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0-SUBJECT
What is the subject of this talk?
Current work about:

Pushdown Automata of Level k ( k ≥ 0).
and their links with

Recurrent sequences of integers/words.
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0-SUBJECT
What are the results of this talk?

Theorem
Let us consider a mapping f : A∗ → B∗. The following
properties are equivalent:
1- f is computed by some pushdown automaton of level
k ≥ 2.
2- f is a composition of k − 1 HDT0L sequences
g1 : A∗ → C∗

1 , . . . , gi : C∗
i−1 → C∗

i , . . . , gk−1 : C∗
k−2 → B∗.

Moreover the g1, . . . , gk−2 can be chosen to be DT0L’s.
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0-SUBJECT
What are the results of this talk?
Corollary 1
Let us consider a mapping f : A∗ → N. The following
properties are equivalent:
1- f is computed by some pushdown automaton of level 3.
2- f is composition of a DT0L sequence g : A∗ → C∗ by a
rational series h : C∗ → N.
3- There exists a finite family (fi)i∈[1,n] of mappings A∗ → N

fulfilling a system of polynomial recurrent relations and such
that f = f1.

Corollary 2
The equality problem is decidable for sequences of rational
numbers computed by pushdown automata of level 3.
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1.1-INTRODUCTION- AUTOMATA

Some references on pushdown automata of level k:
Early works: [A. Aho JACM 68],[S. Greibach 70], [T. Ayashi 73],
[A. Maslov 74]
Complexity, hierarchy results: [W. Damm 82], [J. Engelfriet and
E.M. Schmidt 77]
Muchnik’s theorem: [Semenov 84], [Muchnik and Semenov
92], [Walukiewicz 02], [D. Berwanger and A. Blumensath 02]
Logical properties of k-dpda:[D. Caucal 02],[T. Knapik and D.
Niwinski and P. Urzyczyn 02], [A. Carayol and S. Wöhrle 03],
Links with sequences: [L. Lisovik and T. Karnaukh 03],[S. Fratani
and G. Sénizergues 06], [N. Marin 07].
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1.1-INTRODUCTION- AUTOMATA

Definition 1 (k-iterated pushdown store) Let Γ be a set. We
define inductively the set of k-iterated pushdown-stores over
Γ by:

0−pds(Γ) = {ε} (k+1)−pds(Γ) = (Γ[k−pds(Γ)])∗ it− pds(Γ) =
⋃

k≥0

k−pds(Γ).

The elementary operations that a k-pda can perform are:
- pop of level j (where 1 ≤ j ≤ k), which consists of popping
the leftmost letter of level j and all the structure which is
“above” this letter
- push of level j (where 1 ≤ j ≤ k), which consists of pushing a
new letter C (or word CC ′) in place of the leftmost letter D of
level j and copying above this new letter C (or letters
C,C ′),all the structure which was “above” the letter D.
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1.1-INTRODUCTION- AUTOMATA

Examples:
ω := S1[T1[a1a2a3]T2[a2a1]]S2[T2[a3]T2[a2a1]]

push1(SS′)
7→

S[T1[a1a2a3]T2[a2a1]]S
′[T1[a1a2a3]T2[a2a1]]S2[T2[a3]T2[a2a1]].

S1[T1[a1a2a3]T2[a2a1]]S2[T2[a3]T2[a2a1]]
push2(TT ′)

7→

S1[T [a1a2a3]T
′[a1a2a3]T2[a2a1]]S

′[T1[a1a2a3]T2[a2a1]]S2[T2[a3]T2[a2a1]].

S1[T1[a1a2a3]T2[a2a1]]S2[T2[a3]T2[a2a1]]
push3(aa′)

7→

S1[T1[aa
′a2a3]T2[a2a1]]S2[T2[a3]T2[a2a1]]
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1.1-INTRODUCTION- AUTOMATA

S1[T1[a1a2a3]T2[a2a1]]S2[T2[a3]T2[a2a1]]
pop17→

S2[T2[a3]T2[a2a1]].

S1[T1[a1a2a3]T2[a2a1]]S2[T2[a3]T2[a2a1]]
pop27→

S1[T2[a2a1]]S2[T2[a3]T2[a2a1]].

