Cursus: M1, computer-science Code UE: JEIN8602 Subject: Formal languages theory Date: 26 August 2014 Duration: 3H Documents: authorized Lectures by: Mr Géraud Sénizergues

The exercises are independant one from each other. It is *not* required to solve *all* the exercises. Every correct solution to an exercise will give (around) 4 marks.

Exercice 1 [/4] Let us consider the regular expression:

$$e := ((abb)^*a(cb)^*) \cup (ab)^*(ba)^*$$

Construct, by Glushkov's method, a finite automaton recognizing L_e .

Exercice 2 [/4] We consider the finite automaton \mathcal{A} described on figure 1. Note that 0 is

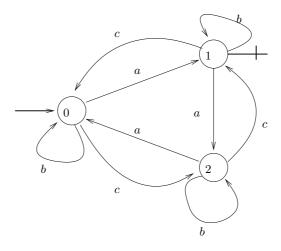


Figure 1: finite automaton \mathcal{A}

the only initial state and 1 is the only final state. Construct a regular expression for the language $L_{\mathcal{A}}$ recognized by the automaton \mathcal{A} . Explain the successive steps of your construction. **Exercice 3** [/5] Let

$$e = (abc)^*$$

Give a regular expression for the language $\{a, b, c\}^* - L_e$ (i.e. the complement, in the set $\{a, b, c\}^*$, of the language defined by e).

Exercise 4 [/4] We consider the context-free grammar G := (A, N, R) where $A = \{a, b\}$, $N = \{S, T_1, T_2\}$ and R consists of the following rules: **r1**: $S \to T_1$ **r2**: $S \to T_2$ **r3**: $T_1 \to aT_1$ **r4**: $T_1 \to aT_1b$ **r5**: $T_1 \to a$ **r6**: $T_2 \to T_2b$ **r7**: $T_2 \to aT_2b$ **r8**: $T_2 \to b$ The start symbol of G is S. 1- Which one of the following sets is exactly equal to $L(G, T_1)$?

$$\{a^pb^q \mid p \ge q \ge 1\}, \quad \{a^pb^q \mid p > q \ge 1\}, \quad \{a^pb^q \mid p \ge q \ge 0\}, \quad \{a^pb^q \mid p > q \ge 0\},$$

2- Describe the language $L(G, T_2)$ by an expression analogous to the expressions given at question 1.

3- Describe the language L(G, S) by an expression analogous to the expressions given at question 1.

4- Is the grammar G ambiguous ?

Indication: consider the word *aaab*.

5- What is the set of of words which have exactly one derivation tree from S within the grammar G?

6- Construct a non-ambiguous context-free grammar G', with axiom S', such that L(G, S) = L(G', S').

Exercise 5 [/4] We consider the context-free grammar G := (A, N, R) where $A = \{a, b, c\}$, $N = \{S_1, S_2, S_3, S_4, S_5\}$ and R consists of the following 12 rules:

$$\begin{array}{cccc} S_1 \rightarrow aS_1S_1 & S_1 \rightarrow bS_3S_1 & S_1 \rightarrow S_2c\\ S_2 \rightarrow S_2S_1 & S_2 \rightarrow aS_3 & S_2 \rightarrow S_1S_2S_1\\ S_3 \rightarrow a & S_3 \rightarrow S_1S_3 & S_4 \rightarrow cS_4\\ S_4 \rightarrow aS_4S_5 & S_5 \rightarrow aS_5 & S_5 \rightarrow aS_4a \end{array}$$

The start symbol of G is S_1 .

1- What are the *productive* non-terminals of G?

2- What are the *useful* non-terminals of G?

3- Transform the grammar G into an equivalent grammar G' where every non-terminal is productive and useful.

4- Is the language $L(G, S_1)$ empty ?

5- Is the language $L(G, S_1)$ infinite ?

Exercice 6 [/4] We consider the two following context-free grammars $G_1 := (A, N_1, R_1), G_2 := (A, N_2, R_2)$ where $A = \{a, b, c\}, N_1 = \{S, T\}, N_2 = \{U\}, R_1$ consists of the rules: **r1**: $S \to aSbT$ **r2**: $S \to cT$ **r3**: $T \to aTTb$ **r4**: $T \to c$ and R_2 consists of the rules: **r4**: $U \to UUb$ **r5**: $U \to a$ 1- Construct a context-free grammar generating the language $L(G_1, S) \cdot L(G_2, U)$. 2- Construct a context-free grammar generating the language $L(G_1, S) \cup L(G_2, U)$. 3- Construct a context-free grammar generating the language $L(G_1, S) \cup L(G_2, U)$.

$$\varphi(a) = xy, \ \varphi(b) = yx, \ \varphi(c) = y$$

We recall this means that, for every word $w = a_1 \cdots a_i \cdots a_n$, where the letters $a_1, \ldots, a_i \ldots, a_n$ belong to $\{a, b, c\}^*$:

$$\varphi(w) = \varphi(a_1) \cdots \varphi(a_i) \cdots \varphi(a_n)$$

and $\varphi(\varepsilon) = \varepsilon$. For example:

$$\varphi(ab) = xyyx, \ \varphi(baa) = yxxyxy, \ \varphi(cba) = yyxxyx$$

Construct a context-free grammar H_1 generating $\varphi(\mathcal{L}(G_1, S))$ and a context-free grammar H_2 generating $\varphi(\mathcal{L}(G_2, U))$.