Sequences of level $1,2,3, \ldots, k, \ldots$

Géraud Sénizergues

LaBRI and University of Bordeaux 1

URL:http://dept-info.labri.u-bordeaux.fr/~ges

O-SUBJECT

What is the subject of this talk?
Current work about:

> Pushdown Automata of Level $k(k \geq 0)$. and their links with
> Recurrent sequences of integers/words.

O-SUBJECT

What are the results of this talk?

Theorem

Let us consider a mapping $f: A^{*} \rightarrow B^{*}$. The following properties are equivalent:
1- f is computed by some pushdown automaton of level
$k \geq 2$.
2- f is a composition of $k-1$ HDTOL sequences
$g_{1}: A^{*} \rightarrow C_{1}^{*}, \ldots, g_{i}: C_{i-1}^{*} \rightarrow C_{i}^{*}, \ldots, g_{k-1}: C_{k-2}^{*} \rightarrow B^{*}$.
Moreover the g_{1}, \ldots, g_{k-2} can be chosen to be DTOL's.

O-SUBJECT

What are the results of this talk?

Corollary 1

Let us consider a mapping $f: A^{*} \rightarrow \mathbb{N}$. The following properties are equivalent:
$1-f$ is computed by some pushdown automaton of level 3.
$2-f$ is composition of a DTOL sequence $g: A^{*} \rightarrow C^{*}$ by a rational series $h: C^{*} \rightarrow \mathbb{N}$.
3 - There exists a finite family $\left(f_{i}\right)_{i \in[1, n]}$ of mappings $A^{*} \rightarrow \mathbb{N}$
fulfilling a system of polynomial recurrent relations and such that $f=f_{1}$.

Corollary 2

The equality problem is decidable for sequences of rational numbers computed by pushdown automata of level 3.

PLAN

O SUBJECT

1 INTRODUCTION
1.1 Automata
1.2 Recurrences
1.3 Problems

2 CLOSURE PROPERTIES
2.1 Recurrences
2.2 Composition

3 DECOMPOSITION PROPERTIES
3.1 Level 1
3.2 Level 2
3.3 Level 3
3.4 Level $k \geq 4$

4 PERSPECTIVES
4.1 Automata
4.2 Recurrences

1.1-INTRODUCTION- Automata

Some references on pushdown automata of level k :
Early works: (A. Aho JACM 68),(S. Greibach 70), (T. Ayashi 73),
(A. Maslov 74)

Complexity, hierarchy results: (W. Damm 82), (J. Engelfriet and E.M. Schmidt 77)

Muchnik's theorem: (Semenov 84), (Muchnik and Semenov 92), (Walukiewicz 02), (D. Berwanger and A. Blumensath 02) Logical properties of k-dpda:(D. Caucal 02),(T. Knapik and D. Niwinski and P. Urzyczyn 02), (A. Carayol and S. Wöhrle 03), Links with sequences: (L. Lisovik and T. Karnaukh 03),(S. Fratani and G. Sénizergues 06), (N. Marin 07).

1.1-INTRODUCTION- Automata

Definition 1 (k-iterated pushdown store) Let Γ be a set. We define inductively the set of k-iterated pushdown-stores over Γ by:
$0-\operatorname{pds}(\Gamma)=\{\varepsilon\}(k+1)-\operatorname{pds}(\Gamma)=(\Gamma[k-\operatorname{pds}(\Gamma)])^{*} \quad$ it $-\operatorname{pds}(\Gamma)=\bigcup_{k \geq 0} k-\operatorname{pds}(\Gamma)$.
The elementary operations that a k-pda can perform are:

- pop of level j (where $1 \leq j \leq k$), which consists of popping the leftmost letter of level j and all the structure which is "above" this letter
- push of level j (where $1 \leq j \leq k$), which consists of pushing a new letter C (or word $C C^{\prime}$) in place of the leftmost letter D of level j and copying above this new letter C (or letters C, C^{\prime}),all the structure which was "above" the letter D.

1.1-INTRODUCTION- Automata

Examples:

$$
\begin{aligned}
& \omega:=S_{1}\left[T_{1}\left[a_{1} a_{2} a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] S_{2}\left[T_{2}\left[a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] \stackrel{\operatorname{push}_{1}\left(S S^{\prime}\right)}{\longmapsto} \\
& S\left[T_{1}\left[a_{1} a_{2} a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] S^{\prime}\left[T_{1}\left[a_{1} a_{2} a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] S_{2}\left[T_{2}\left[a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] . \\
& S_{1}\left[T_{1}\left[a_{1} a_{2} a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] S_{2}\left[T_{2}\left[a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] \stackrel{\operatorname{push}_{2}\left(T T^{\prime}\right)}{\longrightarrow} \\
& S_{1}\left[T\left[a_{1} a_{2} a_{3}\right] T^{\prime}\left[a_{1} a_{2} a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] S^{\prime}\left[T_{1}\left[a_{1} a_{2} a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] S_{2}\left[T_{2}\left[a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] . \\
& S_{1}\left[T_{1}\left[a_{1} a_{2} a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] S_{2}\left[T_{2}\left[a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] \stackrel{\operatorname{push}_{3}\left(a a^{\prime}\right)}{\longrightarrow} \\
& S_{1}\left[T_{1}\left[a a^{\prime} a_{2} a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] S_{2}\left[T_{2}\left[a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right]
\end{aligned}
$$

