
ℓAℓBℓC : a program testing the equivalence of dpda’s

ℓAℓBℓC :
a program testing the equivalence of dpda’s

P. Henry, G. Sénizergues

Bordeaux 1 university, LaBRI,

January 29-th 2013

LSV seminar

ℓAℓBℓC : a program testing the equivalence of dpda’s

contents

1 The problem

2 The program: what?

3 The program: how?

4 The program: examples

5 Perspectives

ℓAℓBℓC : a program testing the equivalence of dpda’s

The problem

The PROBLEM

ℓAℓBℓC : a program testing the equivalence of dpda’s

The problem

Instance:A,B deterministic pushdown automata.
Question:L(A) = L(B)?

Let us Compute.

ℓAℓBℓC : a program testing the equivalence of dpda’s

The problem

Automata, grammars

Automata,grammars

pushdown automata ↔ context-free grammars
Deterministic pushdown automata ↔ strict-deterministic c.f.
grammars [Harrison-Havel JCSS 1993]

ℓAℓBℓC : a program testing the equivalence of dpda’s

The problem

Decision problem:L(A)=L(B)?

Theorem

The equivalence problem for dpda is decidable.

[GS ICALP 1997] [GS TCS 2001, page 80]
The problem is primitive recursive.
[C. Stirling ICALP 2002]

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: what?

The program: WHAT ?

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: what?

Witnesses

Let G =< X ,V ,P > a dcf grammar.
Let W1,W2 ∈ (X ∪ V)∗. We call a witness of non-equivalence
every terminal word w ∈ X ∗ such that

w ∈ (L(W1)− L(W2)) ∪ (L(W2)− L(W1)).

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: what?

Proofs

Example 0:
G =< {a, b, c}, {S ,T},P > where P consists of the rules:

S → aSb + c

T → aTb + c

S ≡ T can be proved by the following G -equality-proof

S ≡ aSb + c
gr

a ≡ a
ref

Sb ≡ Tb
sj

aSb ≡ aTb
×

c ≡ c
ref

aSb + c ≡ aTb + c
+

T ≡ aTb + c
gr

aTb + c ≡ T
sym

aSb + c ≡ T
trans

S ≡ T
trans

b ≡ b
ref

Sb ≡ Tb
×

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: what?

Proofs

Example 0: Let P := {(S ,T)}
This set P is self-provable: ∀(W ,W ′) ∈ P ,∀x ∈ {a, b, c}

(W ⊙ x ,W ′ ⊙ x)) ∈ CC(P).

(S ⊙ a,T ⊙ a) = (Sb,Tb)

(S ⊙ b,T ⊙ b) = (0, 0)

(S ⊙ c ,T ⊙ c) = (ε, ε)

(Sb,Tb) ∈ CC({(S ,T)})

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: what?

Proofs

G -EQuality (schemes of) rules:

x ≡ y

y ≡ x
sym

x ≡ y y ≡ z

x ≡ z
trans

x ≡ x ′ y ≡ y ′

x + y ≡ x ′ + y ′
+

G -EQuality (schemes of) strict-rules:

x ≡ x
ref

x ≡ x ′ y ≡ y ′

x · y ≡ x ′ · y ′
×

G -EQuality strict-rules:

S ≡
∑n

i=1 wi

gr

Instanciations, for sym,trans,+,ref,×: by rational languages.
Instanciations, for gr: exactly one instance for each grammar rule.

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: what?

Proofs

Definition

Let G be a cf grammar. We call G -equality proof, every finite set
J ⊂ RAT((X ∪V)∗) such that: J decomposes as J = P ∪Q with
1- Every jydgment q ∈ Q has a proof within the system G -EQ,
with hypotheses in P .
2- Every judgment p ∈ P is a consequence, by some strict rule of
G -EQ of some judgments in Q.

Remark:
From a self-provable set P and the sequence of rules establishing
that (W ⊙ x ,W ′ ⊙ x) ∈ CC(P), one can construct, in linear time,
a G -equality-proof for all the pairs of P .

