Formal Languages-Course 4.

. wygod)
” - A5G P
universite el) R
e BOR BEAUX l:??;m LANGUAGE 3 “—OK'*V HU to}
5 ‘s Sh Ry ko ¢

el S - ik
Formal Languages-Course 4.

Géraud Sénizergues

Bordeaux university

14/05/2020

Master computer-science MINF19, |EI, 2019/20

1/56

Formal Languages-Course 4.

contents

Closure properties of regular languages
Decision problems for regular languages
Non-regular languages
Context-free grammars

m Word rewriting

m Context-free grammars

m Syntax-trees
m Derivations

2/56

Closure properties of regular
languages

3/56

Formal Languages-Course 4.

I—Closure properties of regular languages

regular operations

Theorem

Let X be a finite alphabet. The set of regular languages over ¥* is
closed under the operations : union, product, star, cross.

Proof: Let L, L’ be regular languages over X*. Let e, e’ € RE(X)
such that v(e) = L,v(e’) = L'. Then f := eU € is also a regular
expression. Since v(f) = LUL , LU L is regular too. O

For product, star and cross similar arguments apply.

4/56

Formal Languages-Course 4.

I—Closure properties of regular languages

boolean operations

Theorem

Let X be a finite alphabet. The set of regular languages over X* is
closed under the operations : union, intersection, complement,
set-difference.

By Kleene's theorem we can use, as well, the notion of recognizable
language.

Closure under complement :

Let L be a regular language over X*. By Kleene's theorem L is
recognized by some complete dfa A = (Q,X,d, qo, F).

Let A=(Q,X,d,q0,Q\ F). For every w € X* :

weCL& notw e L<s not §%(qo,w) € F < 0*(qo,w) €

Q\ F < w e L(A'). Hence CL is recognizable. [J

5/56

Formal Languages-Course 4.

I—Closure properties of regular languages

boolean operations

proof of the theorem :
Let Ly, L, be regular languages over ¥*.
We have seen that CL; is regular.

LiNL, = C(CLl U CLQ).

Hence closure under complement and union shows that L1 N Ly is
regular.

Ll\L2 =L, NCL,.

Hence, closure under intersection and complement shows that
Ly \ Ly is regular. O

6 /56

Formal Languages-Course 4.

I—Closure properties of regular languages

homomorphisms

Let >, A be two finite alphabets.

A monoid-homomorphism : h: ¥* — A* is a map which is

compatible with the product and the neutral element i.e. :
Vu,v e X* h(u-v) = h(u)-h(v), h(e) =e¢.

Since every word is a finite product of letters, a
monoid-homomorphism is completely defined by the images of the
letters : h(x) for x € £. Then :

h(XO"'}U"'X%—l):: h(XO)"'fK}U)"'h(X%—l)

7/56

Formal Languages-Course 4.

I—Closure properties of regular languages

homomorphisms : examples

Let ¥ ={a, b}, A={a, b,c,d}.
Let h: X* — A* homorphism such that

h(a) = abc, h(b) = dc

Then
h(abb) = h(a) - h(b) - h(b) = abcdcdc
=h

.).
h(bba) = h(b) - h(b) - h(a) = dcdcabc

8/56

Formal Languages-Course 4.

I—Closure properties of regular languages

substitutions

Let >, A be two finite alphabets.

A substitution is a map P(X*) — P(X*) which is compatible with
the product and the (arbitrary) union, and with the two neutral
elements {¢} (neutral element wrt -), (neutral element wrt U)
ie. VLM e P(X*),(L;)ics family of languages over ¥ :

o(L-M)=o(L)-o(M), o(JL)=Ja(L)

iel i€l

o({e}) = {e}, o(0) =0.

The substitution is called regular if every o(x) for x € ¥ is regular.

9/56

Formal Languages-Course 4.

I—Closure properties of regular languages

substitutions : examples

Let ¥ ={a, b}, A={a, b,c,d},
o : P(X*) — P(A*) substitution such that

o(a) ={a,ac}, o(b)={dd,dc}
Then
o({abb}) = o(a)-a(b)-o(b)
= {a,ac}-{dd,dc}-{dd,dc}
= {add, adc, acdd, acdc} - {dd, dc}
= {adddd, adcdd, acdddd, acdcdd, adddc, adcdc,
acdddc, acdcdc}

10 /56

Formal Languages-Course 4.

I—Closure properties of regular languages

substitutions : examples

o({a, abb})

o({a}) Uo({abb})

{a, ac} U {adddd, adcdd, acdddd, acdcdd, adddc,
adcdc, acdddc, acdcdc}

{a, ac, adddd, adcdd, acdddd, acdcdd, adddc,
adcdc, acdddc, acdcdc}.