1.1-INTRODUCTION- Automata

$S_{1}\left[T_{1}\left[a_{1} a_{2} a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] S_{2}\left[T_{2}\left[a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] \stackrel{\mathrm{pop}_{1}}{\mapsto}$
$S_{2}\left[T_{2}\left[a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right]$.
$S_{1}\left[T_{1}\left[a_{1} a_{2} a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] S_{2}\left[T_{2}\left[a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] \stackrel{\text { pop }_{2}}{\mapsto}$
$S_{1}\left[T_{2}\left[a_{2} a_{1}\right]\right] S_{2}\left[T_{2}\left[a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right]$.
$S_{1}\left[T_{1}\left[a_{1} a_{2} a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] S_{2}\left[T_{2}\left[a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] \stackrel{\text { pop }_{3}}{\mapsto}$
$S_{1}\left[T_{1}\left[a_{2} a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right] S_{2}\left[T_{2}\left[a_{3}\right] T_{2}\left[a_{2} a_{1}\right]\right]$

1.1-INTRODUCTION- Automata

Definition $2\left(k\right.$-pdas) Let $k \geq 1$, let $P O P=\left\{\operatorname{pop}_{j} \mid j \in[k]\right\}$,
$\operatorname{PUSH}(\Gamma)=\left\{\operatorname{push}_{j}(\gamma) \mid \gamma \in \Gamma^{+}, j \in[k]\right\}$, and
$\operatorname{TOPSYMS}(\Gamma)=\Gamma^{\leq k}-\{\varepsilon\}$.
A k-iterated pushdown automaton over a terminal alphabet B is a b-tuple $\mathcal{A}=\left(Q, B, \Gamma, \delta, q_{0}, Z_{0}\right)$ where

- Q is a finite set of states, $q_{0} \in Q$ denoting the initial state,
- Γ is a finite set of pushdown-symbols, $Z_{0} \in \Gamma$ denoting the initial symbol,
- the transition function δ is a map from $Q \times(B \cup\{\varepsilon\}) \times T O P S Y M S(\Gamma)$ into the set of finite subsets of $Q \times(P U S H(\Gamma) \cup P O P)$.

1.1-INTRODUCTION- Automata

The automaton \mathcal{A} is said deterministic iff, for every
$q \in Q, \gamma \in \Gamma^{\leq k}-\{\varepsilon\}, b \in B$
$\operatorname{Card}(\delta(q, \varepsilon, \gamma)) \leq 1$ and $\operatorname{Card}(\delta(q, b, \gamma)) \leq 1$,
$\operatorname{Card}(\delta(q, \varepsilon, \gamma))=1 \Rightarrow \operatorname{Card}(\delta(q, b, \gamma))=0$.
\mathcal{A} is called strongly deterministic iff, for every
$q \in Q, \gamma \in \Gamma^{\leq k}-\{\varepsilon\}$

$$
\begin{equation*}
\sum_{\bar{b} \in\{\varepsilon\} \cup B} \operatorname{Card}(\delta(q, \bar{b}, \gamma)) \leq 1 \tag{3}
\end{equation*}
$$

1.1-INTRODUCTION- Automata

Definition 3 (k-computable mapping) A mapping
$f: A^{*} \mapsto B^{*}$ is called k-computable iff there exists a strongly deterministic k-pda \mathcal{A}, over a pushdown-alphabet Γ, such that Γ contains $k-1$ symbols $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k-1}$, the alphabet A is a subset of Γ_{k} and for all $w \in A^{*}$:

$$
\left(q_{0}, f(w), \gamma_{1}\left[\gamma_{2} \ldots\left[\gamma_{k-1}[w]\right] \ldots\right]\right) \vdash_{\mathcal{A}}^{*}\left(q_{0}, \varepsilon, \varepsilon\right) .
$$

One denotes by $\mathbb{S}_{k}\left(A^{*}, B^{*}\right)$ the set of k-computable mappings from A^{*} to B^{*}.

The particular case where $\operatorname{Card}(A)=\operatorname{Card}(B)=1$ was studied in (Fratani-Senizergues 2006).

