
Formal Languages-Course 4.

Formal Languages-Course 4.

Géraud Sénizergues

Bordeaux university

14/05/2020

Master computer-science MINF19, IEI, 2019/20

1 / 56



Formal Languages-Course 4.

contents

1 Closure properties of regular languages

2 Decision problems for regular languages

3 Non-regular languages

4 Context-free grammars
Word rewriting
Context-free grammars
Syntax-trees
Derivations

2 / 56



Formal Languages-Course 4.

Closure properties of regular languages

Closure properties of regular
languages

3 / 56



Formal Languages-Course 4.

Closure properties of regular languages

regular operations

Theorem

Let Σ be a finite alphabet. The set of regular languages over Σ∗ is
closed under the operations : union, product, star, cross.

Proof: Let L, L′ be regular languages over Σ∗. Let e, e′ ∈ RE(Σ)
such that ν(e) = L, ν(e′) = L′. Then f := e ∪ e′ is also a regular
expression. Since ν(f ) = L ∪ L′ , L ∪ L′ is regular too. �
For product, star and cross similar arguments apply.

4 / 56



Formal Languages-Course 4.

Closure properties of regular languages

boolean operations

Theorem

Let Σ be a finite alphabet. The set of regular languages over Σ∗ is
closed under the operations : union, intersection, complement,
set-difference.

By Kleene’s theorem we can use, as well, the notion of recognizable
language.
Closure under complement :

Let L be a regular language over Σ∗. By Kleene’s theorem L is
recognized by some complete dfa A = 〈Q,Σ, δ, q0,F 〉.
Let A = 〈Q,Σ, δ, q0,Q \ F 〉. For every w ∈ Σ∗ :
w ∈ CL ⇔ not w ∈ L ⇔ not δ∗(q0,w) ∈ F ⇔ δ∗(q0,w) ∈
Q \ F ⇔ w ∈ L(A′). Hence CL is recognizable. �

5 / 56



Formal Languages-Course 4.

Closure properties of regular languages

boolean operations

proof of the theorem :

Let L1, L2 be regular languages over Σ∗.
We have seen that CL1 is regular.

L1 ∩ L2 = C(CL1 ∪ CL2).

Hence closure under complement and union shows that L1 ∩ L2 is
regular.

L1 \ L2 = L1 ∩ CL2.

Hence, closure under intersection and complement shows that
L1 \ L2 is regular. �

6 / 56



Formal Languages-Course 4.

Closure properties of regular languages

homomorphisms

Let Σ,∆ be two finite alphabets.
A monoid-homomorphism : h : Σ∗ → ∆∗ is a map which is
compatible with the product and the neutral element i.e. :

∀u, v ∈ Σ∗, h(u · v) = h(u) · h(v), h(ε) = ε.

Since every word is a finite product of letters, a
monoid-homomorphism is completely defined by the images of the
letters : h(x) for x ∈ Σ. Then :

h(x0 · · · xi · · · xℓ−1) = h(x0) · · · h(xi ) · · · h(xℓ−1)

7 / 56



Formal Languages-Course 4.

Closure properties of regular languages

homomorphisms : examples

Let Σ = {a, b}, ∆ = {a, b, c , d}.
Let h : Σ∗ → ∆∗ homorphism such that

h(a) = abc, h(b) = dc

Then
h(abb) = h(a) · h(b) · h(b) = abcdcdc

h(bba) = h(b) · h(b) · h(a) = dcdcabc

8 / 56



Formal Languages-Course 4.

Closure properties of regular languages

substitutions

Let Σ,∆ be two finite alphabets.
A substitution is a map P(Σ∗) → P(Σ∗) which is compatible with
the product and the (arbitrary) union, and with the two neutral
elements {ε} (neutral element wrt ·), ∅ (neutral element wrt ∪)
i.e. :∀L,M ∈ P(Σ∗), (Li )i∈I family of languages over Σ :

σ(L ·M) = σ(L) · σ(M), σ(
⋃

i∈I

Li ) =
⋃

i∈I

σ(Li )

σ({ε}) = {ε}, σ(∅) = ∅.

The substitution is called regular if every σ(x) for x ∈ Σ is regular.

9 / 56



Formal Languages-Course 4.