S1[T1[a1a2a3]T2[a2a1]]S2[T2[a3]T2[a2a1]]
pop37→

S1[T1[a2a3]T2[a2a1]]S2[T2[a3]T2[a2a1]]
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1.1-INTRODUCTION- AUTOMATA

Definition 2 (k-pdas) Let k ≥ 1 , let POP = {popj |j ∈ [k]},
PUSH(Γ) = {pushj(γ)|γ ∈ Γ+, j ∈ [k]}, and
TOPSYMS(Γ) = Γ≤k − {ε}.
A k-iterated pushdown automaton over a terminal alphabet
B is a 6-tuple A = (Q,B,Γ, δ, q0, Z0) where

• Q is a finite set of states, q0 ∈ Q denoting the initial state,

• Γ is a finite set of pushdown-symbols,Z0 ∈ Γ denoting the
initial symbol,

• the transition function δ is a map from
Q× (B ∪ {ε}) × TOPSYMS(Γ) into the set of finite subsets
of Q× (PUSH(Γ) ∪ POP ).
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1.1-INTRODUCTION- AUTOMATA

The automaton A is said deterministic iff, for every
q ∈ Q, γ ∈ Γ≤k − {ε}, b ∈ B

Card(δ(q, ε, γ)) ≤ 1 and Card(δ(q, b, γ)) ≤ 1, (1)

Card(δ(q, ε, γ)) = 1 ⇒ Card(δ(q, b, γ)) = 0. (2)

A is called strongly deterministic iff, for every
q ∈ Q, γ ∈ Γ≤k − {ε}

∑

b̄∈{ε}∪B

Card(δ(q, b̄, γ)) ≤ 1 (3)
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1.1-INTRODUCTION- AUTOMATA

Definition 3 (k-computable mapping) A mapping
f : A∗ 7→ B∗ is called k-computable iff there exists a strongly
deterministic k-pda A, over a pushdown-alphabet Γ, such
that Γ contains k − 1 symbols γ1, γ2, . . . , γk−1, the alphabet A is
a subset of Γk and for all w ∈ A∗:

(q0, f(w), γ1[γ2 . . . [γk−1[w]] . . .])`∗
A (q0, ε, ε).

One denotes by Sk(A∗, B∗) the set of k-computable
mappings from A∗ to B∗.

The particular case where Card(A) = Card(B) = 1 was studied
in [Fratani-Senizergues 2006].
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1.1-INTRODUCTION- AUTOMATA

Example 4 Fibonnaci sequence.
F (n+ 2) = F (n+ 1) + F (n), F (1) = F (0) = 1.

Suppose A fulfils the rules:

S1[ε] →A b; S2[ε] →A ε;

S1[FΩ] →A S1[Ω]S2[Ω]; S2[FΩ] →A S1[Ω].

Then we have
S1[ε] →A b = bF0 .

S1[F ] →A S1[ε]S2[ε] →
2
A bε = bF1 .
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S1[F
n+2] →A S1[F

n+1]S2[F
n+1]

→A S1[F
n+1]S1[F

n]

→∗
A bFn+1bFn

= bFn+2 .
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1.1-INTRODUCTION- AUTOMATA

Example 5 Factorial sequence.
u(n+ 1) = (n+ 1) · u(n), u(0) = 1. Suppose A fulfils the rules:

S̄[ε] →A b; S[T1[ε]Ω] →A S̄[Ω]; S[T2[ε]Ω] →A ε

S[T2[FΩ′]Ω] →A S[Ω]S[T2[Ω
′]Ω]; S[T1[FΩ′]Ω] →A S[T2[FΩ′]T1[Ω

′]Ω]

Then we have
S[T1[ε]] →

2
A b = bu(0).

S[T2[F
n]Ω] →∗

A (S[Ω])n

S[T1[F
n+1]] →∗

A S[T2[F
n+1]T1[F

n]]

→∗
A (S[T1[F

n]])n+1

→∗
A (bu(n))n+1

= bu(n+1).
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1.2-INTRODUCTION- RECURRENCES

Some references on recurrent sequences of integers/words:
Linear recurrences: [J. Berstel and C. Reutenauer 88]
P-recurrences:[R.P. Stanley 80], [M. Petkovšek, H.S. Wilf and D.
Zeilberger 96]
Sequences and finite automata:[J.P. Allouche and J. Shallit
03]
L-systems:[L. Kari and G. Rozenberg and A. Salomaa 97]
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1.2-INTRODUCTION- RECURRENCES

Definition 6 (N-rational formal power series) A mapping
f : A∗ → N is N-rational iff there is an homomorphism
M : A∗ → N

d×d and two vectors L in B
1×d and T in B

d×1 such
that, for every w ∈ A∗

f(w) = L ·M(w) · T.