1.1-INTRODUCTION- Automata

Example 4 Fibonnaci sequence.
$F(n+2)=F(n+1)+F(n), \quad F(1)=F(0)=1$.
Suppose \mathcal{A} fulfils the rules:

$$
\begin{gathered}
S_{1}[\varepsilon] \rightarrow_{\mathcal{A}} b ; \quad S_{2}[\varepsilon] \rightarrow_{\mathcal{A}} \varepsilon ; \\
S_{1}[F \Omega] \rightarrow_{\mathcal{A}} S_{1}[\Omega] S_{2}[\Omega] ; \quad S_{2}[F \Omega] \rightarrow_{\mathcal{A}} S_{1}[\Omega] .
\end{gathered}
$$

Then we have

$$
\begin{gathered}
S_{1}[\varepsilon] \rightarrow_{\mathcal{A}} b=b^{F_{0}} . \\
S_{1}[F] \rightarrow_{\mathcal{A}} S_{1}[\varepsilon] S_{2}[\varepsilon] \rightarrow_{\mathcal{A}}^{2} b \varepsilon=b^{F_{1}} .
\end{gathered}
$$

$$
\begin{array}{rll}
S_{1}\left[F^{n+2}\right] & \rightarrow \mathcal{A} & S_{1}\left[F^{n+1}\right] S_{2}\left[F^{n+1}\right] \\
& \rightarrow \mathcal{A} & S_{1}\left[F^{n+1}\right] S_{1}\left[F^{n}\right] \\
& \rightarrow_{\mathcal{A}}^{*} & b^{F_{n+1}} b^{F_{n}} \\
& =b^{F_{n+2}}
\end{array}
$$

1.1-INTRODUCTION- Automata

Example 5 Factorial sequence.
$u(n+1)=(n+1) \cdot u(n), u(0)=1$. Suppose \mathcal{A} fulfils the rules:

$$
\begin{gathered}
\bar{S}[\varepsilon] \rightarrow_{\mathcal{A}} b ; \quad S\left[T_{1}[\varepsilon] \Omega\right] \rightarrow_{\mathcal{A}} \bar{S}[\Omega] ; \quad S\left[T_{2}[\varepsilon] \Omega\right] \rightarrow_{\mathcal{A}} \varepsilon \\
S\left[T_{2}\left[F \Omega^{\prime}\right] \Omega\right] \rightarrow_{\mathcal{A}} S[\Omega] S\left[T_{2}\left[\Omega^{\prime}\right] \Omega\right] ; \quad S\left[T_{1}\left[F \Omega^{\prime}\right] \Omega\right] \rightarrow_{\mathcal{A}} S\left[T_{2}\left[F \Omega^{\prime}\right] T_{1}\left[\Omega^{\prime}\right] \Omega\right]
\end{gathered}
$$

Then we have

$$
\begin{gathered}
S\left[T_{1}[\varepsilon]\right] \rightarrow_{\mathcal{A}}^{2} b=b^{u(0)} . \\
S\left[T_{2}\left[F^{n}\right] \Omega\right] \rightarrow_{\mathcal{A}}^{*}(S[\Omega])^{n} \\
S\left[T_{1}\left[F^{n+1}\right]\right] \rightarrow_{\mathcal{A}}^{*} \quad S\left[T_{2}\left[F^{n+1}\right] T_{1}\left[F^{n}\right]\right] \\
\rightarrow_{\mathcal{A}}^{*} \\
\rightarrow_{\mathcal{A}}^{*} \\
\left.=\left(S_{1}\left[{b_{1}}^{u(n)} F^{n}\right]\right]\right)^{n+1} \\
= \\
b^{u(n+1)} .
\end{gathered}
$$

1.2-INTRODUCTION- Recurrences

Some references on recurrent sequences of integers/words:
Linear recurrences: (J. Berstel and C. Reutenauer 88)
P-recurrences:(R.P. Stanley 80), (M. Petkovšek, H.S. Wilf and D.
Zeillberger 96)
Sequences and finite automata:(J.P. Allouche and J. Shallit 03)

L-systems:(L. Kari and G. Rozenberg and A. Salomaa 97)

1.2-INTRODUCTION- Recurrences

Definition 6 (\mathbb{N}-rational formal power series) A mapping
$f: A^{*} \rightarrow \mathbb{N}$ is \mathbb{N}-rational iff there is an homomorphism
$M: A^{*} \rightarrow \mathbb{N}^{d \times d}$ and two vectors L in $\mathbb{B}^{1 \times d}$ and T in $\mathbb{B}^{d \times 1}$ such that, for every $w \in A^{*}$

$$
f(w)=L \cdot M(w) \cdot T
$$

Definition 7 (Polynomial recurrent relations) Given a finite index set $I=[1, n]$ and a family of mappings $f_{i}: A^{*} \rightarrow \mathbb{N}$ (for $i \in I$), we call system of polynomial recurrent relations a system of the form

$$
f_{i}(a w)=P_{i, a}\left(f_{1}(w), f_{2}(w), \ldots, f_{n}(w)\right) \text { for all } i \in I, a \in A, w \in A^{*}
$$

where $P_{i} \in \mathbb{N}\left[X_{1}, X_{2}, \ldots, X_{n}\right]$.

1.2-INTRODUCTION- Recurrences

Definition 8 (catenative recurrent relations) Given a finite set
I and a family of mappings indexed by $I, f_{i}: A^{*} \rightarrow B^{*}$ (for $i \in I$), we call system of catenative recurrent relations over the family $\left(f_{i}\right)_{i \in I}$ a system of the form

$$
f_{i}(a w)=\prod_{j=1}^{\ell(i, a)} f_{\alpha(i, a, j)}(w) \text { for all } i \in I, a \in A, w \in A^{*}
$$

where $\ell(a, i) \in \mathbb{N}, \alpha(i, a, j) \in I$.
When $\operatorname{Card}(B)=1, f: A^{*} \rightarrow B^{*}$ fulfils a system of catenative recurrent relations iff f is a rational series.