Closure properties of regular languages

substitutions : examples

Example

Let Σ = {a, b}, ∆ = {a, b, c , d},
σ : P(Σ∗) → P(∆∗) substitution such that

σ(a) = {a, ac}, σ(b) = {dd , dc}

Then

σ({abb}) = σ(a) · σ(b) · σ(b)

= {a, ac} · {dd , dc} · {dd , dc}

= {add , adc , acdd , acdc} · {dd , dc}

= {adddd , adcdd , acdddd , acdcdd , adddc, adcdc ,

acdddc , acdcdc}

10 / 56



Formal Languages-Course 4.

Closure properties of regular languages

substitutions : examples

Example

σ({a, abb}) = σ({a}) ∪ σ({abb})

= {a, ac} ∪ {adddd , adcdd , acdddd , acdcdd , adddc ,

adcdc , acdddc , acdcdc}

= {a, ac , adddd , adcdd , acdddd , acdcdd , adddc ,

adcdc , acdddc , acdcdc}.

11 / 56



Formal Languages-Course 4.

Closure properties of regular languages

substitutions : examples

Example

Let Σ = {a, b}, ∆ = {a, b, c , d}.
Let σ : P(Σ∗) → P(∆∗) substitution such that

σ(a) = {an
2
| n ≥ 1}, σ(b) = {bbb}

Then

σ({ab}) = σ(a) · σ(b)

= {an
2
bbb | n ≥ 1}

σ({aba}) = σ(a) · σ(b) · σ(a)

= {an
2
bbbam

2
| n ≥ 1,m ≥ 1}

12 / 56



Formal Languages-Course 4.

Closure properties of regular languages

substitutions : examples

Example

σ({aba}) = {an
2
bbbam

2
| n ≥ 1,m ≥ 1}.

Hence :

aaaabbba ∈ σ({aba}), abbbaaaaaaaaa ∈ σ({aba}).

13 / 56



Formal Languages-Course 4.

Closure properties of regular languages

regular substitutions

Theorem

Let Σ,∆ be finite alphabets.
1- if L ∈ REG(Σ∗) and h : Σ∗ → ∆∗ is a monoid-homomorphism
then h(L) ∈ REG(∆∗).
2- if L ∈ REG(Σ∗) and σ : Σ∗ → ∆∗ is a regular substitution, then
σ(L) ∈ REG(∆∗).

In short : the family of regular languages is closed under the
operations : homorphism, regular substitution.

14 / 56



Formal Languages-Course 4.

Closure properties of regular languages

regular substitutions

Proof

Suppose L = ν(e) for some e ∈ RE(Σ).
Let σ(x) = ν(ex ) for ex ∈ RE(∆). We recall the auxiliary alphabet

AUX = {0,⊕,⊗, ⋆, 〈, 〉}

Let us consider the new regular expression :

f := h(e)

where h : (Σ ∪ AUX)∗→(∆ ∪ AUX)∗ is the monoid-homorphism
that fixes all the letters in AUX and maps every x ∈ Σ onto

h(x) = ex .

15 / 56



Formal Languages-Course 4.

Closure properties of regular languages

regular substitutions

One can check that, for every regular expression e ∈ RE(Σ)

ν(h(e)) = σ(ν(e)).

(by induction on the size of e). Hence

ν(f ) = ν(h(e)) = σ(ν(e)) = σ(L).

Hence σ(L) is regular. �

16 / 56



Formal Languages-Course 4.

Closure properties of regular languages

regular substitutions :example

Example

Let Σ = {a, b}, ∆ = {a, b, c , d}.
Let σ : P(Σ∗) → P(∆∗) substitution such that

σ(a) = (bc)∗, σ(b) = (ac)∗ ∪ bbb

Let L = ν(e) where
e = ab∗a

.
Then

f = (bc)∗ · ((ac)∗ ∪ bbb)∗ · (bc)∗.

σ(L) = ν(f ).

17 / 56



Formal Languages-Course 4.

Closure properties of regular languages

Reversal

Proposition

Let Σ be a finite alphabets.
If L ∈ REG(Σ∗) then LR ∈ REG(Σ∗).

Proof :

We define inductively the map e 7→ et : RE(Σ)→RE(Σ) by :
∀x ∈ Σ,∀e, e′ ∈ RE(Σ),

0t = 0 x t = x

〈e ⊕ e′〉
t
= 〈et ⊕ e′

t
〉

〈e ⊗ e′〉
t
= 〈e′

t
⊗ et〉

〈e ⋆ 〉t = 〈et ⋆ 〉.

〈e〉t = 〈et〉.

