LALBLC: a program testing the equivalence of dpda’s

ORDEAUX 1
ences Technologies

WUNIVER SITE

(AIBLC:

a program testing the equivalence of dpda’s

P. Henry, G. Sénizergues

Bordeaux 1 university, LaBRI,

January 29-th 2013

LSV seminar

LALBLC: a program testing the equivalence of dpda’s

contents

The problem

The program: what?
The program: how?
The program: examples

Perspectives

LALBLC: a program testing the equivalence of dpda’s
I—The problem

The PROBLEM

LALBLC: a program testing the equivalence of dpda’s
I—The problem

Instance:A, B deterministic pushdown automata.
Question:L(A) = L(B)?

Let us Compute.

LALBLC: a program testing the equivalence of dpda’s
I—The problem

I—Automata, grammars

Automata,grammars

pushdown automata < context-free grammars
Deterministic pushdown automata <> strict-deterministic c.f.
grammars

LALBLC: a program testing the equivalence of dpda’s
I—The problem

L Decision problem:L(A)=L(B)?

The equivalence problem for dpda is decidable.

The problem is primitive recursive.

LALBLC: a program testing the equivalence of dpda’s

I—The program: what?

The program: WHAT 7

LALBLC: a program testing the equivalence of dpda’s

I—The program: what?

L Witnesses

Let G =< X, V,P > a dcf grammar.
Let Wi, Ws € (X U V)*. We call a witness of non-equivalence
every terminal word w € X* such that

w e (L(Wh) — L(Wh)) U (L(Wa) — L(W)).

LALBLC: a program testing the equivalence of dpda’s

I—The program: what?

L Proofs

Example O:
G =< {a,b,c},{S, T}, P > where P consists of the rules:

S — aShb+c¢
T — aTlb+c

S = T can be proved by the following G-equality-proof

ref sj
a=a Sb=Th

X ref gr

aSb=aTb C=c T=aTb+c
+ sym

aSb+c=aTb+c alb+c=T

S=aShtc’ aSbtc=T
trans ref
S=T b=b
Sb=Tb

trans

X

LALBLC: a program testing the equivalence of dpda’s

I—The program: what?

L Proofs

Example 0: Let P:={(S,T)}
This set P is self-provable: V(W, W’) € P,Vx € {a, b, c}

(W o x, W o x)) e CC(P).
(S®a, T®a) = (Sb,Tb)

(SO b, TOb) (0,0)
(S@c, TOC) (,¢€)

(Sb, Tb) € CC({(S, T)})

LALBLC: a program testing the equivalence of dpda’s

I—The program: what?
I—Proofs

G-EQuality (schemes of) rules:

G-EQuality (schemes of) strict-rules:

=x'y=y
X/

"y

X
ref
X

X=X

G-EQuality strict-rules:

S= 27:1 wi

Instanciations, for sym,trans,+,ref, x: by rational languages.
Instanciations, for gr: exactly one instance for each.grammar.rule.

LALBLC: a program testing the equivalence of dpda’s
I—The program: what?
I—Proofs

Definition

Let G be a cf grammar. We call G-equality proof, every finite set
J C RAT((X U V)*) such that: J decomposes as 7 = P U Q with
1- Every jydgment g € Q has a proof within the system G-EQ,
with hypotheses in P.

2- Every judgment p € P is a consequence, by some strict rule of
G-EQ of some judgments in Q.

Remark:

From a self-provable set P and the sequence of rules establishing
that (W © x, W' ® x) € CC(P), one can construct, in linear time,
a G-equality-proof for all the pairs of P.

LALBLC: a program testing the equivalence of dpda’s

I—The program: what?
I—Proofs

INPUT:

A strict det grammar and two words Wy, Wh.
OUTPUT:

- either a witness of Wy EW,

- or a self-provable set posessing (W, Wa)

LALBLC: a program testing the equivalence of dpda’s

I—The program: how?

The program: HOW 7

LALBLC: a program testing the equivalence of dpda’s

I—The program: how?