Definition 7 (Polynomial recurrent relations) Given a finite
index set I = [1, n] and a family of mappings fi : A∗ → N (for
i ∈ I), we call system of polynomial recurrent relations a
system of the form

fi(aw) = Pi,a(f1(w), f2(w), . . . , fn(w)) for all i ∈ I, a ∈ A,w ∈ A∗

where Pi ∈ N[X1, X2, . . . , Xn].
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1.2-INTRODUCTION- RECURRENCES

Definition 8 (catenative recurrent relations) Given a finite set
I and a family of mappings indexed by I, fi : A∗ → B∗ (for
i ∈ I), we call system of catenative recurrent relations over
the family (fi)i∈I a system of the form

fi(aw) =

`(i,a)
∏

j=1

fα(i,a,j)(w) for all i ∈ I, a ∈ A,w ∈ A∗

where `(a, i) ∈ N, α(i, a, j) ∈ I.

When Card(B) = 1, f : A∗ → B∗ fulfils a system of catenative
recurrent relations iff f is a rational series.
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1.2-INTRODUCTION- RECURRENCES

Definition 9 (recurrent relations in M) Given a finite set I and
a family of mappings indexed by I, fi : A∗ →M (for i ∈ I), we
call system of recurrent relations in M over the family (fi)i∈I , a
system of the form

fi(aw) =

`(i,a)
∏

j=1

fα(i,a,j)(w) for all i ∈ I, a ∈ A,w ∈ A∗

where `(a, i) ∈ N, α(i, a, j) ∈ I and the symbol
∏

stands for the
extension of the binary product in M to an arbitrary finite
number of arguments.

The monoid (Hom(C∗, C∗), ◦, Id) will be of particular interest
for studying mappings of level k ≥ 3.
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1.2-INTRODUCTION- RECURRENCES

The following notion turns out to be crucial for describing all
k-computable mappings as compositions of simpler
mappings.

Definition 10 (Kari-Rozenberg-Salomaa 1997) Let
f : A∗ → B∗. The mapping f is called a HDT0L sequence iff
there exists a finite alphabet C, a homomorphism
H : A∗ → Hom(C∗, C∗), an homomorhism h ∈ Hom(C∗, B∗)

and a letter c ∈ C such that, for every w ∈ A∗

f(w) = h(Hw(c)).

(here we denote by Hw the image of w by H).
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1.3-INTRODUCTION- PROBLEMS

Problem 1: Find characterisations of k-computable
sequences.
Problem 2: Solve the equality problem for k-computable
sequences. i.e. the following decision problem:

INPUT: two s-deterministic k-automata A,B.
QUESTION: Do these automata compute the same mapping
A∗ → B∗ ?
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2.1-CLOSURE PROPERTIES-RECURRENCES

Theorem 11 (Fratani-Sénizergues 06)
0- For every f ∈ Sk+1, k ≥ 1, and every integer c ∈ N,
the sequences Ef (the shift of f), f + c

1−X
, belong to Sk+1;

if ∀n ∈ N, f(n) ≥ c then f − c
1−X

belongs to Sk+1;
the sequence defined by 0 7→ c, n+ 1 7→ f(n) belongs to Sk+1.
1- For every f, g ∈ Sk+1, k ≥ 1, the sequence f + g belongs to
Sk+1.
2- For every f, g ∈ Sk+1, k ≥ 2,f � g (the ordinary product),
belongs to Sk+1 and for every f ′ ∈ Sk+2, f ′g belong to Sk+2.
3- For every f ∈ Sk+1, g ∈ Sk, k ≥ 2, f × g (the convolution
product) belongs to Sk+1.
4- For every g ∈ Sk, k ≥ 2, the sequence f defined by: f(0) = 1

and f(n+ 1) =
∑n

m=0 f(m) · g(n−m) (the convolution inverse
of 1 −X × f) belongs to Sk+1.
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5- For every k ≥ 2 and for every system of recurrent equations
expressed by polynomials in Sk+1[X1, . . . , Xp], with initial
conditions in N, every solution belongs to Sk+1.
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2.2-CLOSURE PROPERTIES-COMPOSITION

Theorem 12
For every f ∈ Sk(A∗, B∗)g ∈ S`(B

∗, C∗), k, l ≥ 2, f◦g (the
sequence composition ) belongs to Sk+`−1(A

∗, C∗).