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: what?

Proofs

INPUT:
A strict det grammar and two words W1,W2.
OUTPUT:
- either a witness of W1 6 ≡W2

- or a self-provable set posessing (W1,W2)

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

The program: HOW ?

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Theorem

1- For every cf grammar G, the system G-EQ is sound for the
equality of the generated languages.
2- For every strict deterministic cf grammar G, the system G-EQ is
complete for the equality of the generated languages.

Proof:
Completeness of D0 [GS TCS 2001,p.80]
Elimination-lemma [GS TCS 2001,p.100] → completeness of D5

This D5-proof → a self-provable set J

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

First tentative:
- enumerate words
- enumerate equality proofs in G -EQ
in parallel.

Second tentative:
Compute N=f(‖A‖+ ‖B‖).
- enumerate words (up to length N)
- or enumerate proofs in G -EQ (up to depth N).

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Better idea:
extract from the completeness proof (for D0) some
algebraic/algorithmic ideas leading to:
- either a witness of falsity
- or a proof

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Framework

X : alphabet. Semi-groupoid of prefix matrices.
An element of DBp,q〈〈 X 〉〉 is a p-q matrix with coefficients in
B〈〈 X 〉〉 , such that every line is prefix.

W • x := (x)−1W

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Framework

G =< X ,V ,P >: strict deterministic grammar.
An element of DBp,q〈〈 V 〉〉 is a p-q matrix with coefficients in
B〈〈 V 〉〉, such that every line is deterministic (notion inherited
from the grammar).

v ⊙ x :=
∑

v→m

m • x

The map:
M = (mi ,j) 7→ (L(mi ,j))

- is compatible with matrix product
- is equivariant for the right-operations • and ⊙.

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Framework

X : alphabet. Let ~α, ~β ∈ DB1,q〈〈 X 〉〉. A unifier of (~α, ~β) is any
matrix U ∈ DBq,q〈〈 X 〉〉 such that:

→

α ·U =
→

β ·U.

U is a MGU iff, every unifier has the form U · T with T ∈ DBq,q.

This notion is lifted to ~α, ~β ∈ DRB1,q〈〈 V 〉〉

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Framework

Theorem

1- Every pair ~α, ~β ∈ DB1,q〈〈 V 〉〉 has a MGU (up to ≡)
2- This MGU is unique, up to ≡ and up to some right-product by a
permutation matrix.
3- For pairs ~α, ~β ∈ DRB1,q〈〈 V 〉〉 the MGU has some
representative which is in DRBq,q〈〈 V 〉〉 and is computable from

~α, ~β.

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Finding proofs/witnesses

Logical/deduction rules

Every logical rule:
J1, J2, . . . , Jn → J ′

has the property that:

sup{ν(J1), ν(J2) . . . , ν(Jn)} ≤ ν(J ′)

(truth value increases)
Every deduction rule:

J1, J2, . . . , Jn |−− J ′

has the property that:

sup{H(J1),H(J2) . . . ,H(Jn)} ≤ H(J ′)

(cost-function H increases)

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Finding proofs/witnesses

For the judgment:
J = (n,U,V)

with n integer, U,V ∈ DB1,2〈〈 V 〉〉.

H(J) := n + inf{|w | | w ∈ X ∗,w ∈ L(U) ⇔ w /∈ L(V)}

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Finding proofs/witnesses

Typical logical rule:

(p,U,V) → (p + 1,U ⊙ x ,V ⊙ x)

Typical deduction rule:

{(p + 1,U ⊙ x ,V ⊙ x) | x ∈ X} ||−− (p,U,V)

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Finding proofs/witnesses

Comparison trees

Starting from a node we build a comparison-tree:
- a node is closed or open
- every node is a logical-consequence of the root
- every “ closed” node is a deduction-consequence of other nodes
(usually its sons, but not always)
- when the comparison-tree has closed nodes only, it is a
self-provable set.

