomial recurrent relations a
system of the form

filaw) = Py o(fr(w), fa(w), ..., fo(w)) foralli e I,a € A,w € A*

where P; € N[ X1, Xo,..., X,].
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Definition 8 (catenative recurrent relations) Given a finite seft
I and a family of mappings indexed by I, f; : A* — B* (for

1 € 1), we call system of catenative recurrent relations over
the family (f;)icr a system of the form

l(i,a)
filaw) = H fa(i,a,j)(w) foralliecI,aec A,we A"
j=1

where {(a,i) € N,a(i,a,j) € I.

When Card(B) =1, f : A* — B* fulfils a system of caftenative
recurrent relations iff f is a rational series.
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Definition 9 (recurrent relations in M) Given a finite sef I and

a family of mappings indexed by I, f; : A* — M (fori € 1), we
call system of recurrent relations in M over the family (f;).cr. A
system of the form

l(i,a)
filaw) = H fatiap(w) forallic I,ac A,we A"
j=1

where ((a,i) € N, a(i,a,j) € I and the symbol [| stands for the
extension of the binary product in M fo an arbitrary finife
number of arguments.

The monoid (Hom/(C*,C*), o, 1d) will be of particular interest
for studying mappings of level k£ > 3.
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The following noftion turns out to be crucial for describing all
k-computable mappings as compaositions of simpler

mMmappings.

Definition 10 (Kari-Rozenberg-Salomaa 1997) Let

f: A* — B*., The mapping f is called a HDTOL sequence iff
fhere exists a finite alphabet C', a homomorphism

H: A* — Hom(C*,C*), an homomorhism h € Hom/(C*, B¥)
and a lefter ¢ € C such that, for every w € A*

flw) = h(H"(c)).

(here we denote by H" the image of w by H).
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Problem 1: Find characterisations of k-computable
sequences.

Problem 2: Solve the equality problem for k-computable
seguences. i.e. the following decision problem:

INPUT: two s-deterministic k-automata A, B.
QUESTION: Do these automata compute the same mapping
A* — B*?
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Theorem 11 (Fratani-Sénizergues 06)

O- Forevery f € Sp11. k > 1, and every infeger c € N,

the sequences Ef (the shiff of f), f + 5., belong 10 Syy1,
ifvn € N, f(n) > cthen f — 5 belongs 10 Sy41/

fhe sequence defined by 0 — ¢,n+ 1 — f(n) belongs fo Sk 1.
I- Forevery f,g € Sp11, k > 1, the sequence f + g belongs fo
Ski1.

2- Forevery f,g € Spi1. k> 2.f ©® g (the ordinary product),
belongs fo Si1 and for every f' € Si1o., f'9 belong to Sy_».

3- Forevery f € Sp11,9 € Sk, k> 2, f x g (the convolution
product) belongs 1o Sk 1.

4- Forevery g € Sk, k > 2, the sequence f defined by: f(0) =1
and f(n+1)=>""_, f(m) - g(n —m) (the convolution inverse
of1 — X x f) belongs fO Sy .
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5- For every k > 2 and for every system of recurrent equations
expressed by polynomials in Si4+1|X1, ..., X,]. with initial
conditions in N, every solufion belongs fO Sy 1.
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2.2-CLOSURE PROPERTIES-COMPOSITION

Theorem 12
Forevery f € Sx(A*,B*)g € S¢(B*,C*), k,l > 2, fog (the
sequence composition ) belongs fo Si¢_1(A*, C*).

Proved in (Fra-Sen06) in the case where
Card(A) = Card(B) = Card(C) = 1. But extension is
straighforward.
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3.1-DECOMPOSITION PROPERTIES-LEVEL 1

Theorem 13 The elements of S, (A*, B*) are exactly the
generalized sequential mappings from A* fo B*.
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3.2-DECOMPOSITION PROPERTIES-LEVEL 2

Theorem 14 (N. Marin 2007) Lef us consider a mapping

f: A* — B*. The following properties are equivalent:

I- f € So(A*, B¥)

2- There exists a finite family (f;)icp1,») Of mappings A* — B*
which fulfils a system of catenaftive recurrent relations and
such that f = f;

3- f is a HDTOL sequence.
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Theorem 15 Lef us consider a mapping f : A* — B*. The
following properties are equivalent:

I- f € S3(A*, B¥)

2- f is a composition of a DIOL sequence g : A* — C* by a
HDITOL sequence h : C* — B*,

Corollary 16 Let us consider a mapping f : A* — N. The
following properties are equivalent:

I- f € S3(A*,N)

2- { is composition of a DIOL sequence g : A* — C* by a
rational series h : C* — N,

3- There exists a finite family (f;):cp1,») Of mappings A* — N
fulfiling a system of polynomial recurrent relafions and such
that f = f;.
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3

Definition 17 LetS be a sef of mappings A* — N. We denofe
by D(S) the sef of mappings of the form:

flw) =g(w) — h(w) forallwe A",

for some mappings g, h € S. We denote by F(S) the set of
mappings of the form:

forallw e A*,

for some mappings f,q, f', ¢ € S.
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Using point 3 of corollary 16 we can prove the following

Theorem 18 The equality problem is decidable for sequences
in F(S3(A*,N)).