Proved in [Fra-Sen06] in the case where
Card(A) = Card(B) = Card(C) = 1. But extension is
straighforward.
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3.1-DECOMPOSITION PROPERTIES-LEVEL 1

Theorem 13 The elements of S1(A
∗, B∗) are exactly the

generalized sequential mappings from A∗ to B∗.
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3.2-DECOMPOSITION PROPERTIES-LEVEL 2

Theorem 14 (N. Marin 2007) Let us consider a mapping
f : A∗ → B∗. The following properties are equivalent:
1- f ∈ S2(A

∗, B∗)

2- There exists a finite family (fi)i∈[1,n] of mappings A∗ → B∗

which fulfils a system of catenative recurrent relations and
such that f = f1

3- f is a HDT0L sequence.
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3

Theorem 15 Let us consider a mapping f : A∗ → B∗. The
following properties are equivalent:
1- f ∈ S3(A

∗, B∗)

2- f is a composition of a DT0L sequence g : A∗ → C∗ by a
HDT0L sequence h : C∗ → B∗.

Corollary 16 Let us consider a mapping f : A∗ → N. The
following properties are equivalent:
1- f ∈ S3(A

∗,N)

2- f is composition of a DT0L sequence g : A∗ → C∗ by a
rational series h : C∗ → N.
3- There exists a finite family (fi)i∈[1,n] of mappings A∗ → N

fulfilling a system of polynomial recurrent relations and such
that f = f1.
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3

Definition 17 Let S be a set of mappings A∗ → N. We denote
by D(S) the set of mappings of the form:

f(w) = g(w) − h(w) for all w ∈ A∗,

for some mappings g, h ∈ S. We denote by F(S) the set of
mappings of the form:

f(w) =
g(w) − h(w)

f ′(w) − g′(w)
for all w ∈ A∗,

for some mappings f, g, f ′, g′ ∈ S.
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3
Using point 3 of corollary 16 we can prove the following

Theorem 18 The equality problem is decidable for sequences
in F(S3(A

∗,N)).

The method consists, in a way similar to [Senizergues,
ICALP’99] or [Honkala, 2000], in reducing such an equality
problem to deciding whether some polynomial belongs to
the ideal generated by a finite set of other polynomials.
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3
Main ideas in the proof of theorem 15.
Idea 1: for every u ∈ 2 − pds(Γ)

Φ(u) : (pSq) 7→
n

∏

i=1

(piSiqi)

iff

pS[uΩ]q →∗
A

n
∏

i=1

(piSi[Ω]qi).

If :

piS[vΩ]qi →
∗
A

ni
∏

j=1

(ri,jS
′
i,j [Ω]si,j),

then
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pS[u · v · Ω]q →∗
A

n
∏

i=1

ni
∏

j=1

(ri,jS
′
i,j [Ω]si,j).

i.e.
Φ(u · v) = Φ(u) ◦ Φ(v).

Based on this observation: define, for w ∈ Γ∗,

Hw
T := Φ(T [w]).

Family (Hw
T )T∈Γ should fulfill a compositional recurrence.
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3
push2: pS[T [w]]q →A p1S[T1[w]T2[w]]q

Φ(T [w])(pSq) = Φ(T1[w]T2[w])(p1Sq)

Φ(T [w])(pSq) = (Φ(T1[w]) ◦ Φ(T2[w]))(p1Sq)

i.e.
Hw

T (pSq) = (Hw
T1

◦Hw
T2

)(pSq)

push1: pS[T [w]]q →A p1S1[T [w]]r · rS2[T [w]]q

Hw
T (pSq) = Hw

T (p1S1r) ·H
w
T (rS2q)

Mixed recurrence rules .
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3
Let us make definition of Hw

T correct.

Definition 19 (equivalences associated with a k-pda) Let
A = (Q,B,Γ, δ, q0, Z0) be a k-iterated pushdown automaton,
with k ≥ 3. We define binary relations ≡A,i by:
1- for every w,w′ ∈ k − pds(Γ),

w≡A,1w
′ ⇔ (∀p, q ∈ Q,L(A, pwq) 6= ∅ ⇔ L(A, pw′q) 6= ∅)

2- for every w,w′ ∈ (k − 1) − pds(Γ),

w≡A,2w
′ ⇔ (∀S ∈ Γ, ∀v ∈ (k − 1) − pds(Γ), S[w · v] ≡A,1 S[w′ · v])

3- for every w,w′ ∈ (k − 2) − pds(Γ),

w≡A,3w
′ ⇔ (∀T ∈ Γ, T [w] ≡A,2 T [w′])
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3

Lemma 20 Let A = (Q,B,Γ, δ, q0, Z0) be a k-iterated
pushdown automaton, with k ≥ 3.
1- For every j ∈ {1, 2, 3},≡A,j is a regular equivalence relation.
2- For every j ∈ {1, 2},≡A,j is a congruence.