Theorem

1- For every cf grammar G, the system G-EQ is sound for the
equality of the generated languages.

2- For every strict deterministic cf grammar G, the system G-EQ is
complete for the equality of the generated languages.

Proof:

Completeness of Dy

Elimination-lemma — completeness of Ds
This Ds-proof — a self-provable set J

LALBLC: a program testing the equivalence of dpda’s

I—The program: how?

First tentative:

- enumerate words

- enumerate equality proofs in G-EQ
in parallel.

Second tentative:

Compute N=f(||A]| + || B]|)-

- enumerate words (up to length N)

- or enumerate proofs in G-EQ (up to depth N).

LALBLC: a program testing the equivalence of dpda’s

I—The program: how?

Better idea:

extract from the completeness proof (for Dy) some
algebraic/algorithmic ideas leading to:

- either a witness of falsity

- or a proof

LALBLC: a program testing the equivalence of dpda’s

I—The program: how?

L Framework

X: alphabet. Semi-groupoid of prefix matrices.
An element of DB, ¢({ X)) is a p-q matrix with coefficients in
B({ X)) , such that every line is prefix.

Wex:=(x)"tw

LALBLC: a program testing the equivalence of dpda’s

I—The program: how?

L Framework

G =< X, V, P >: strict deterministic grammar.
An element of DB, 4((V')) is a p-q matrix with coefficients in
B((V')), such that every line is deterministic (notion inherited

from the grammar).

The map:
M = (m;;) — (L(mi;))

- is compatible with matrix product
- is equivariant for the right-operations e and ©.

LALBLC: a program testing the equivalence of dpda’s
I—The program: how?

L Framework

X: alphabet. Let @, 3 € DBy o((X)). A unifier of (&,) is any
matrix U € DBg 4((X)) such that:

%
a-U=45-U.

U is a MGU iff, every unifier has the form U - T with T € DB .
This notion is lifted to &, 3 € DRBy o((V))

LALBLC: a program testing the equivalence of dpda’s

I—The program: how?

L Framework

Theorem
1- Every pair @, 3 € DB q((V)) has a MGU (up to =)
2- This MGU is unique, up to = and up to some right-product by a

permutation matrix.
3- For pairs &, 3 € DRBy 4((V')) the MGU has some
representative which is in DRBg o((V')) and is computable from

g

LALBLC: a program testing the equivalence of dpda’s
I—The program: how?

L Finding proofs/witnesses

Logical /deduction rules

Every logical rule:
JULJ2, ..., dn—J

has the property that:
sup{r(J1),v(J2)...,v(Jdn)} < v(J)

(truth value increases)
Every deduction rule:

J1,J2,....dn}—J
has the property that:
sup{H(J1), H(J2)..., H(Jn)} < H(J)

(cost-function H increases)

LALBLC: a program testing the equivalence of dpda’s
I—The program: how?

L Finding proofs/witnesses

For the judgment:
J=(nU,V)

with ninteger, U,V € DB1((V)).

H(J) :==n+inf{lw| | we X*,w e L(U) & w ¢ L(V)}

LALBLC: a program testing the equivalence of dpda’s
I—The program: how?

L Finding proofs/witnesses

Typical logical rule:

(p,U,V)= (p+1, UG X,V Ox)

Typical deduction rule:

{(p+1LUGx,Vox)|xeX} | (p,U,V)

LALBLC: a program testing the equivalence of dpda’s
I—The program: how?

L Finding proofs/witnesses

Comparison trees

Starting from a node we build a comparison-tree:

- a node is closed or open

- every node is a logical-consequence of the root

- every “ closed” node is a deduction-consequence of other nodes
(usually its sons, but not always)

- when the comparison-tree has closed nodes only, it is a
self-provable set.

LALBLC: a program testing the equivalence of dpda’s
I—The program: how?

I—'I'actics for proofs

A tactics:
is applied to one node n.
It modifies the comparison-tree, locally, around this node.