The method consists, in a way similar fo (Senizergues,
ICALP"99) or (Honkala, 2000), in reducing such an equality
problem to deciding whether some polynomial belongs to
the ideal generated by a finite set of other polynomials.
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3

Main ideas in the proof of theorem 15.
ldea 1: for every u € 2 — pds(T')

®(u) : (pSq) — H(Pisi%)

1=1

iff
uQlq =% | [(piSi[Qa:)-
i=1

If :

Tz g 3@ _] ,

]:1

then
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n (473

pS[u-v- Qg =4 [ ]](risS;10s:.5).

i=1j=1

O(u-v) =P(u) o ®(v).

Based on this observation: define, for w € I'*,

Family (H¥)rer should fulfill a compositional recurrence.
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3

push,: pS[T|w]lq — 4 p1 ST |w]T>|w]]q

O(Tw])(pSq) = (Th[w|T2|w])(p15q)

O(T|w])(pSq) = (2(T1|w]) o 2(T2|w]))(p15q)
l.e.
Hy (pSq) = (Hr, o Hy,)(pSq)
pushy: pS[Twllg =4 p1S1[T|w]]r - rS2[Tw]]q

Hy (pSq) = Hy (p1Sir) - Hy (rS2q)

Mixed recurrence rules .
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Let us make definifion of HY¥ correct.

Definition 19 (equivalences associated with a k-pda) Lef
A=(Q,B,T,9,q0, Zy) be a k-iferated pushdown aufomaron,
with k > 3. We define binary relations = 4 ; by:

I- for every w,w’ € k — pds(T'),

w=a1w & (Vp,q € Q,L(A,pwq) # 0 < L(A, pw'q) # 0)
2- forevery w,w’ € (k—1) — pds(I),
w= 4w < (VS e, Vo € (k—1) — pds(T), S[w-v] =41 S[w" - v])
3- for every w,w’ € (k — 2) — pds(I'),

w= 3w & (VI €T, Tw] =42 T[w'])
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3

Lemma 20 Lef A= (Q, B,T',9,q, Zy) be a k-iterafed
pushdown automarton, with k > 3.
I- Forevery j € {1,2,3},=4; Is a regular equivalence relation.

2- Forevery j € {1,2},=4 Is d congruence.

1- Each class is definable by a MSO formula & (w), over
(k—j7+1)—pds(I'). We then use the fact that the definable
subsets of £ — pds(I') are exactly the k-recognizable subsets
of k — pds(I") ((Fratani, PHD, 2005)).

2- Eqsy.
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3

Correct definition of H;":

W :={(pSlelq) | p,g € Q,S €T1,e €2 —pds(T')/ =42}

If W = (pS|elq) and

E(z W)
(pS[T H P3S4, [ 4
and
Vj € [L 4G, W) VE€ e L(piySijltlass) # 0 5
then
(i, W)
Slelq) — H Pi,jSi.51€]qi ;- 6)
j=1
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otherwise

(pSlelq) — (pSlelq).

(7)
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3

We obtain a recurrence of the form:

letT el',del1—pds(I')/ =3,a € T",w e 1—pds(I') and

W = pSlelq). There exists an integer £(i,a,d, W) € [1, 2] and for
every j € [1,£(¢,a,d, W)| there exist indices

a(i,a,d, W, 5),8(i,a,d,W,j) € T, words w; . q.w.; € %, letters
Vi.a.d,w,; € YW and an alphabetfic homomorphism

P; w.aw,; € Hom(W*, W*) such that

(i,a,d,W)
aw . Wi, a,d,W,j W ' _ Wi, a,d,W,j W _ ‘
wed=HM W)= |] H o 0 o a w0 H b S (Vi a,d,wig)
j=1
(8)

ldea 2: fransform this mixed recurrence into a compositional
recurrence
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3

Here is a mixed recurrence for f(n) := n!