1- Each class is definable by a MSO formula Φ(w), over
(k − j + 1) − pds(Γ). We then use the fact that the definable
subsets of k − pds(Γ) are exactly the k-recognizable subsets
of k − pds(Γ) ([Fratani, PHD, 2005]).
2- Easy.

CSR’07-EKATERINBURG- 06/09/2007 35



3.3-DECOMPOSITION PROPERTIES-LEVEL 3
Correct definition of Hw

t :

W := {(pS[e]q) | p, q ∈ Q,S ∈ Γ1, e ∈ 2 − pds(Γ)/ ≡A,2}.

If W = (pS[e]q) and

(pS[T [w]Ω]q) →+
A

`(i,W )
∏

j=1

pi,jSi,j [Ω]qi,j (4)

and
∀j ∈ [1, `(i,W )], ∀t ∈ e L(pi,jSi,j [t]qi,j) 6= ∅ (5)

then

(pS[e]q) 7→

`(i,W )
∏

j=1

pi,jSi,j[e]qi,j . (6)
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otherwise
(pS[e]q) 7→ (pS[e]q). (7)
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3
We obtain a recurrence of the form:
Let T ∈ Γ , d ∈ 1 − pds(Γ)/ ≡3, a ∈ Γ, w ∈ 1 − pds(Γ) and
W = pS[e]q). There exists an integer `(i, a, d,W ) ∈ [1, 2] and for
every j ∈ [1, `(i, a, d,W )] there exist indices
α(i, a, d,W, j), β(i, a, d,W, j) ∈ Γ, words ωi,a,d,W,j ∈ Γ≤2 , letters
Vi,a,d,W,j ∈ W and an alphabetic homomorphism
Φi,a,d,W,j ∈ Hom(W∗,W∗) such that

w ∈ d⇒ Haw
i (W ) =

`(i,a,d,W )
∏

j=1

H
ωi,a,d,W,j ·w

α(i,a,d,W,j)◦Φi,a,d,W,j◦H
ωi,a,d,W,j ·w

β(i,a,d,W,j)(Vi,a,d,W,j)

(8)

Idea 2: transform this mixed recurrence into a compositional
recurrence
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3
Here is a mixed recurrence for f(n) := n!

Φ(n) := λu.(n! × u); P (n) := λu.(n× u)

Φ(n+ 1) = P (n)◦Φ(n)

P (n+ 1) = P (n)+I

Φ(0) = I

P (0) = Z

where I := λu.u and Z := λu.0.
(Φ, P, I,Z ∈ HOM({F1}

∗, {F1}
∗)).

f(n) = Φ(n)(1).
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3
Let W := {F1, F2}.

H : F1 7→ F1F2; F2 7→ ε, Π2,1 : F1 7→ F1; F2 7→ F1

Φ1(n) : F1 7→ Fn!
1 , F2 7→ F2; P1(n) := F1 7→ Fn

1 , F2 7→ F2.

Here is a compositional recurrence for n!

Φ1(n+ 1) = P1(n)◦Φ1(n)

P1(n+ 1) = π2,1◦P1(n)◦H(n)

Φ1(0) = I(n)

P1(0) = Z(n)

CSR’07-EKATERINBURG- 06/09/2007 40



3.3-DECOMPOSITION PROPERTIES-LEVEL 3
By this kind of trick we obtain a recurrence of the form:

w ∈ d ⇒

Haw
T = ψi,a,d ◦

∏

W∈W

(

`(i,a,d,W )
∏

j=1

θi,a,d,W,j ◦H
ωi,a,d,W,j ·w

α(i,a,d,W,j) ◦ Φi,a,d,W,j ◦H
ωi,a,d,W,j ·w

β(i,a,d,W,j) ◦ θ̂i,a,d,W,j)

◦ψ̂i,a,d. (9)

Difficult point: is this compositional recurrence terminating ?
In fact no.
idea 3: new index i = (V, T ) where V ⊆ W.

Hw
i (W ) := HT (W ) if W ∈ V, Hw

i (W ) := W if W /∈ V.