11/56

Formal Languages-Course 4.

I—Closure properties of regular languages

substitutions : examples

Let ¥ ={a, b}, A={a b,c,d}.

Let o : P(X*) — P(A*) substitution such that
o(a)={a" | n 21}, o(b) = {bbb}

Then

o({ab}) = o(a)-a(b)
= {a"bbb|n>1}

o({aba}) = o(a)-o(b) o(a)
= {a"bbba™ |n>1,m>1}

12 /56

Formal Languages-Course 4.

I—Closure properties of regular languages

substitutions : examples

o({aba}) = {a” bbba™ | n>1,m > 1}.
Hence :

aaaabbba € o({aba}), abbbaaaaaaaaa € o({aba}).

13 /56

Formal Languages-Course 4.

I—Closure properties of regular languages

regular substitutions

Theorem

Let ¥, A be finite alphabets.

I- if L e REG(X*) and h: ¥* — A* is a monoid-homomorphism
then h(L) € REG(A*).

2-if L € REG(X*) and o : ¥* — A* is a regular substitution, then
(L) € REG(A®).

In short : the family of regular languages is closed under the
operations : homorphism, regular substitution.

14 /56

Formal Languages-Course 4.

I—Closure properties of regular languages

regular substitutions

Proof
Suppose L = v(e) for some e € RE(X).
Let o(x) = v(ex) for ex € RE(A). We recall the auxiliary alphabet

AUX ={0,®,®,*, {(,)}
Let us consider the new regular expression :

f:= h(e)

where h: (X U AUX)*—(A U AUX)* is the monoid-homorphism
that fixes all the letters in AUX and maps every x € ¥ onto

h(x) = ex.

15 /56

Formal Languages-Course 4.

I—Closure properties of regular languages

regular substitutions

One can check that, for every regular expression e € RE(X)

v(h(e)) = a(v(e)).

(by induction on the size of). Hence

v(f) = v(h(e)) = o(v(e)) = o(L).

Hence o(L) is regular. O

16 / 56

Formal Languages-Course 4.

I—Closure properties of regular languages

regular substitutions :example

Let ¥ ={a, b}, A={a b,c,d}.
Let o : P(X*) — P(A*) substitution such that

o(a) = (bc)*, o(b) = (ac)* U bbb
Let L = v(e) where

e =ab*a

.Then
f = (bc)* - ((ac)" U bbb)* - (bc)*.

(L) = v(f).

17 /56

Formal Languages-Course 4.

I—Closure properties of regular languages

Reversal

Proposition

Let X be a finite alphabets.
If L € REG(X*) then LR € REG(Z*).

Proof :
We define inductively the map e — ef : RE(X)—RE(X) by :
Vx € X,Ve, e € RE(Y),

0'=0 x' =x
leme) = (et @€
(e@e) = (" @ el
(ex)" = (e %)
(e) = (ef)

18 /56

Formal Languages-Course 4.

I—Closure properties of regular languages

Reversal

We can prove by induction that : Ve € RE(X)

v(e) = (v(e)".

Let L € REG(X*). There exists some e € RE(X) such that
L = v(e). By the above equality :

LR = V(e)R = v(e?)

hence LR is regular.
O

19 /56

Decision problems for regular
languages

20/56

Formal Languages-Course 4.

I—Decision problems for regular languages

membership and emptiness

The following problems are decidable :

INPUT :a dfa A and a word w.

QUESTION :w € L(A)?

(in time O(|wl)).

Just compute §*(qo, w) by the algorithm we mentionned earlier.
INPUT : a regular expression e and a word w.

QUESTION :w € L7

(in time O(|w| - |e])).

Compute (by Glushkov algorithm) a nfa A recognizing L.. Then
simulate the determinized automaton D over input w.

INPUT :a nfa A.

QUESTION :L(A) =07

(in time O(||.A[])).

Compute the set of accessible states Q; and test whether

Ql N F = @

21/56

Formal Languages-Course 4.

I—Decision problems for regular languages

inclusion

INPUT : two dfa A,B.

QUESTION :L(A) C L(B)?

(in time O(A] - | B]).

Compute a dfa C recognizing the difference
L(A)\ L(B) = L(A) N CL(B).

Test C for emptiness.

INPUT : two regular expressions e, f.

QUESTION :L. C L¢?

(in time 20(el1fD).

Translate, by Glushkov algorithm e, f into nfa A, B. Determinize
the two nfa into dfa A", B’. Apply previous algorithm to these
dfa .