\w)gruleﬁ

dedrule

Figure : a tactics

LALBLC: a program testing the equivalence of dpda’s

I—The program: how?

I—'I'actics for proofs

Simple tactics

TA:

p, U,V

DERIV/(A)
R4

DERIV(b)

p+lLUGaVEOa p+1L,UObVODb

Figure : TA

LALBLC: a program testing the equivalence of dpda’s
I—The program: how?
I—'I'actics for proofs

Simple tactics

TD:

—

p, ALUr + AsUs, AL V4 + AoV BULLE BULLET (A7)
LLPROD

p+n, U, Vi p+n2, Uz, Vo

Figure : TD

LALBLC: a program testing the equivalence of dpda’s
I—The program: how?
I—'I'actics for proofs

Simple tactics

Teq:

p, U, U p, U, U
EQ

Figure : Teq

LALBLC: a program testing the equivalence of dpda’s
I—The program: how?
I—'I'actics for proofs

Simple tactics

TREP:

pt+k, UV p+k, U,V

p, U,V p, U,V

Figure : TREP

LALBLC: a program testing the equivalence of dpda’s

I—The program: how?

I—'I'actics for proofs

Triangulation

TCM ():

lez,ﬂ

iSis 2 i
P2y 0,/5,,2“

Py S 0l'S, 5, 8Y'S;

congruence

p3—1,73,03 p3 — 1,74, 04

Figure : TCM

LALBLC: a program testing the equivalence of dpda’s

I—The program: how?

I—'I'actics for proofs

Dynamic Unifiers

TCR:

0, uM,vM

p+k, > S, > BiSi p+k, > S, > BiSi

Figure : TCR

LALBLC: a program testing the equivalence of dpda’s

I—The program: how?

I—'I'actics for witnesses

witness-lift: function that “ lifts” the witness of falsity (initially ¢)
from a leaf up to the root or to a unifier-computation.

LALBLC: a program testing the equivalence of dpda’s
I—The program: how?

L Strategies

A strategy is built from a sequence of tactics and a priority
ordering over these tactics.
Implemented by a functionnal:

def make-strategy(maxsteps,error-tactics,*tactics)

LALBLC: a program testing the equivalence of dpda’s

I—The program: how?

I—Structure of the program

basicalgoj

550

grammar:

1100

proofs

tactics

strategies

1950

Figure : structure of the program

LALBLC: a program testing the equivalence of dpda’s

I—The program: examples

The program:
EXAMPLES

LALBLC: a program testing the equivalence of dpda’s

I—The program: examples

I—'I'riangulation

Input: example2
A2=dpda:

ql, 0, #
q2,0,#
ql, A, a
g3,A, a
q3,0,a
ql,A' b
g5, A, e,
q3p, 0,a
qgl, A x
g5,0,¢

N e

ql,A, 0O
q2,A,0
q3

q3p, O
g5

g5

q3b, O
ql,A A
q3

LALBLC: a program testing the equivalence of dpda’s

I—The program: examples

I—'I'riangulation

g3b,0,a — ¢3
g2,A,a — qg4,AA
gb,0,e — g3
g4, 0,a — g3
g2,A,b — gb
g2,A,x — qg2,AA
gb,A,e — qb
gd,A,a — g4

<ql—0—-qg3>=<qg2—0—qg3>"?

LALBLC: a program testing the equivalence of dpda’s

I—The program: examples

I—'I'riangulation

20 is the depth used for computing the triangulations
replacing "infty” by an integer is suitable for cautious experiments

TC=(lambda P,n:TCM(P,n,20))
strategy-DCMA=
make-strategy("infty",Terror,Teq,Trep,TD,TC,TA)

Output:136 nodes, 2 TC

LALBLC: a program testing the equivalence of dpda’s
I—The program: examples

I—Jump and Cut

Input: example2

20 is the depth used for computing the gmgu'’s
the mgu are stored in a dictionnary (and thus computed only once)
only one jump is made after the mgu-computation

