6

lAlBlC:

a program testing the equivalence of dpda's

P. Henry, G. Sénizergues

Bordeaux 1 university, LaBRI,

January 29-th 2013

LSV seminar

contents

1 The problem

2 The program: what?

3 The program: how?

4 The program: examples

5 Perspectives

The PROBLEM

Instance: A, B deterministic pushdown automata.
Question: $\mathrm{L}(A)=\mathrm{L}(B)$?

Let us Compute.
-Automata, grammars

Automata,grammars

pushdown automata \leftrightarrow context-free grammars
Deterministic pushdown automata \leftrightarrow strict-deterministic c.f. grammars [Harrison-Havel JCSS 1993]

Theorem

The equivalence problem for dpda is decidable.
[GS ICALP 1997] [GS TCS 2001, page 80]
The problem is primitive recursive.
[C. Stirling ICALP 2002]

The program: WHAT ?

Let $G=<X, V, P>$ a dcf grammar.
Let $W_{1}, W_{2} \in(X \cup V)^{*}$. We call a witness of non-equivalence every terminal word $w \in X^{*}$ such that

$$
w \in\left(L\left(W_{1}\right)-L\left(W_{2}\right)\right) \cup\left(L\left(W_{2}\right)-L\left(W_{1}\right)\right)
$$

Example 0:
$G=<\{a, b, c\},\{S, T\}, P>$ where P consists of the rules:

$$
\begin{aligned}
& S \rightarrow a S b+c \\
& T \rightarrow a T b+c
\end{aligned}
$$

$S \equiv T$ can be proved by the following G-equality-proof

Example 0: Let $P:=\{(S, T)\}$
This set P is self-provable: $\forall\left(W, W^{\prime}\right) \in P, \forall x \in\{a, b, c\}$

$$
\begin{aligned}
& \left.\left(W \odot x, W^{\prime} \odot x\right)\right) \in \mathrm{CC}(P) \\
& (S \odot a, T \odot a)=(S b, T b) \\
& (S \odot b, T \odot b)=(0,0) \\
& (S \odot c, T \odot c)=(\varepsilon, \varepsilon)
\end{aligned}
$$

$(S b, T b) \in C C(\{(S, T)\})$

G-EQuality (schemes of) rules:

$$
\frac{x \equiv y}{y \equiv x} \text { sym } \quad \frac{x \equiv y \quad y \equiv z}{x \equiv z} \text { trans } \quad \frac{x \equiv x^{\prime} y \equiv y^{\prime}}{x+y \equiv x^{\prime}+y^{\prime}}+
$$

G-EQuality (schemes of) strict-rules:

$$
\overline{x \equiv x}_{x \equiv x} \text { ref } \frac{x \equiv x^{\prime} y \equiv y^{\prime}}{x \cdot y \equiv x^{\prime} \cdot y^{\prime}} x
$$

G-EQuality strict-rules:

$$
{\overline{S \equiv \sum_{i=1}^{n} w_{i}}}^{g r}
$$

Instanciations, for sym,trans, + , ref, \times : by rational languages.
Instanciations, for gr: exactly one instance for each grammar_rule

Definition

Let G be a cf grammar. We call G-equality proof, every finite set $\mathcal{J} \subset \operatorname{RAT}\left((X \cup V)^{*}\right)$ such that: \mathcal{J} decomposes as $\mathcal{J}=P \cup Q$ with 1- Every jydgment $q \in Q$ has a proof within the system G-EQ, with hypotheses in P.
2- Every judgment $p \in P$ is a consequence, by some strict rule of G-EQ of some judgments in Q.

Remark:
From a self-provable set P and the sequence of rules establishing that $\left(W \odot x, W^{\prime} \odot x\right) \in \mathrm{CC}(P)$, one can construct, in linear time, a G-equality-proof for all the pairs of P.

INPUT:

A strict det grammar and two words W_{1}, W_{2}. OUTPUT:

- either a witness of $W_{1} \neq W_{2}$
- or a self-provable set posessing $\left(W_{1}, W_{2}\right)$

The program: HOW ?

Theorem

1- For every of grammar G, the system $G-E Q$ is sound for the equality of the generated languages.
2- For every strict deterministic of grammar G, the system G-EQ is complete for the equality of the generated languages.

Proof:
Completeness of D_{0} [GS TCS 2001,p.80] Elimination-lemma [GS TCS 2001,p.100] \rightarrow completeness of D_{5} This D_{5}-proof \rightarrow a self-provable set \mathcal{J}

First tentative:

- enumerate words
- enumerate equality proofs in G-EQ in parallel.

Second tentative:
Compute $\mathrm{N}=\mathrm{f}(\|A\|+\|B\|)$.

- enumerate words (up to length N)
- or enumerate proofs in G-EQ (up to depth N).