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Tactics for proofs

A tactics:
is applied to one node n.
It modifies the comparison-tree, locally, around this node.

dedrule

logrule1 logrule2

7→

Figure : a tactics

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Tactics for proofs

Simple tactics

TA:

p + 1,U ⊙ b,V ⊙ b

7→

p,U,V DERIV(b)DERIV(a)

R4

p + 1,U ⊙ a,V ⊙ a

Figure : TA

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Tactics for proofs

Simple tactics

TD:

LLPROD

7→

p,A1U1 + A2U2,A1V1 + A2V2
BULLET (A1) BULLET (A2)

p + n1,U1,V1 p + n2,U2,V2

Figure : TD

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Tactics for proofs

Simple tactics

Teq:

EQ

7→

p,U,U p,U,U

Figure : Teq

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Tactics for proofs

Simple tactics

TREP:

p + k,U,V

7→

p + k,U,V

p,U,V p,U,V

Figure : TREP

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Tactics for proofs

Triangulation

TCM ([GS,TCS 2001 pages 50-60]):

. . .

7→

p1,
∑

i αiSi ,
∑

i βiSi

p2,
∑

i α
′
i Si ,

∑
i β

′
i Si

p3,
∑

i α
′′
i Si ,

∑
i β

′′
i Si

congruence

p1,
∑

i αiSi ,
∑

i βiSi

p2,
∑

i α
′
i Si ,

∑
i β

′
i Si

p3,
∑

i α
′′
i Si ,

∑
i β

′′
i Si

p3 − 1, γ3, δ3 p3 − 1, γd , δd

p3,
∑

i≥3 γiSi ,
∑

i ≥ 3δiSi

Figure : TCM

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Tactics for proofs

Dynamic Unifiers

TCR:

p + k,
∑

i αiSi ,
∑

i βiSi

7→
0, uM, vM

p,
∑

i uiSi ,
∑

i viSi

p + k,
∑

i αiSi ,
∑

i βiSi

p,
∑

i uiSi ,
∑

i viSi

Figure : TCR

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Tactics for witnesses

witness-lift: function that “ lifts” the witness of falsity (initially ε)
from a leaf up to the root or to a unifier-computation.

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Strategies

A strategy is built from a sequence of tactics and a priority
ordering over these tactics.
Implemented by a functionnal:

def make-strategy(maxsteps,error-tactics,*tactics)

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: how?

Structure of the program

1950

basicalgos

grammars fautomata

equations

proofs

tactics

strategies

g-actions

550

1100 1400

800

200

Figure : structure of the program

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: examples

The program:

EXAMPLES

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: examples

Triangulation

Input: example2
A2=dpda:

q1,O,# → q1,A,O

q2,O,# → q2,A,O

q1,A, a → q3

q3,A, a → q3

q3,O, a → q3p,O

q1,A, b → q5

q5,A, ε, → q5

q3p,O, a → q3b,O

q1,A, x → q1,A,A

q5,O, ε → q3

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: examples

Triangulation

q3b,O, a → q3

q2,A, a → q4,A,A

qb,O, ε → q3

q4,O, a → q3

q2,A, b → qb

q2,A, x → q2,A,A

qb,A, ε → qb

q4,A, a → q4

< q1− O − q3 >≡< q2− O − q3 >?

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: examples

Triangulation

——————————————————————
20 is the depth used for computing the triangulations
replacing ”infty” by an integer is suitable for cautious experiments
——————————————————————–

TC=(lambda P,n:TCM(P,n,20))

strategy-DCMA=

make-strategy("infty",Terror,Teq,Trep,TD,TC,TA)

Output:136 nodes, 2 TC

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: examples

Jump and Cut

Input: example2
—————————————————————-
20 is the depth used for computing the qmgu’s
the mgu are stored in a dictionnary (and thus computed only once)
only one jump is made after the mgu-computation
——————————————————————

TC=(lambda P,n:TCJ-qmgu1-dico(P,n,20))

strategy-DCJqmgudA=

make-strategy("infty",Terror,Teq,Trep,TD,TC,TA)