18 / 56



Formal Languages-Course 4.

Closure properties of regular languages

Reversal

We can prove by induction that : ∀e ∈ RE(Σ)

ν(et) = (ν(e))R .

Let L ∈ REG(Σ∗). There exists some e ∈ RE(Σ) such that
L = ν(e). By the above equality :

LR = ν(e)R = ν(et)

hence LR is regular.
�

19 / 56



Formal Languages-Course 4.

Decision problems for regular languages

Decision problems for regular
languages

20 / 56



Formal Languages-Course 4.

Decision problems for regular languages

membership and emptiness

The following problems are decidable :
INPUT : a dfa A and a word w .
QUESTION :w ∈ L(A)?
(in time O(|w |)).
Just compute δ∗(q0,w) by the algorithm we mentionned earlier.
INPUT : a regular expression e and a word w .
QUESTION :w ∈ Le?
(in time O(|w | · |e|)).
Compute (by Glushkov algorithm) a nfa A recognizing Le . Then
simulate the determinized automaton D over input w .
INPUT : a nfa A.
QUESTION :L(A) = ∅?
(in time O(‖A‖)).
Compute the set of accessible states Q1 and test whether
Q1 ∩ F = ∅.

21 / 56



Formal Languages-Course 4.

Decision problems for regular languages

inclusion

INPUT : two dfa A,B.
QUESTION :L(A) ⊆ L(B)?
(in time O(‖A‖ · ‖B‖)).
Compute a dfa C recognizing the difference
L(A) \ L(B) = L(A) ∩ CL(B).
Test C for emptiness.

INPUT : two regular expressions e, f .
QUESTION :Le ⊆ Lf ?
(in time 2O(|e|·|f |)).
Translate, by Glushkov algorithm e, f into nfa A,B. Determinize
the two nfa into dfa A′,B′. Apply previous algorithm to these
dfa .

22 / 56



Formal Languages-Course 4.

Non-regular languages

Non-regular languages

23 / 56



Formal Languages-Course 4.

Non-regular languages

An example

Proposition

The language L = {anbn | n ≥ 1} is not regular.

Proof :
Suppose that some nfa A is such that

L = L(A) (1)

Let N = Card(Q). Let us note

u = (q0, x0, q1)(q1, x1, q2) · · · (qℓ−1, x2N−1, q2N)

be a computation reading tr(u) = w = aNbN = x0x1 · · · x2N−1.
Since Card({q0, q1, . . . , qN}) = N + 1 > Card(Q) there must exist
two different integers i < j such that

0 ≤ i < j ≤ N and qi = qj .

24 / 56



Formal Languages-Course 4.

Non-regular languages

An example

Let α = ai , v = aj−i , β = aN−jbN . We have

q0
α

−→A qi
v

−→A qj
β

−→A q2N .

As well, since qi
v

−→A qj = qi we get the computation

q0
α

−→A qi
v

−→A qj
v

−→A qj
β

−→A q2N .

The trace of this new computation is :

w ′ = αv2β = aN+j−ibN ,

showing that L(A) 6 ⊆L, contradicting (1). We have proved, ad
absurdum, that for every nfa A

L 6= L(A).

NB : this way of showing that a language L is not regular can be
adapted to numerous languages.
� 25 / 56



Formal Languages-Course 4.

Context-free grammars

Context-free grammars

26 / 56



Formal Languages-Course 4.

Context-free grammars

Word rewriting

Rewriting

Let A be an alphabet (i.e. a set) and

R ⊆ A∗ × A∗.

We define binary relations over A∗

−→R ,
n

−→R ,
∗

−→R ,
+

−→R

where n is an integer, by u−→Rv iff ∃α, β ∈ A∗,∃(ℓ, r) ∈ R

u = αℓβ, v = αrβ.

u
n

−→Rv iff ∃u0, u1, . . . , un ∈ A∗ such that

u = u0 −→R u1 −→R . . . −→R ui −→R ui+1 . . . −→R un = v

27 / 56



Formal Languages-Course 4.

Context-free grammars

Word rewriting

Rewriting

∗
−→R=

⋃

n≥0

n
−→R ,

+
−→R=

⋃

n≥1

n
−→R .

A sequence (u0, u1, . . . , un) such that
u = u0 −→R u1 −→R . . . −→R ui −→R ui+1 . . . −→R un is called
a derivation (modulo R). Its length is n.