22 /56

Non-regular languages

23/56

Formal Languages-Course 4.

L Non-regular languages

An example

Proposition

The language L = {a"b" | n > 1} is not regular.

Proof :
Suppose that some nfa A is such that

L =1L(A) (1)
Let N = Card(Q). Let us note

u = (qo,x0,q1)(q1, x1, q2) - - - (qe—1, X2n—1, G2nv)
be a computation reading tr(u) = w = aVbV = xox1 - xon_1.
Since Card({qo,q1,..-,qn}) = N+ 1> Card(Q) there must exist

two different integers i < j such that
0<i<j<Nand g =g.

24 /56

Formal Languages-Course 4.

L Non-regular languages

An example

Leta=a', v=a g=aVJbN. We have

o v B
o —A9qi —7A G —A qQ2N-

As well, since g; —> 4 q; = g; we get the computation

Q v, v, B
o —A Qi —AQ —Aq] —AG2N-
The trace of this new computation is :
w' = av?pg = aVtiph,
showing that L(.A) L£L, contradicting (1). We have proved, ad
absurdum, that for every nfa A

L # L(A).

NB : this way of showing that a language L is not regular can be
adapted to numerous languages.
O 25 /56

Formal Languages-Course 4.

L Context-free grammars

Context-free grammars

26 /56

Formal Languages-Course 4.
I—Contextffree grammars

L Word rewriting

Rewriting

Let A be an alphabet (i.e. a set) and
R C A* x A*.
We define binary relations over A*
—r, —DRr, —SRr, —5r
where n is an integer, by u— v iff 3o, 8 € A*,3(¢,r) € R
u=oalf, v=arp.
u—5pv iff Jug, u, ..., u, € A* such that
U=uUp —RU —R... —RU —RU41... —R U =V

27 /56

Formal Languages-Course 4.
I—Contextffree grammars

L Word rewriting

Rewriting

* n + n
—R— U —>R, —PR— U —R .
n>0 n>1
A sequence (ug, u1, ..., u,) such that
Uu=u—RU —R... R U —RU4t1... —R Up is called
a derivation (modulo R). Its length is n.

28 /56

Formal Languages-Course 4.
I—Contextffree grammars

L Context-free grammars

c.f. grammars :definition

Definition

A context-free grammar is a triple (A, N, R) where :

- A is a finite alphabet, called the terminal alphabet

- N is a finite alphabet, called the non-terminal alphabet

- R is a finite set of ordered pairs, R C N x (AU N)* ;R is called
the set of productions.

R is also called the set of “rules” of the grammar.
For every word w € (N U A)* we define

L(G,w)={uec A" |S —Sru}
it is the language generated by G from w.

20 /56

Formal Languages-Course 4.

L Context-free grammars

L Context-free grammars

c.f. grammars : examples

A rule (S, m) € R is often denoted by

S—m

Example

G = (A, N, R) with
A={a, b}, N={S},

R: S— aSSs, S— b.

A derivation :

S — aSS — aSaSS — abaSS — abaSb — ababb

Hence ababb € L(G, S).

30/56

Formal Languages-Course 4.
I—Context—free grammars

L Context-free grammars

c.f. grammars : examples

SEE

H = (A, N, R) where
N={C}, A={s,b,e,w,i}
R consists of the rules :
C— GCC, C—bCe, C—wC, C—i
abbreviated as :
C— GCsC | bCe | wC | i
Intuitive meaning :

s = separator, b = begin, e = end,
w = while cond, /= instruction. 31/56

Formal Languages-Course 4.

L Context-free grammars

L Context-free grammars

c.f. grammars : examples

H = (A, N, R) whith set of rules :
C — CsC|bCe|wCli
Some derivation and word :
C — wC — wbCe — wb(CsCe — wbw(CsCe

— wbwisCe — wbwisie

32/56

Formal Languages-Course 4.

L Context-free grammars

L Context-free grammars

c.f. grammars : examples

Example

wbwisie can be seen as :

while cond
--begin
--while cond
-———-i

33/56

Formal Languages-Course 4.

L Context-free grammars

L Context-free grammars

context-free languages

Definition
A language L C A* is called context-free iff there exists some
context-free grammar G = (A, N, R) and some non-terminal S € N
such that

L=L(G,S)

We denote by CF(A*) the set of all context-free languages over the
alphabet A.

We sometimes include S in the grammar (A, N, R, S) and call S
the “starting-symbol” or the “axiom” of the grammar.