Output: 109 nodes, 2 TC

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: examples

Dynamic Unifiers

Input:example2
—————————————————————————–
10 is the depth used for computing the qmgu’s
the unifiers are stored in a dictionnary;
unifiers are tested at root positions
errors are used for reaching the mgu
only one jump is made after the mgu-computation; tree is stopped
after the jump
——————————————————————————-

TC=(lambda P,n:TCR-qmgu1(P,n,10))

strategy-DCRqmgudynA=

make-strategy(50000,Terror-dyn,Teq,Trep,TD,TC,TA)

Output:61 nodes, 2 unifiers

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: examples

Extended equidivisibility

Input:example2
———————————————-
10 is the depth used for computing the qmgu’s
the unifiers are stored in a dictionnary;
unifiers are tested at root positions
TCJ is tried first, TSUN is a second choice
error detection causes failure of the strategy
———————————————-

TC=(lambda P,n:TCR-qmgu1-static(P,n,10))

TS=(lambda P,n:TSUN-qmgu1-static(P,n,10))

strategy-DCSRqmgustatA=

make-strategy(50000,Terror,Teq,Trep,TD,TS,TC,TA)

Output: 54 nodes, 3 unifiers

ℓAℓBℓC : a program testing the equivalence of dpda’s

The program: examples

Extended equidivisibility

Input:example32 (108 grammar rules)

TC=(lambda P,n:TCR-qmgu1-static(P,n,10))

TS=(lambda P,n:TSUN-qmgu1-static(P,n,10))

strategy-DCSRqmgustatA=

make-strategy(50000,Terror,Teq,Trep,TD,TS,TC,TA)

Output: 502 nodes, 9 unifiers

ℓAℓBℓC : a program testing the equivalence of dpda’s

Perspectives

PERSPECTIVES

ℓAℓBℓC : a program testing the equivalence of dpda’s

Perspectives

Equality proofs

Translation:
comparison-tree → self-proved set of equations → G -equality-proof
principle:follow the induction from [GS, TCS 2001 pages 80-100]
price to pay: size of the equality-proof > size of the
comparison-tree.
advantage: such a proof is convincing:
can be tested by easy-to-understand and easy-to-write programs.

ℓAℓBℓC : a program testing the equivalence of dpda’s

Perspectives

Other general tactics

use term rewriting → simplify equations
use polynomial rewriting → test that an equation is consequence
of others.

ℓAℓBℓC : a program testing the equivalence of dpda’s

Perspectives

Specialized tactics

one-counter, without ǫ-transitions [Göller ICALP 2011]
one-turn dpda, finite-turn dpda [GS ICALP 2003]
finite languages.

ℓAℓBℓC : a program testing the equivalence of dpda’s

Perspectives

Implementing Reductions

First-order program-schemes
First-order grammars
Equational graphs: isomorphism problem, quotient problem
Deterministic finite transducers
General overview [GS MCU 2001]
Cryptographic protocols [Chretien-Cortier-Delaune in progress]

ℓAℓBℓC : a program testing the equivalence of dpda’s

Perspectives

Examples generation

Grammar transformations
Bi-compression of words, trees
Composition of examples.

ℓAℓBℓC : a program testing the equivalence of dpda’s

Perspectives

Generalizations

Right-now:X ∗ → {0, 1}
Maps: X ∗ → Z [GS TCS 2001, pages 100-160]
Maps: X ∗ → F (Y) ?[GS ICALP 1999]
Bisimulation of non-det pda with deterministic decreasing ǫ-moves
([GS SIAM 2005]) ??

	The problem
	Automata, grammars
	Decision problem:L(A)=L(B)?

	The program: what?
	Witnesses
	Proofs

	The program: how?
	Framework
	Finding proofs/witnesses
	Tactics for proofs
	Tactics for witnesses
	Strategies
	Structure of the program

	The program: examples
	Triangulation
	Jump and Cut
	Dynamic Unifiers
	Extended equidivisibility

	Perspectives
	Equality proofs
	Other general tactics
	Specialized tactics
	Implementing Reductions
	Examples generation
	Generalizations