28 / 56



Formal Languages-Course 4.

Context-free grammars

Context-free grammars

c.f. grammars :definition

Definition

A context-free grammar is a triple 〈A,N,R〉 where :
- A is a finite alphabet, called the terminal alphabet
- N is a finite alphabet, called the non-terminal alphabet
- R is a finite set of ordered pairs, R ⊆ N × (A ∪ N)∗ ;R is called
the set of productions.

R is also called the set of “rules” of the grammar.
For every word w ∈ (N ∪ A)∗ we define

L(G ,w) = {u ∈ A∗ | S
∗

−→R u}

it is the language generated by G from w .

29 / 56



Formal Languages-Course 4.

Context-free grammars

Context-free grammars

c.f. grammars : examples

A rule (S ,m) ∈ R is often denoted by

S −→ m

Example

G = 〈A,N,R〉 with

A = {a, b}, N = {S},

R : S −→ aSS , S −→ b.

A derivation :

S −→ aSS −→ aSaSS −→ abaSS −→ abaSb −→ ababb

Hence ababb ∈ L(G ,S).

30 / 56



Formal Languages-Course 4.

Context-free grammars

Context-free grammars

c.f. grammars : examples

Example

H = 〈A,N,R〉 where

N = {C}, A = {s, b, e,w , i}

R consists of the rules :

C −→ CsC , C −→ bCe, C −→ wC , C −→ i

abbreviated as :

C −→ CsC | bCe | wC | i

Intuitive meaning :
s = separator, b = begin, e = end,
w = while cond, i = instruction.
Language generated : all the correct while statements.

31 / 56



Formal Languages-Course 4.

Context-free grammars

Context-free grammars

c.f. grammars : examples

Example

H = 〈A,N,R〉 whith set of rules :

C −→ CsC |bCe|wC |i

Some derivation and word :

C −→ wC −→ wbCe −→ wbCsCe −→ wbwCsCe

−→ wbwisCe −→ wbwisie

32 / 56



Formal Languages-Course 4.

Context-free grammars

Context-free grammars

c.f. grammars : examples

Example

wbwisie can be seen as :

while cond

––begin

––while cond

––––i

––;

––i

––end

33 / 56



Formal Languages-Course 4.

Context-free grammars

Context-free grammars

context-free languages

Definition

A language L ⊆ A∗ is called context-free iff there exists some
context-free grammar G = 〈A,N,R〉 and some non-terminal S ∈ N

such that
L = L(G ,S)

We denote by CF(A∗) the set of all context-free languages over the
alphabet A.

We sometimes include S in the grammar 〈A,N,R ,S〉 and call S
the “starting-symbol” or the “axiom” of the grammar.

34 / 56



Formal Languages-Course 4.

Context-free grammars

Syntax-trees

Derivation-trees : examples

Some derivation-trees for the grammar : G1 = 〈{a, b}, {S},R1〉
with

R1 : S −→ aSS , S −→ b.

S

S

a b a b b

S S

S S

S

a a b b b

S

S S

35 / 56



Formal Languages-Course 4.

Context-free grammars

Syntax-trees

Derivation-trees : definition

Definition

We call derivation-tree for the grammar G = 〈A,N,R〉, every
planar, rooted tree, T , labelled over A ∪ N ∪ {ε} fulfilling both
properties : for every node x , with sequence of sons y1, y2, . . . , yk ,
(D1) : T (x) −→ T (y1) · T (y2) · · ·T (yk) is a rule of R
(D2) : if T (yi ) = ε then k = i = 1.

36 / 56



Formal Languages-Course 4.

Context-free grammars

Syntax-trees

Derivation-trees : examples

Some derivation-tree for the grammar : G2 = 〈{a, b}, {S},R2〉 with

R2 : S −→ aSbS , S −→ bSaS ,S −→ ε.

ε

S

b a b

S S

S
S

a ε ε

Figure – A derivation-tree

37 / 56



Formal Languages-Course 4.

Context-free grammars

Syntax-trees

Derivation-trees : examples

G2 = 〈{a, b}, {S},R2〉 with

R : S −→ aSbS , S −→ bSaS ,S −→ ε.

The following planar tree is not a derivation-tree (D2 is violated)

ε

S

b a b

S S

S
S

a ε ε ε

38 / 56



Formal Languages-Course 4.

Context-free grammars

Syntax-trees

Derivation-trees : examples

G2 = 〈{a, b}, {S},R2〉 with

R : S −→ aSbS , S −→ bSaS ,S −→ ε.