34 /56

Formal Languages-Course 4.
I—Contextffree grammars

L Syntax-trees

Derivation-trees : examples

Some derivation-trees for the grammar : G; = ({a, b}, {S}, R1)
with

Ri: §$—aSS, S— b.

S

[N ™~
/ /N
S0 S

b

35/56

Formal Languages-Course 4.

L Context-free grammars

L Syntax-trees

Derivation-trees : definition

Definition

We call derivation-tree for the grammar G = (A, N, R), every
planar, rooted tree, T, labelled over AU N U {e} fulfilling both
properties : for every node x, with sequence of sons y1, o, ..., Yk,
(D1) : T(x) — T(y1)- T(y2)--- T(y«x) is a rule of R

(D2) : if T(yi) =¢ then k =i = 1.

36 /56

Formal Languages-Course 4.
I—Contextffree grammars

L Syntax-trees

Derivation-trees : examples

Some derivation-tree for the grammar : Gy = ({a, b}, {S}, R2) with

Ro: §— aSbS, S — bSaS,S — ¢.

[0}
N
. /

37/56

Formal Languages-Course 4.
I—Contextffree grammars

L Syntax-trees

Derivation-trees : examples

GQ = ({a, b}, {5}, R2> with

R: §— aShS, S — bS5aS,S — «.

The following planar tree is not a derivation-tree (D2 is violated)

0
N
. /

38/56

Formal Languages-Course 4.
I—Contextffree grammars

L Syntax-trees

Derivation-trees : examples

GQ = ({a, b}, {5}, R2> with

R: §— aShS, S — bS5aS,S — «.

The following planar tree is not a derivation-tree for G, (D1 is
violated)

[0}
N
. /

b 39 /56

Formal Languages-Course 4.
I—Contextffree grammars

L Syntax-trees

Derivation-trees : the frontier

Let T be a rooted, planar, tree labelled over AU {e} (i.e each node

x has a label T(x) € AU{e}). Let y1,...,¥i,...,yn be the
sequence of leaves of T , ordered from left to right. We call frontier

of T the word

fr(T) = T(y1) - T(yi)--- T(yn)

40 /56

Formal Languages-Course 4.
I—Contextffree grammars

L Syntax-trees

Derivation-trees : the frontier

The frontier of the derivation-tree below is :

fr(T)=a-e-b-a-c-b-c=abab

0
N
. /

41 /56

Formal Languages-Course 4.

L Context-free grammars

L Syntax-trees

Construction-trees :definition

Definition

We call construction-tree for the grammar G = (A, N, R), every
planar, rooted tree, T, labelled over R fulfilling both properties : for
every node x, with sequence of sons y1,ys, ..., Yk,

(C1) : T(x) is a rule of the form U — wy Uy - wo Uz - - - wy U w11
where Wi, Wo ... Wiy1 € A* U, Us, ... UceN

(C2) :Vj e [1,k], T(yj) is a rule with left-hand side U;.

42 /56

Formal Languages-Course 4.
I—Contextffree grammars

L Syntax-trees

Construction-trees : examples

Some construction-trees for the grammar : G; = ({a, b}, {S}, R1)
with

R1:{r1,r2} I’125—>355, I’2ZS—>b.
RN RN

r2

43 /56

Formal Languages-Course 4.
I—Contextffree grammars

L Syntax-trees

Construction-trees : the yield

The yield of a construction-tree T is defined inductively by :
1-ifr: U-w e A*

yd(r) =w

2-ifr: U — W1U1 . W2U2"'WkUka+1

yd(r(Tl, Tz,. N Tk)) = Wi - yd(Tl) s Wo - yd(T2)~ e Wy yd(Tk) * W41

44 /56

Formal Languages-Course 4.
I—Contextffree grammars

L Syntax-trees

Construction-trees : examples

Some construction-trees for the grammar : G; = ({a, b}, {S}, R1)
with

R1:{r1,r2} I’125—>355, I’215—>b.

yd(T1) = a-yd(T1/0) - yd(Ty/1) = ab- yd(Ty/1) = ababb,
yd(T2) = a-yd(T2/0) - yd(T2/1) = a-yd(T2/0)b = aabbb.

7N N
NN

rz
Tl

45 /56

Formal Languages-Course 4.

L Context-free grammars

L Derivations

Leftmost derivations

Definition

Let G = (A, N, R) be a context-free grammar. We define the binary
relation y—r C (AUN)* x (AUN)* by : u ;)—>grv if and only if,
Ja € A*,3(¢,r) € R,38 € (AU N)*

u=aolf, v=arp.