Better idea:
extract from the completeness proof (for D_{0}) some algebraic/algorithmic ideas leading to:

- either a witness of falsity
- or a proof
X : alphabet. Semi-groupoid of prefix matrices.
An element of $D \mathbb{B}_{p, q}\langle\langle X\rangle\rangle$ is a $p-q$ matrix with coefficients in $\mathbb{B}\langle\langle X\rangle\rangle$, such that every line is prefix.

$$
W \bullet x:=(x)^{-1} W
$$

$G=<X, V, P>$: strict deterministic grammar. An element of $\mathrm{D} \mathbb{B}_{p, q}\langle\langle V\rangle\rangle$ is a $p-q$ matrix with coefficients in $\mathbb{B}\langle\langle V\rangle\rangle$, such that every line is deterministic (notion inherited from the grammar).

$$
v \odot x:=\sum_{v \rightarrow m} m \bullet x
$$

The map:

$$
M=\left(m_{i, j}\right) \mapsto\left(\mathrm{L}\left(m_{i, j}\right)\right)
$$

- is compatible with matrix product
- is equivariant for the right-operations \bullet and \odot.
X : alphabet. Let $\vec{\alpha}, \vec{\beta} \in \mathrm{DB}_{1, q}\langle\langle X\rangle\rangle$. A unifier of $(\vec{\alpha}, \vec{\beta})$ is any matrix $U \in \mathbb{D B}_{q, q}\langle\langle X\rangle\rangle$ such that:

$$
\vec{\alpha} \cdot U=\vec{\beta} \cdot U
$$

U is a MGU iff, every unifier has the form $U \cdot T$ with $T \in D \mathbb{B}_{q, q}$. This notion is lifted to $\vec{\alpha}, \vec{\beta} \in \mathrm{DR}_{1, q}\langle\langle V\rangle\rangle$

Theorem

1- Every pair $\vec{\alpha}, \vec{\beta} \in \mathrm{D} \mathbb{B}_{1, q}\langle\langle V\rangle\rangle$ has a $M G U$ (up to \equiv)
2- This MGU is unique, up to \equiv and up to some right-product by a permutation matrix.
3- For pairs $\vec{\alpha}, \vec{\beta} \in \mathrm{DR}_{1, q}\langle\langle V\rangle\rangle$ the $M G U$ has some representative which is in $\mathrm{DR}_{\mathrm{q}, q}\langle\langle V\rangle\rangle$ and is computable from $\vec{\alpha}, \vec{\beta}$.

Logical/deduction rules

Every logical rule:

$$
J 1, J 2, \ldots, J n \rightarrow J^{\prime}
$$

has the property that:

$$
\sup \{\nu(J 1), \nu(J 2) \ldots, \nu(J n)\} \leq \nu\left(J^{\prime}\right)
$$

(truth value increases)
Every deduction rule:

$$
J 1, J 2, \ldots, J n \vdash-J^{\prime}
$$

has the property that:

$$
\sup \{H(J 1), H(J 2) \ldots, H(J n)\} \leq H\left(J^{\prime}\right)
$$

(cost-function H increases)

For the judgment:

$$
J=(n, U, V)
$$

with n integer, $U, V \in \mathrm{D}_{1,2}\langle\langle V\rangle\rangle$.

$$
H(J):=n+\inf \left\{|w| \mid w \in X^{*}, w \in \mathrm{~L}(U) \Leftrightarrow w \notin \mathrm{~L}(V)\right\}
$$

Typical logical rule:

$$
(p, U, V) \rightarrow(p+1, U \odot x, V \odot x)
$$

Typical deduction rule:

$$
\{(p+1, U \odot x, V \odot x) \mid x \in X\} \mid \vdash-(p, U, V)
$$

Comparison trees

Starting from a node we build a comparison-tree:

- a node is closed or open
- every node is a logical-consequence of the root
- every " closed" node is a deduction-consequence of other nodes
(usually its sons, but not always)
- when the comparison-tree has closed nodes only, it is a self-provable set.

A tactics:
is applied to one node n.
It modifies the comparison-tree, locally, around this node.

Figure: a tactics

Simple tactics

TA:

Figure: TA

Simple tactics

TD:

Figure: TD

Simple tactics

Teq:

Figure : Teq

Simple tactics

TREP:

Figure: TREP

Triangulation

TCM ([GS,TCS 2001 pages 50-60]):

Figure: TCM

Dynamic Unifiers

TCR:

$0, u M, v M$

Figure: TCR
witness-lift: function that " lifts" the witness of falsity (initially ε) from a leaf up to the root or to a unifier-computation.

A strategy is built from a sequence of tactics and a priority ordering over these tactics.
Implemented by a functionnal:
def make-strategy(maxsteps,error-tactics,*tactics)

-The program: how?