1.2-INTRODUCTION- Recurrences

Definition 9 (recurrent relations in M) Given a finite set I and a family of mappings indexed by $I, f_{i}: A^{*} \rightarrow M$ (for $i \in I$), we call system of recurrent relations in M over the family $\left(f_{i}\right)_{i \in I}, a$ system of the form

$$
f_{i}(a w)=\prod_{j=1}^{\ell(i, a)} f_{\alpha(i, a, j)}(w) \text { for all } i \in I, a \in A, w \in A^{*}
$$

where $\ell(a, i) \in \mathbb{N}, \alpha(i, a, j) \in I$ and the symbol Π stands for the extension of the binary product in M to an arbitrary finite number of arguments.

The monoid ($\operatorname{Hom}\left(C^{*}, C^{*}\right)$, o, Id) will be of particular interest for studying mappings of level $k \geq 3$.

1.2-INTRODUCTION- Recurrences

The following notion turns out to be crucial for describing all k-computable mappings as compositions of simpler mappings.

Definition 10 (Kari-Rozenberg-Salomaa 1997) Let
$f: A^{*} \rightarrow B^{*}$. The mapping f is called a HDTOL sequence iff
there exists a finite alphabet C, a homomorphism
$H: A^{*} \rightarrow \operatorname{Hom}\left(C^{*}, C^{*}\right)$, an homomorhism $h \in \operatorname{Hom}\left(C^{*}, B^{*}\right)$ and a letter $c \in C$ such that, for every $w \in A^{*}$

$$
f(w)=h\left(H^{w}(c)\right)
$$

(here we denote by H^{w} the image of w by H).

1.3-INTRODUCTION- Problems

Problem 1: Find characterisations of k-computable sequences.
Problem 2: Solve the equality problem for k-computable sequences. i.e. the following decision problem:

INPUT: two s-deterministic k-automata \mathcal{A}, \mathcal{B}. QUESTION: Do these automata compute the same mapping $A^{*} \rightarrow B^{*}$?

2.1-CLOSURE PROPERTIES-RECURRENCES

Theorem 11 (Fratani-Sénizergues 06)

0 - For every $f \in \mathbb{S}_{k+1}, k \geq 1$, and every integer $c \in \mathbb{N}$, the sequences $E f$ (the shift of f), $f+\frac{c}{1-X}$, belong to \mathbb{S}_{k+1}; if $\forall n \in \mathbb{N}, f(n) \geq c$ then $f-\frac{c}{1-X}$ belongs to \mathbb{S}_{k+1}; the sequence defined by $0 \mapsto c, n+1 \mapsto f(n)$ belongs to \mathbb{S}_{k+1}. 1 - For every $f, g \in \mathbb{S}_{k+1}, k \geq 1$, the sequence $f+g$ belongs to \mathbb{S}_{k+1}.
2- For every $f, g \in \mathbb{S}_{k+1}, k \geq 2, f \odot g$ (the ordinary product), belongs to \mathbb{S}_{k+1} and for every $f^{\prime} \in \mathbb{S}_{k+2}, f^{\prime g}$ belong to \mathbb{S}_{k+2}. 3- For every $f \in \mathbb{S}_{k+1}, g \in \mathbb{S}_{k}, k \geq 2, f \times g$ (the convolution product) belongs to \mathbb{S}_{k+1}.
4- For every $g \in \mathbb{S}_{k}, k \geq 2$, the sequence f defined by: $f(0)=1$ and $f(n+1)=\sum_{m=0}^{n} f(m) \cdot g(n-m)$ (the convolution inverse of $1-X \times f$) belongs to \mathbb{S}_{k+1}.

5- For every $k \geq 2$ and for every system of recurrent equations expressed by polynomials in $\mathbb{S}_{k+1}\left[X_{1}, \ldots, X_{p}\right]$, with initial conditions in \mathbb{N}, every solution belongs to \mathbb{S}_{k+1}.

2.2-CLOSURE PROPERTIES-COMPOSITION

Theorem 12

For every $f \in \mathbb{S}_{k}\left(A^{*}, B^{*}\right) g \in \mathbb{S}_{\ell}\left(B^{*}, C^{*}\right), k, l \geq 2, f \circ g$ (the sequence composition) belongs to $\mathbb{S}_{k+\ell-1}\left(A^{*}, C^{*}\right)$.

Proved in (Fra-Sen06) in the case where
$\operatorname{Card}(A)=\operatorname{Card}(B)=\operatorname{Card}(C)=1$. But extension is straighforward.

3.1-DECOMPOSITION PROPERTIES-LeVEL 1

Theorem 13 The elements of $\mathbb{S}_{1}\left(A^{*}, B^{*}\right)$ are exactly the generalized sequential mappings from A^{*} to B^{*}.