TC=(lambda P,n:TCJ-gmgul-dico(P,n,20))
strategy-DCJqmgudA=
make-strategy("infty",Terror,Teq,Trep,TD,TC,TA)

Output: 109 nodes, 2 TC

LALBLC: a program testing the equivalence of dpda’s

I—The program: examples
I—Dynamic Unifiers

Input:example2

10 is the depth used for computing the gmgu's

the unifiers are stored in a dictionnary;

unifiers are tested at root positions

errors are used for reaching the mgu

only one jump is made after the mgu-computation; tree is stopped
after the jump

TC=(lambda P,n:TCR-gqmgul(P,n,10))
strategy-DCRgmgudynA=
make-strategy (50000, Terror-dyn,Teq,Trep,TD,TC,TA)

Output:61 nodes, 2 unifiers

LALBLC: a program testing the equivalence of dpda’s

I—The program: examples

I =) e R

Input:example2

10 is the depth used for computing the gmgu's
the unifiers are stored in a dictionnary;

unifiers are tested at root positions

TCJ is tried first, TSUN is a second choice
error detection causes failure of the strategy

TC=(lambda P,n:TCR-gmgul-static(P,n,10))
TS=(lambda P,n:TSUN-gmgul-static(P,n,10))
strategy-DCSRamgustatA=
make-strategy (50000, Terror,Teq,Trep,TD,TS,TC,TA)

Output: 54 nodes, 3 unifiers

LALBLC: a program testing the equivalence of dpda’s

I—The program: examples
I =) e R

Input:example32 (108 grammar rules)

TC=(lambda P,n:TCR-gmgul-static(P,n,10))
TS=(lambda P,n:TSUN-gmgul-static(P,n,10))
strategy-DCSRamgustatA=
make-strategy (50000, Terror,Teq,Trep,TD,TS,TC,TA)

Output: 502 nodes, 9 unifiers

LALBLC: a program testing the equivalence of dpda’s

L Perspectives

PERSPECTIVES

C: a program testing the equivalence of dpda’s

L Perspectives

L Equality proofs

Translation:

comparison-tree — self-proved set of equations — G-equality-proof
principle:follow the induction from

price to pay: size of the equality-proof > size of the
comparison-tree.

advantage: such a proof is convincing:

can be tested by easy-to-understand and easy-to-write programs.

LALBLC: a program testing the equivalence of dpda’s
L Perspectives

I—Other general tactics

use term rewriting — simplify equations
use polynomial rewriting — test that an equation is consequence
of others.

LALBLC: a program testing the equivalence of dpda’s
L Perspectives

I—Specialized tactics

one-counter, without e-transitions
one-turn dpda, finite-turn dpda
finite languages.

LALBLC: a program testing the equivalence of dpda’s

L Perspectives

I—Implementing Reductions

First-order program-schemes

First-order grammars

Equational graphs: isomorphism problem, quotient problem
Deterministic finite transducers

General overview

Cryptographic protocols

LALBLC: a program testing the equivalence of dpda’s
L Perspectives

L Examples generation

Grammar transformations
Bi-compression of words, trees
Composition of examples.

C: a program testing the equivalence of dpda’s

L Perspectives

L Generalizations

Right-now:X* — {0, 1}

Maps: X* — Z

Maps: X* — F(Y)?

Bisimulation of non-det pda with deterministic decreasing e-moves

() ?7?

	The problem
	Automata, grammars
	Decision problem:L(A)=L(B)?

	The program: what?
	Witnesses
	Proofs

	The program: how?
	Framework
	Finding proofs/witnesses
	Tactics for proofs
	Tactics for witnesses
	Strategies
	Structure of the program

	The program: examples
	Triangulation
	Jump and Cut
	Dynamic Unifiers
	Extended equidivisibility

	Perspectives
	Equality proofs
	Other general tactics
	Specialized tactics
	Implementing Reductions
	Examples generation
	Generalizations