-Structure of the program

Figure : structure of the program

The program: EXAMPLES

-Triangulation
Input: example A2=dpda:

$$
\begin{aligned}
q 1, O, \# & \rightarrow q 1, A, O \\
q 2, O, \# & \rightarrow q 2, A, O \\
q 1, A, a & \rightarrow q 3 \\
q 3, A, a & \rightarrow q 3 \\
q 3, O, a & \rightarrow q 3 p, O \\
q 1, A, b & \rightarrow q 5 \\
q 5, A, \varepsilon, & \rightarrow q 5 \\
q 3 p, O, a & \rightarrow q 3 b, O \\
q 1, A, x & \rightarrow q 1, A, A \\
q 5, O, \varepsilon & \rightarrow q 3
\end{aligned}
$$

$q 3 b, O, a \rightarrow q 3$ $q 2, A, a \rightarrow q 4, A, A$
$q b, O, \varepsilon \rightarrow q 3$
$q 4, O, a \rightarrow q 3$
$q 2, A, b \rightarrow q b$ $q 2, A, x \rightarrow q 2, A, A$
$q b, A, \varepsilon \rightarrow q b$
$q 4, A, a \rightarrow q 4$
$<q 1-O-q 3>\equiv<q 2-O-q 3>?$

20 is the depth used for computing the triangulations replacing "infty" by an integer is suitable for cautious experiments

TC=(lambda $P, n: T C M(P, n, 20))$
strategy-DCMA=
make-strategy("infty", Terror, Teq, Trep,TD,TC,TA)
Output:136 nodes, 2 TC

Input: example2
20 is the depth used for computing the qmgu's the mgu are stored in a dictionnary (and thus computed only once) only one jump is made after the mgu-computation

TC=(lambda P,n:TCJ-qmgu1-dico(P,n,20))
strategy-DCJqmgudA=
make-strategy("infty",Terror,Teq,Trep,TD,TC,TA)
Output: 109 nodes, 2 TC

Input:example2

10 is the depth used for computing the qmgu's the unifiers are stored in a dictionnary; unifiers are tested at root positions errors are used for reaching the mgu only one jump is made after the mgu-computation; tree is stopped after the jump

TC=(lambda $P, n: T C R-q m g u 1(P, n, 10))$
strategy-DCRqmgudynA=
make-strategy (50000, Terror-dyn, Teq, Trep, TD, TC, TA)
Output:61 nodes, 2 unifiers

Input:example2
10 is the depth used for computing the qmgu's the unifiers are stored in a dictionnary; unifiers are tested at root positions TCJ is tried first, TSUN is a second choice error detection causes failure of the strategy

TC=(lambda $\mathrm{P}, \mathrm{n}:$ TCR-qmgu1-static ($\mathrm{P}, \mathrm{n}, 10$))
TS=(lambda $\mathrm{P}, \mathrm{n}:$ TSUN-qmgu1-static $(\mathrm{P}, \mathrm{n}, 10)$)
strategy-DCSRqmgustatA=
make-strategy (50000, Terror, Teq, Trep, TD , TS , TC , TA)
Output: 54 nodes, 3 unifiers

Input:example32 (108 grammar rules)
TC=(lambda $\mathrm{P}, \mathrm{n}:$ TCR-qmgu1-static ($\mathrm{P}, \mathrm{n}, 10$))
TS=(lambda P,n:TSUN-qmgu1-static ($\mathrm{P}, \mathrm{n}, 10$))
strategy-DCSRqmgustatA=
make-strategy (50000, Terror, Teq, Trep, TD , TS , TC , TA)
Output: 502 nodes, 9 unifiers

PERSPECTIVES

Translation:
comparison-tree \rightarrow self-proved set of equations \rightarrow G-equality-proof principle:follow the induction from [GS, TCS 2001 pages 80-100] price to pay: size of the equality-proof $>$ size of the comparison-tree.
advantage: such a proof is convincing:
can be tested by easy-to-understand and easy-to-write programs.
use term rewriting \rightarrow simplify equations
use polynomial rewriting \rightarrow test that an equation is consequence of others.
one-counter, without ϵ-transitions [Göller ICALP 2011] one-turn dpda, finite-turn dpda [GS ICALP 2003] finite languages.

First-order program-schemes
First-order grammars
Equational graphs: isomorphism problem, quotient problem Deterministic finite transducers
General overview [GS MCU 2001]
Cryptographic protocols [Chretien-Cortier-Delaune in progress]

Grammar transformations

 Bi-compression of words, treesComposition of examples.

Right-now: $X^{*} \rightarrow\{0,1\}$
Maps: $X^{*} \rightarrow \mathbb{Z}$ [GS TCS 2001, pages 100-160]
Maps: $X^{*} \rightarrow F(Y)$?[GS ICALP 1999]
Bisimulation of non-det pda with deterministic decreasing ϵ-moves ([GS SIAM 2005]) ??