3.2-DECOMPOSITION PROPERTIES-LEVEL 2

Theorem 14 (\mathbf{N}. Marin 2007) Let us consider a mapping
$f: A^{*} \rightarrow B^{*}$. The following properties are equivalent:
$1-f \in \mathbb{S}_{2}\left(A^{*}, B^{*}\right)$
2- There exists a finite family $\left(f_{i}\right)_{i \in[1, n]}$ of mappings $A^{*} \rightarrow B^{*}$ which fulfils a system of catenative recurrent relations and such that $f=f_{1}$
$3-f$ is a HDTOL sequence.

3.3-DECOMPOSITION PROPERTIES-Level 3

Theorem 15 Let us consider a mapping $f: A^{*} \rightarrow B^{*}$. The following properties are equivalent:
$1-f \in \mathbb{S}_{3}\left(A^{*}, B^{*}\right)$
2- f is a composition of a DTOL sequence $g: A^{*} \rightarrow C^{*}$ by a HDTOL sequence $h: C^{*} \rightarrow B^{*}$.

Corollary 16 Let us consider a mapping $f: A^{*} \rightarrow \mathbb{N}$. The following properties are equivalent:
1- $f \in \mathbb{S}_{3}\left(A^{*}, \mathbb{N}\right)$
2- f is composition of a DTOL sequence $g: A^{*} \rightarrow C^{*}$ by a rational series $h: C^{*} \rightarrow \mathbb{N}$.
3- There exists a finite family $\left(f_{i}\right)_{i \in[1, n]}$ of mappings $A^{*} \rightarrow \mathbb{N}$ fulfiling a system of polynomial recurrent relations and such that $f=f_{1}$.

3.3-DECOMPOSITION PROPERTIES-Level 3

Definition 17 Let \mathbb{S} be a set of mappings $A^{*} \rightarrow \mathbb{N}$. We denote by $\mathcal{D}(\mathbb{S})$ the set of mappings of the form:

$$
f(w)=g(w)-h(w) \quad \text { for all } w \in A^{*},
$$

for some mappings $g, h \in \mathbb{S}$. We denote by $\mathcal{F}(\mathbb{S})$ the set of mappings of the form:

$$
f(w)=\frac{g(w)-h(w)}{f^{\prime}(w)-g^{\prime}(w)} \quad \text { for all } w \in A^{*}
$$

for some mappings $f, g, f^{\prime}, g^{\prime} \in \mathbb{S}$.

3.3-DECOMPOSITION PROPERTIES-LevEl 3

Using point 3 of corollary 16 we can prove the following
Theorem 18 The equality problem is decidable for sequences in $\mathcal{F}\left(\mathbb{S}_{3}\left(A^{*}, \mathbb{N}\right)\right)$.

The method consists, in a way similar to (Senizergues, ICALP'99) or (Honkala, 2000), in reducing such an equality problem to deciding whether some polynomial belongs to the ideal generated by a finite set of other polynomials.

3.3-DECOMPOSITION PROPERTIES-Level 3

Main ideas in the proof of theorem 15.
Idea 1: for every $u \in 2-\operatorname{pds}(\Gamma)$

$$
\Phi(u):(p S q) \mapsto \prod_{i=1}^{n}\left(p_{i} S_{i} q_{i}\right)
$$

iff

$$
p S[u \Omega] q \rightarrow_{\mathcal{A}}^{*} \prod_{i=1}^{n}\left(p_{i} S_{i}[\Omega] q_{i}\right)
$$

If :

$$
p_{i} S[v \Omega] q_{i} \rightarrow_{\mathcal{A}}^{*} \prod_{j=1}^{n_{i}}\left(r_{i, j} S_{i, j}^{\prime}[\Omega] s_{i, j}\right)
$$

then

$$
p S[u \cdot v \cdot \Omega] q \rightarrow_{\mathcal{A}}^{*} \prod_{i=1}^{n} \prod_{j=1}^{n_{i}}\left(r_{i, j} S_{i, j}^{\prime}[\Omega] s_{i, j}\right)
$$

i.e.

$$
\Phi(u \cdot v)=\Phi(u) \circ \Phi(v)
$$

Based on this observation: define, for $w \in \Gamma^{*}$,

$$
H_{T}^{w}:=\Phi(T[w]) .
$$

Family $\left(H_{T}^{w}\right)_{T \in \Gamma}$ should fulfill a compositional recurrence.

3.3-DECOMPOSITION PROPERTIES-Level 3

$\operatorname{push}_{2}: p S[T[w]] q \rightarrow_{\mathcal{A}} p_{1} S\left[T_{1}[w] T_{2}[w]\right] q$

$$
\begin{gathered}
\Phi(T[w])(p S q)=\Phi\left(T_{1}[w] T_{2}[w]\right)\left(p_{1} S q\right) \\
\Phi(T[w])(p S q)=\left(\Phi\left(T_{1}[w]\right) \circ \Phi\left(T_{2}[w]\right)\right)\left(p_{1} S q\right)
\end{gathered}
$$

i.e.

$$
H_{T}^{w}(p S q)=\left(H_{T_{1}}^{w} \circ H_{T_{2}}^{w}\right)(p S q)
$$

$$
\operatorname{push}_{1}: p S[T[w]] q \rightarrow_{\mathcal{A}} p_{1} S_{1}[T[w]] r \cdot r S_{2}[T[w]] q
$$

$$
H_{T}^{w}(p S q)=H_{T}^{w}\left(p_{1} S_{1} r\right) \cdot H_{T}^{w}\left(r S_{2} q\right)
$$

Mixed recurrence rules .