Termination proof is technical.
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3
Last technical point: eliminate the congruence ≡A,3 over Γ∗,
in the compositional recurrence?
Solution: (standard direct) product of A (which computes the
recurrence) by B which computes the finite index
congruence.
Finally: we have proved that (1) ⇒ (2).
Converse: follows from composition theorem 12.
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3.3-DECOMPOSITION PROPERTIES-LEVEL 3
Main idea in the proof of corollary 16.
Example: u(n) = F (F (n))

F (n) : 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 . . .

u(n) : 1, 1, 2, 3, 8, 34, 377, . . .





F (n+ 1)

F (n)



 =





1 1

1 0





n

·





1

1





so that




F (F (n) + 1))

u(n)



 =





1 1

1 0





F (n)

·





1

1




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Let us set





e(n) f(n)

g(n) h(n)



 :=





1 1

1 0





F (n)

then
u(n) = g(n)

Since




1 1

1 0





F (n+1)

=





1 1

1 0





F (n)

·





1 1

1 0





F (n−1)

we obtain the relation:




e(n+ 1) f(n+ 1)

g(n+ 1) h(n+ 1)



 =





e(n) f(n)

g(n) h(n)



·





e(n− 1) f(n− 1)

g(n− 1) h(n− 1)





which gives a polynomial recurrence system defining u(n).
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3.4-DECOMPOSITION PROPERTIES-LEVEL k ≥ 4

Theorem 21 Let us consider a mapping f : A∗ → B∗. The
following properties are equivalent:
1- f ∈ Sk(A∗, B∗)

2- f is a composition of k − 1 HDT0L sequences
g1 : A∗ → C∗

1 , . . . , gi : C∗
i−1 → C∗

i , . . . , gk−1 : C∗
k−2 → B∗.

Moreover the g1, . . . , gk−2 can be chosen to be DT0L’s.

CSR’07-EKATERINBURG- 06/09/2007 45



3.4-DECOMPOSITION PROPERTIES-LEVEL k ≥ 4

Main idea in the proof of theorem 21.

Definition 22 (regular recurrent relations of order k) Let us
consider a monoid (M, ·, 1), a finite alphabet Γ, a finite set I
and a family of mappings indexed by I, fi : k − pds(Γ) →M

(for i ∈ I). We call system of regular recurrent relations of
order k in M over the family (fi)i∈I , a system of equations of
the form:

∀i ∈ I, c ∈ k − pds(Γ)/ ≡, w ∈ k − pds(Γ),

(w 6= ε & w ∈ c) ⇒ fi(w) =

`(i,c)
∏

j=1

fα(i,c,j)(ωi,c,j(w)) (10)

where `(i, c) ∈ N, α(i, c, j) ∈ I, ωi,c,j ∈ PUSH(Γ) ∪ POP and ≡ is
a regular equivalence relation over k − pds(Γ).
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3.4-DECOMPOSITION PROPERTIES-LEVEL k ≥ 4

Definition of set of indices I and homomorphisms:

Hw
i : Ŵ∗ → Ŵ∗

(as for level 3). The family (Hw
i )i∈I fulfils a system of regular

recurrent relations of order k in Hom(Ŵ∗, Ŵ∗).
New difficulty: how to eliminate the equivalence ≡A,3 over
(k − 2) − pds(Γ) ?
Solution: product of A (which computes the recurrence) by B

which computes the finite index regular equivalence over
(k − 2) − pds(Γ) [Fratani 2005, PHD].
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4.1-PERSPECTIVES-AUTOMATA

P1: Study the equivalence problem for deterministic
automata of level 2,3.
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4.2-PERSPECTIVES-RECURRENCES

P2: Study the equivalence problem for strongly deterministic
automata of level 3

P3: Study the decision problem:
INPUT: one sequence u ∈ D(Sk(A∗,N)).
QUESTION: Do there exist a word w ∈ A∗ such that u(w) = 0?
For k = 2,Card(A) = 1, known as the Pisot problem and open.
For k = 3,Card(A) > 1, undecidable.

P4: Study the decision problem:
INPUT: two sequences u, v ∈ Sk(A∗,N).
QUESTION: Are they almost equal ?
i.e. Card{w ∈ A∗ | u(w) 6= v(w)} <∞?

For k = 2,Card(A) = 1, easily seen decidable.
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P5: Is S3(N,N) closed under convolution ?
(true for S2(N,N) ).

P6: Study the closure properties of Sk(N,N),Sk(A∗,N),
D(Sk(N,N)),F(Sk(N,N)), ...
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