Cursus: M1, computer-science Code UE: JEIN8602 Subject: Formal languages theory Date: March 4th 2017 Duration: 3H Documents: authorized Lectures by: Mr Géraud Sénizergues

The exercises are *independant* one from each other. Thus each mathematical symbol (G, L, ...) has a single definite meaning *inside* each exercise, but might have different meanings from an exercise to another.

It is *not* required to solve *all* the exercises. Every correct solution to an exercise will give (around) 4 points. A question marked with a (*) is difficult. One can admit the result of such a question and, nevertheless, *use* it in subsequent questions.

Exercice 1 [/4] We consider the finite automaton \mathcal{A} described on figure 1. Note that 0 is

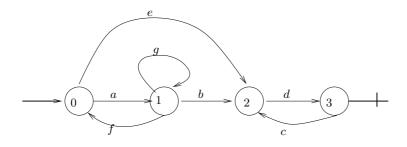


Figure 1: finite automaton \mathcal{A}

the only initial state and 3 is the only final state.0- Describe accepting computations of A over the words:

1- Construct a regular expression for the language $L_{\mathcal{A}}$ recognized by the automaton \mathcal{A} . Explain the successive steps of your construction.

We consider the monoid homomorphism $h : \{a, b, c, d, e, f, g\}^* \to \{a, b, c\}^*$ defined by:

$$h(a) = a, h(b) = b, h(c) = ba, h(d) = c, h(e) = aa, h(f) = ba, h(g) = a$$

- 2- Give a regular expression for the language $h(L_{\mathcal{A}})$.
- 3- Construct a finite automaton recognizing the language $h(L_{\mathcal{A}})$.

Exercice 2 [/4] Let us consider the regular expression:

$$e := (ab^*c)^*ab(a \cup b)^*$$

Construct, by Glushkov's method, a finite automaton recognizing L_e . Exercice 3 [/6]

1- Let us consider the language $L_2 := \{a, b\}^* abb\{a, b\}^* \subseteq \{a, b\}^*$. Construct a finite automaton, over the alphabet $X = \{a, b\}$, that recognizes L_2 .

2- Compute the minimal complete deterministic automaton of L_2 .

3- Compute a regular expression for the language $X^* - L_2$ (the *complement* of L_2).

4*- For every natural integer $n \ge 1$ we define

$$L_n := \{a, b\}^* a b^n \{a, b\}^*$$

How many states does posses the minimal complete deterministic automaton of L_n ? 5- Let us consider the languages:

$$L := \bigcup_{n \ge 1} L_n; \ M_n := L_n \cdot L_{n+1} (\text{ for } n \ge 1); \ M := \bigcup_{n \ge 1} M_n$$

Is L regular ?

Is it true that, for every $n \ge 1$, M_n is regular ?

Is M regular ?

Exercice 4 [/4]

1- For each of the following languages over the terminal alphabet $\{a, b, c, d\}$, construct a context-free grammar that generates the language L_i :

$$L_{1} := \{(ab)^{n} \mid n \geq 0\}$$

$$L_{2} := \{(ab)^{n}c^{n} \mid n \geq 0\}$$

$$L_{3} := \{(ab)^{n}c^{m} \mid n \geq m \geq 0\}$$

$$L_{4} := \{(ab)^{p}c^{q}d^{r} \mid q \geq 0, r \geq 0, p = q + r\}$$

$$L_{5} := \{(ab)^{n}c^{m} \mid n \geq 0, m \geq 0, n \neq m\}$$

2- Construct a *non-ambiguous* context-free grammar generating the language L_5 .

Exercice 5 [/4] We consider the context-free grammar G := (A, N, R) where $A = \{a, b, c\}$, $N = \{S_1, S_2, S_3, S_4, S_5\}$ and R consists of the following 12 rules:

$$S_1 \rightarrow aS_1S_1 \quad S_1 \rightarrow bS_4S_1 \quad S_1 \rightarrow S_3c$$

$$S_2 \rightarrow aS_2 \quad S_2 \rightarrow aS_5a \quad S_3 \rightarrow S_3S_1$$

$$S_3 \rightarrow aS_4 \quad S_3 \rightarrow S_1S_3S_1 \quad S_4 \rightarrow a$$

$$S_4 \rightarrow S_1S_4 \quad S_5 \rightarrow cS_5 \quad S_5 \rightarrow aS_5S_2$$

The start symbol of G is S_1 .

1- What are the *productive* non-terminals of G?

2- What are the *useful* non-terminals of G?

3- Transform the grammar G into an equivalent grammar G' where every non-terminal is productive and useful.

4- Is the language $L(G, S_1)$ empty ?

5- Is the language $L(G, S_1)$ infinite ?

Exercise 6 [/5] We consider the context-free grammar G := (A, N, R) where $A = \{a, b, c, d\}, N = \{S_0, S_1, S_2, S_3\}$ and R consists of the following rules:

r1: $S_0 \to aS_1$

r2: $S_0 \rightarrow aS_2$ **r3**: $S_1 \rightarrow bS_2$

- **r4**: $S_1 \rightarrow cS_3$
- **r5**: $S_2 \rightarrow bS_1$
- **r6**: $S_2 \rightarrow dS_3$
- **r7**: $S_3 \rightarrow \varepsilon$
- The start symbol of G is S_0 .
- 1- Show that $bbbbc \in L(G, S_1), bbbbbd \in L(G, S_1)$. Give a derivation from S_1 to bbbbc.
- 2- Show that $bbbbd \in L(G, S_2), bbbbbc \in L(G, S_2)$. Give a derivation from S_2 to bbbbd.
- 3- Show that $abbbbd \in L(G, S_0)$.

Give a derivation-*tree* for *abbbbd*.

(The student can choose, among the various notions of derivation-tree, syntax-tree, abstract syntax-tree, etc... his/her favorite notion and compute the corresponding tree).

- 4- Describe, the languages $L(G, S_1), L(G, S_2)$.
- Is it true that $L(G, S_1) \cap L(G, S_2) = \emptyset$?

4- Is the grammar G ambiguous ? Is the grammar G simple ?

5- Could you construct a simple c.f. grammar G' with starting symbol S', such that $L(G', S') = L(G, S_0)$?

We consider the context-free grammar $H := (A_H, N_H, R_H)$ where $A_H = \{a, b, c, d, \#\}$, $N_H = \{T_0, U_1, U_2, T_1, T_2, T_3\}$ and R_H consists of the following rules:

 $\begin{aligned} \mathbf{r1:} \ T_0 &\to U_1 a \\ \mathbf{r2:} \ T_0 &\to U_2 a \\ \mathbf{r3:} \ U_1 \to a T_1 \\ \mathbf{r4:} \ U_2 \to a T_2 \\ \mathbf{r5:} \ T_1 \to b T_2 b \\ \mathbf{r6:} \ T_1 \to c T_3 c \\ \mathbf{r7:} \ T_2 \to b T_1 b \\ \mathbf{r8:} \ T_2 \to d T_3 d \\ \mathbf{r9:} \ T_3 \to \# \\ \end{aligned}$ The start symbol of H is T_0 . 6- Is H ambiguous ? simple ?

7- Could you construct a simple c.f. grammar H' with starting symbol T', such that $L(H',T') = L(H,T_0)$?

Hint: Remove non-terminals U_1, U_2 (by a suitable transformation that preserves the generated language). Then, let be inspired by the analogy with question 5.