3.3-DECOMPOSITION PROPERTIES-LeVEl 3

Let us make definition of H_{T}^{w} correct.
Definition 19 (equivalences associated with a k-pda) Let
$\mathcal{A}=\left(Q, B, \Gamma, \delta, q_{0}, Z_{0}\right)$ be a k-iterated pushdown automaton,
with $k \geq 3$. We define binary relations $\equiv_{\mathcal{A}, i}$ by:
1 - for every $w, w^{\prime} \in k-\operatorname{pds}(\Gamma)$,

$$
w \equiv \equiv_{\mathcal{A}, 1} w^{\prime} \Leftrightarrow\left(\forall p, q \in Q, \mathrm{~L}(\mathcal{A}, p w q) \neq \emptyset \Leftrightarrow \mathrm{L}\left(\mathcal{A}, p w^{\prime} q\right) \neq \emptyset\right)
$$

2 - for every $w, w^{\prime} \in(k-1)-\operatorname{pds}(\Gamma)$,

$$
w \equiv_{\mathcal{A}, 2} w^{\prime} \Leftrightarrow\left(\forall S \in \Gamma, \forall v \in(k-1)-\operatorname{pds}(\Gamma), S[w \cdot v] \equiv_{\mathcal{A}, 1} S\left[w^{\prime} \cdot v\right]\right)
$$

3 - for every $w, w^{\prime} \in(k-2)-\operatorname{pds}(\Gamma)$,

$$
w \equiv_{\mathcal{A}, 3} w^{\prime} \Leftrightarrow\left(\forall T \in \Gamma, T[w] \equiv_{\mathcal{A}, 2} T\left[w^{\prime}\right]\right)
$$

3.3-DECOMPOSITION PROPERTIES-LevEl 3

Lemma 20 Let $\mathcal{A}=\left(Q, B, \Gamma, \delta, q_{0}, Z_{0}\right)$ be a k-iterated pushdown automaton, with $k \geq 3$.
1- For every $j \in\{1,2,3\}, \equiv_{\mathcal{A}, j}$ is a regular equivalence relation.
2 - For every $j \in\{1,2\}, \equiv_{\mathcal{A}, j}$ is a congruence.

1- Each class is definable by a MSO formula $\Phi(w)$, over $(k-j+1)-\operatorname{pds}(\Gamma)$. We then use the fact that the definable subsets of $k-\operatorname{pds}(\Gamma)$ are exactly the k-recognizable subsets of $k-\operatorname{pds}(\Gamma)$ ((Fratani, PHD, 2005)).
2- Easy.

3.3-DECOMPOSITION PROPERTIES-LevEl 3

Correct definition of H_{t}^{w} :

$$
\mathcal{W}:=\left\{(p S[e] q) \mid p, q \in Q, S \in \Gamma_{1}, e \in 2-\operatorname{pds}(\Gamma) / \equiv_{\mathcal{A}, 2}\right\} .
$$

If $W=(p S[e] q)$ and

$$
\begin{equation*}
(p S[T[w] \Omega] q) \rightarrow_{\mathcal{A}}^{+} \prod_{j=1}^{\ell(i, W)} p_{i, j} S_{i, j}[\Omega] q_{i, j} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall j \in[1, \ell(i, W)], \forall t \in e \quad \mathrm{~L}\left(p_{i, j} S_{i, j}[t] q_{i, j}\right) \neq \emptyset \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
(p S[e] q) \mapsto \prod_{j=1}^{\ell(i, W)} p_{i, j} S_{i, j}[e] q_{i, j} \tag{6}
\end{equation*}
$$

otherwise

$$
\begin{equation*}
(p S[e] q) \mapsto(p S[e] q) . \tag{7}
\end{equation*}
$$

3.3-DECOMPOSITION PROPERTIES-LeVEl 3

We obtain a recurrence of the form:
Let $T \in \Gamma, d \in 1-\operatorname{pds}(\Gamma) / \equiv_{3}, a \in \Gamma, w \in 1-\operatorname{pds}(\Gamma)$ and
$W=p S[e] q)$. There exists an integer $\ell(i, a, d, W) \in[1,2]$ and for every $j \in[1, \ell(i, a, d, W)]$ there exist indices
$\alpha(i, a, d, W, j), \beta(i, a, d, W, j) \in \Gamma$, words $\omega_{i, a, d, W, j} \in \Gamma^{\leq 2}$, letters
$V_{i, a, d, W, j} \in \mathcal{W}$ and an alphabetic homomorphism
$\Phi_{i, a, d, W, j} \in \operatorname{Hom}\left(\mathcal{W}^{*}, \mathcal{W}^{*}\right)$ such that
$w \in d \Rightarrow H_{i}^{a w}(W)=\prod_{j=1}^{\ell(i, a, d, W)} H_{\alpha(i, a, d, W, j)}^{\omega_{i, a, d, W, j} \cdot w} \circ \Phi_{i, a, d, W, j} \circ H_{\beta(i, a, d, W, j)}^{\omega_{i, a, d, W, j} \cdot w}\left(V_{i, a, d, W, j}\right)$