46 /56

Formal Languages-Course 4.
I—Contextffree grammars

L Derivations

Leftmost derivations

* n + n
(TR= U TRy (T R= U (TR -
n>0 n>1

A sequence (ug, u1, ..., u,) such that

U=Ug(—>RUL{—R--- PR U (—FRUiy1... (—FR Up IS
called a leftmost derivation (modulo R). lts length is n.

47 / 56

Formal Languages-Course 4.
I—Context—free grammars

L Derivations

Leftmost derivations :example

G = (A, N, R) with

A={a b}, N={S},
R: §—aSS, S— b.

A leftmost derivation :

S ,— aSS ;)— aaSSS ,—— aabS$S ,— aabaSSS ,— aababS$

¢1—— aababb$S ,— aababbb

Hence aababbb € L(G, S).

48 /56

Formal Languages-Course 4.

L Context-free grammars

L Derivations

Rightmost derivations

Definition

Let G = (A, N, R) be a context-free grammar. We define the binary
relation —g , C (AU N)* x (AU N)* by : u—r (v if and only if,
Ja e (AUN)*,3(¢,r) € R0 € A*

u=alp, v=arf.

49 /56

Formal Languages-Course 4.
I—Contextffree grammars

L Derivations

Rightmost derivations

* n + n
HR,r: U HR,ry HR,r: U HR,r .
n>0 n>1

A sequence (ug, u1, ..., u,) such that

U=uUp —R,y UL —Ryr--- —Ryr U —Ryr Uitl--- — R, Up IS
called a rightmost derivation (modulo R). Its length is n.

50/56

Formal Languages-Course 4.
I—Context—free grammars

L Derivations

Rightmost derivations

G = (A, N, R) with

A={a b}, N={S},
R: §—aSS, §S— b.

A rightmost derivation :

S —r,raSS —r,aSb —r, aaSSb —r , aaSaSSb
—R,r aaSaSbb —r , aaSabbb —r , aababbb.
Hence aababbb € L(G, S).

51/56

Formal Languages-Course 4.

L Context-free grammars

L Derivations

Trees vs derivations

Theorem

Given a context-free G = (A, N, R) a non-terminal S € N and a
word u € A*, the following propositions are equivalent :

(1) 3T derivation-tree, with root labelled by S and frontier equal
to u.

(2) 3D leftmost-derivation (modulo R) from S to u.

(3) 3D rightmost-derivation (modulo R) from S to u.

(4) 3D derivation (modulo R) from S to u.

52 /56

Formal Languages-Course 4.
I—Contextffree grammars

L Derivations

Trees vs derivations

Let us sketch a proof of the theorem.

Recall : a “traversal’ of a rooted tree, is a total ordering of its
nodes xi, X2, ..., X, such that, if x; is an ancestor of x;, then / < j.
(1) = (2):

The depth-first, left-to-right, traversal of T gives a
leftmost-derivation of fr(T).

(1) = (3):

The depth-first, right-to-left, traversal of T gives a
rightmost-derivation of fr(T).

(2) = (4) :

Every leftmost-derivation is a derivation.

3)=4):

Every rightmost-derivation is a derivation.

53 /56

Formal Languages-Course 4.
I—Contextffree grammars

L Derivations

Trees vs derivations

(4) = (1) : by induction on the length of the derivation.
Let us suppose that

DZS:V0—>R Vi—R...—RVi—RVitl... —R Vp=1U

be a derivation (modulo R).

Basis: n=1

The tree with root S and sons the letters of u is a derivation-tree
T with fr(T) = u.

Induction-step : n > 2

S—>V1
is a rule of R :
vi=wiUr-wy- U wiUpwy

where wi, wy ... w1 € A Up, Us, ... Uk € N
54 /56

Formal Languages-Course 4.
I—Contextffree grammars

L Derivations

Trees vs derivations

Then u must have the form
U= wiluy - Wl - WilWgi1

where)
Uk 4nR uy, an:n—l
j=1
(this shape for u will be proved in course 7, fundamental lemma,
version 2).
By induction hypothesis : for every j € [1, k], there exists a

derivation-tree Ty with root Uy and fr(Ty) = uk. The
derivation-tree T on next figure has root S and fr(T) = wv.

55 /56

Formal Languages-Course 4.
I—Contextffree grammars

L Derivations

Trees vs derivations

wi uy w2 u2 Wi Uk Wik+1

56 /56

	Closure properties of regular languages
	Decision problems for regular languages
	Non-regular languages
	Context-free grammars
	Word rewriting
	Context-free grammars
	Syntax-trees
	Derivations