®(n) := du.(n! x u); P(n):=Iu.(n X u)

®(n+1) = P(n)o®(n)
Pin+1) = P(n)+I
(0) = I
PO) = 7

where [ := \u.vw and Z := \u.0.
(®,P,1,Z € HOM({Fy}*,{F1}*)).
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3

LeT W = {Fl, FQ}

H2F1I—>F1F2; FQI—>€, H2,1!F1I—>F1; FQI—>F1

O(n): Fy — FM Fy— Fy; Py(n):=F, — F", Fy — F;.

Here is a compositional recurrence for n!

<I>1(n

P1 (n)oCI)l (n)
7T2’10P1 (n)oH(n)

I(n)
Z(n)
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3

By this kind of frick we obtain a recurrence of the form:

wed =
¢(i,a,d,W)

aw P . . . wi7a'7d7W7j.w 3 . wi7a'7d7W7L
HT p— w'b,a,d @) H ( H 017a’d’W,j O H(J{(’Z:,a,,d,W,j) O @Z,G,d,W)j @) Hﬁ(z,a,d7W
Wew  j=1

Owi,a,d-

Difficult point: is this compositional recurrence terminating ?

In fact no.

idea 3: new index i = (V,7) where V C W.
HY(W):=Hyr(W)iftW eV, H'W):=WIfWe¢V.

1

Termination proof is fechnical.
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3

Last technical point: eliminate the congruence = 4 3 over I'*,
in the compositional recurrence?

Solution: (standard direct) product of A (which computes the
recurrence) by B which computes the finite index
congruence.

Finally: we have proved that (1) = (2).

Converse: follows fromm composition theorem 12.
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3

Main idea in the proof of corollary 16.
Example: u(n) = F(F(n))
F(n):1,1,2,3,5,8,13,21,34,55,89, 144,233,377 . ..
u(n):1,1,2,3,8,34,377, . ..

EARRRG

so that

CSR’07-EKATERINBURG- 06/09/2007

43



Let us set e(n) fn) = b
g(n) h(n) 1 0

then

Since

which gives a polynomial recurrence system defining u(n).
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3.4-DECOMPOSITION PROPERTIES-LEVEL £ > 4

Theorem 21 Lef us consider a mapping f : A* — B*. The
following properties are equivalent:

I- f € Sp(A*, B*)

2- f is a composition of k — 1 HDTOL sequences

g :A*—=Cl,...,0.:C/; —=C7,...,g9k—1:C}_5, — B*.
Moreover the g1, ..., gr._o can be chosen fo be DIOL’s.
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Main idea in the proof of theorem 21.

Definition 22 (regular recurrent relations of order k) Letf us
consider a monoid (M, -, 1), a finite alphabet I, a finife sef I
and a family of mappings indexed by I, f; : k — pds(I') — M
(fori € 1). We call system of regular recurrent relations of
order k in M over the family (f;);cr. @ system of equations of
fhe form:

Viel,cek—pds(T')/ =,w €k —pds(I),
£(i,c)

(w 7é e & we C) = f’b(w) — H fa(i,c,j)(wi,c,j(w)) (]O)
j=1

where ((i,c) € N,a(i,c,j) € I,w;.; € PUSH(I') U POP and = is
a regular equivalence relation over k — pds(T').
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3.4-DECOMPOSITION PROPERTIES-LEVEL £ > 4

Definition of set of indices I and homomorphisms:

(as for level 3). The family (H");< s fulfils a sysfem of regular
recurrent relations of order k in Hom(W*, W*),

New difficulty: how fo eliminafe the equivalence = 4 5 over

(k —2) —pds(T") ?

Solution: product of A (which computes the recurrence) by B
which computes the finite index regular equivalence over

(k — 2) — pds(T") (Fratani 2005, PHD).
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4.1-PERSPECTIVES-AUTOMATA

P1: Study the equivalence problem for deterministic
automata of level 2,3.
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P2. Study the equivalence problem for strongly deterministic
automata of level 3

P3: Study the decision problem:
INPUT: one sequence u € D(Sg(A*,N)).
QUESTION: Do there exist a word w € A* such that u(w) = 07?

For k = 2,Card(A) = 1, known as the Pisot problem and open.

For k = 3,Card(A) > 1, undecidable.

P4. Study the decision problem:

INPUT: fwo sequences u,v € Si(A*,N).
QUESTION: Are they almost equal ?

l.e. Card{w € A" | u(w) # v(w)} < o?

For k = 2,Card(A) = 1, easily seen decidable.
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PS: Is S3(N, N) closed under convolufion ?
(frue for So (N, N) ).

P6: Study the closure properties of Si(N,N),S;(A*,N),
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