Idea 2: transform this mixed recurrence into a compositional recurrence

3.3-DECOMPOSITION PROPERTIES-LevEl 3

Here is a mixed recurrence for $f(n):=n$!

$$
\begin{aligned}
\Phi(n):=\lambda u .(n!\times u) ; & P(n):=\lambda u .(n \times u) \\
\Phi(n+1) & =P(n) \circ \Phi(n) \\
P(n+1) & =P(n)+\mathrm{I} \\
\Phi(0) & =\mathrm{I} \\
P(0) & =\mathrm{Z}
\end{aligned}
$$

where $I:=\lambda u . u$ and $Z:=\lambda u .0$.
$\left(\Phi, P, \mathrm{I}, \mathrm{Z} \in \operatorname{HOM}\left(\left\{F_{1}\right\}^{*},\left\{F_{1}\right\}^{*}\right)\right)$.

$$
f(n)=\Phi(n)(1)
$$

3.3-DECOMPOSITION PROPERTIES-Level 3

Let $\mathcal{W}:=\left\{F_{1}, F_{2}\right\}$.

$$
\begin{gathered}
H: F_{1} \mapsto F_{1} F_{2} ; \quad F_{2} \mapsto \varepsilon, \quad \Pi_{2,1}: F_{1} \mapsto F_{1} ; \quad F_{2} \mapsto F_{1} \\
\Phi_{1}(n): F_{1} \mapsto F_{1}^{n!}, F_{2} \mapsto F_{2} ; \quad P_{1}(n):=F_{1} \mapsto F_{1}^{n}, F_{2} \mapsto F_{2} .
\end{gathered}
$$

Here is a compositional recurrence for n !

$$
\begin{aligned}
\Phi_{1}(n+1) & =P_{1}(n) \circ \Phi_{1}(n) \\
P_{1}(n+1) & =\pi_{2,1} \circ P_{1}(n) \circ H(n) \\
\Phi_{1}(0) & =\mathrm{I}(n) \\
P_{1}(0) & =\mathrm{Z}(n)
\end{aligned}
$$

3.3-DECOMPOSITION PROPERTIES-Level 3

By this kind of trick we obtain a recurrence of the form:
$w \in d \quad \Rightarrow$

$$
\begin{aligned}
H_{T}^{a w}= & \psi_{i, a, d} \circ \prod_{W \in \mathcal{W}}\left(\prod_{j=1}^{\ell(i, a, d, W)} \theta_{i, a, d, W, j} \circ H_{\alpha(i, a, d, W, j, j}^{\omega_{i, a, d, W, j} \cdot w} \circ \Phi_{i, a, d, W, j} \circ H_{\beta i, a, a, d, i}^{\omega_{i, a}}\right. \\
& \circ \hat{\psi}_{i, a, d} .
\end{aligned}
$$

Difficult point: is this compositional recurrence terminating ? In fact no. idea 3: new index $i=(\mathcal{V}, \mathcal{T})$ where $\mathcal{V} \subseteq \mathcal{W}$.

$$
H_{i}^{w}(W):=H_{T}(W) \text { if } W \in \mathcal{V}, \quad H_{i}^{w}(W):=W \text { if } W \notin \mathcal{V} .
$$

Termination proof is technical.

3.3-DECOMPOSITION PROPERTIES-LevEl 3

Last technical point: eliminate the congruence $\equiv_{\mathcal{A}, 3}$ over Γ^{*}, in the compositional recurrence?
Solution: (standard direct) product of \mathcal{A} (which computes the recurrence) by \mathcal{B} which computes the finite index congruence.
Finally: we have proved that (1) \Rightarrow (2).
Converse: follows from composition theorem 12.

3.3-DECOMPOSITION PROPERTIES-Level 3

Main idea in the proof of corollary 16.
Example: $u(n)=F(F(n))$
$F(n): 1,1,2,3,5,8,13,21,34,55,89,144,233,377 \ldots$
$u(n): 1,1,2,3,8,34,377, \ldots$

$$
\binom{F(n+1)}{F(n)}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n} \cdot\binom{1}{1}
$$

so that

$$
\binom{F(F(n)+1))}{u(n)}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{F(n)} \cdot\binom{1}{1}
$$

Let us set $\left(\begin{array}{ll}e(n) & f(n) \\ g(n) & h(n)\end{array}\right):=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)^{F(n)}$
then

$$
u(n)=g(n)
$$

Since

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{F(n+1)}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{F(n)} \cdot\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{F(n-1)}
$$

we obtain the relation:

$$
\left(\begin{array}{ll}
e(n+1) & f(n+1) \\
g(n+1) & h(n+1)
\end{array}\right)=\left(\begin{array}{ll}
e(n) & f(n) \\
g(n) & h(n)
\end{array}\right) \cdot\left(\begin{array}{ll}
e(n-1) & f(n-1) \\
g(n-1) & h(n-1)
\end{array}\right)
$$

which gives a polynomial recurrence system defining $u(n)$.

3.4-DECOMPOSITION PROPERTIES-Level $k \geq 4$

Theorem 21 Let us consider a mapping $f: A^{*} \rightarrow B^{*}$. The following properties are equivalent:
1- $f \in \mathbb{S}_{k}\left(A^{*}, B^{*}\right)$
2- f is a composition of $k-1$ HDTOL sequences
$g_{1}: A^{*} \rightarrow C_{1}^{*}, \ldots, g_{i}: C_{i-1}^{*} \rightarrow C_{i}^{*}, \ldots, g_{k-1}: C_{k-2}^{*} \rightarrow B^{*}$.
Moreover the g_{1}, \ldots, g_{k-2} can be chosen to be DTOL's.

3.4-DECOMPOSITION PROPERTIES-Level $k \geq 4$

Main idea in the proof of theorem 21.
Definition 22 (regular recurrent relations of order k) Let us consider a monoid ($M, \cdot, 1$), a finite alphabet Γ, a finite set I and a family of mappings indexed by $I, f_{i}: k-\operatorname{pds}(\Gamma) \rightarrow M$ (for $i \in I$). We call system of regular recurrent relations of order k in M over the family $\left(f_{i}\right)_{i \in I}$, a system of equations of the form:

$$
\begin{gather*}
\forall i \in I, c \in k-\operatorname{pds}(\Gamma) / \equiv, w \in k-\operatorname{pds}(\Gamma) \\
(w \neq \varepsilon \& w \in c) \Rightarrow f_{i}(w)=\prod_{j=1}^{\ell(i, c)} f_{\alpha(i, c, j)}\left(\omega_{i, c, j}(w)\right) \tag{10}
\end{gather*}
$$

where $\ell(i, c) \in \mathbb{N}, \alpha(i, c, j) \in I, \omega_{i, c, j} \in \operatorname{PUSH}(\Gamma) \cup P O P$ and \equiv is a regular equivalence relation over $k-\operatorname{pds}(\Gamma)$.

3.4-DECOMPOSITION PROPERTIES-LeVEL $k \geq 4$

Definition of set of indices I and homomorphisms:

$$
H_{i}^{w}: \hat{\mathcal{W}}^{*} \rightarrow \hat{\mathcal{W}}^{*}
$$

(as for level 3). The family $\left(H_{i}^{w}\right)_{i \in I}$ fulfils a system of regular recurrent relations of order k in $\operatorname{Hom}\left(\hat{\mathcal{W}}^{*}, \hat{\mathcal{W}}^{*}\right)$.
New difficulty: how to eliminate the equivalence $\equiv_{\mathcal{A}, 3}$ over $(k-2)-\operatorname{pds}(\Gamma)$?
Solution: product of \mathcal{A} (which computes the recurrence) by \mathcal{B} which computes the finite index regular equivalence over $(k-2)-\operatorname{pds}(\Gamma)$ (Fratani 2005, PHD).

4.1-PERSPECTIVES-Automata

Pl: Study the equivalence problem for deterministic automata of level 2,3.

4.2-PERSPECTIVES-RECURRENCES

P2: Study the equivalence problem for strongly deterministic automata of level 3

P3: Study the decision problem:
INPUT: one sequence $u \in \mathcal{D}\left(\mathbb{S}_{k}\left(A^{*}, \mathbb{N}\right)\right)$.
QUESTION: Do there exist a word $w \in A^{*}$ such that $u(w)=0$?
For $k=2, \operatorname{Card}(A)=1$, known as the Pisot problem and open.
For $k=3, \operatorname{Card}(A)>1$, undecidable.

P4: Study the decision problem:
INPUT: two sequences $u, v \in \mathbb{S}_{k}\left(A^{*}, \mathbb{N}\right)$.
QUESTION: Are they almost equal ?
i.e. $\operatorname{Card}\left\{w \in A^{*} \mid u(w) \neq v(w)\right\}<\infty$?

For $k=2, \operatorname{Card}(A)=1$, easily seen decidable.

P5: Is $\mathbb{S}_{3}(\mathbb{N}, \mathbb{N})$ closed under convolution ?
(true for $\mathbb{S}_{2}(\mathbb{N}, \mathbb{N})$).

P6: Study the closure properties of $\mathbb{S}_{k}(\mathbb{N}, \mathbb{N}), \mathbb{S}_{k}\left(A^{*}, \mathbb{N}\right)$, $\mathcal{D}\left(\mathbb{S}_{k}(\mathbb{N}, \mathbb{N})\right), \mathcal{F}\left(\mathbb{S}_{k}(\mathbb{N}, \mathbb{N})\right), \ldots$