The following planar tree is not a derivation-tree for G2 (D1 is
violated)

b

S

b a b

S S

S
S

a ε ε 39 / 56



Formal Languages-Course 4.

Context-free grammars

Syntax-trees

Derivation-trees : the frontier

Let T be a rooted, planar, tree labelled over A ∪ {ε} (i.e each node
x has a label T (x) ∈ A ∪ {ε}). Let y1, . . . , yi , . . . , yn be the
sequence of leaves of T , ordered from left to right. We call frontier
of T the word

fr(T ) = T (y1) · · ·T (yi ) · · ·T (yn).

40 / 56



Formal Languages-Course 4.

Context-free grammars

Syntax-trees

Derivation-trees : the frontier

The frontier of the derivation-tree below is :

fr(T ) = a · ε · b · a · ε · b · ε = abab

ε

S

b a b

S S

S
S

a ε ε

Figure – A derivation-tree

41 / 56



Formal Languages-Course 4.

Context-free grammars

Syntax-trees

Construction-trees :definition

Definition

We call construction-tree for the grammar G = 〈A,N,R〉, every
planar, rooted tree, T , labelled over R fulfilling both properties : for
every node x , with sequence of sons y1, y2, . . . , yk ,
(C1) : T (x) is a rule of the form U −→ w1U1 ·w2U2 · · ·wkUkwk+1

where w1,w2 . . .wk+1 ∈ A∗,U1,U2, . . .Uk ∈ N

(C2) : ∀j ∈ [1, k], T (yj) is a rule with left-hand side Uj .

42 / 56



Formal Languages-Course 4.

Context-free grammars

Syntax-trees

Construction-trees : examples

Some construction-trees for the grammar : G1 = 〈{a, b}, {S},R1〉
with

R1 = {r1, r2} r1 : S −→ aSS , r2 : S −→ b.

r2

r1

r2 r1

r2 r2

r1

r1 r2

r1

43 / 56



Formal Languages-Course 4.

Context-free grammars

Syntax-trees

Construction-trees : the yield

The yield of a construction-tree T is defined inductively by :
1- if r : U→w ∈ A∗

yd(r) = w

2- if r : U −→ w1U1 · w2U2 · · ·wkUkwk+1

yd(r(T1,T2, . . . ,Tk)) = w1 · yd(T1) · w2 · yd(T2) · · ·wk · yd(Tk) · wk+1.

44 / 56



Formal Languages-Course 4.

Context-free grammars

Syntax-trees

Construction-trees : examples

Some construction-trees for the grammar : G1 = 〈{a, b}, {S},R1〉
with

R1 = {r1, r2} r1 : S −→ aSS , r2 : S −→ b.

yd(T1) = a · yd(T1/0) · yd(T1/1) = ab · yd(T1/1) = ababb,
yd(T2) = a · yd(T2/0) · yd(T2/1) = a · yd(T2/0)b = aabbb.

T2

r1

r2 r1

r2 r2

r1

r1 r2

r1 r2

T1

45 / 56



Formal Languages-Course 4.

Context-free grammars

Derivations

Leftmost derivations

Definition

Let G = 〈A,N,R〉 be a context-free grammar. We define the binary
relation ℓ−→R ⊆ (A ∪N)∗ × (A ∪N)∗ by : u ℓ−→Rv if and only if,
∃α ∈ A∗,∃(ℓ, r) ∈ R ,∃β ∈ (A ∪ N)∗

u = αℓβ, v = αrβ.

46 / 56



Formal Languages-Course 4.

Context-free grammars

Derivations

Leftmost derivations

ℓ
∗

−→R=
⋃

n≥0

ℓ
n

−→R , ℓ
+

−→R=
⋃

n≥1

ℓ
n

−→R .

A sequence (u0, u1, . . . , un) such that
u = u0 ℓ−→R u1 ℓ−→R . . . ℓ−→R ui ℓ−→R ui+1 . . . ℓ−→R un is
called a leftmost derivation (modulo R). Its length is n.

47 / 56



Formal Languages-Course 4.

Context-free grammars

Derivations

Leftmost derivations :example

Example

G = 〈A,N,R〉 with

A = {a, b}, N = {S},

R : S −→ aSS , S −→ b.

A leftmost derivation :

S ℓ−→ aSS ℓ−→ aaSSS ℓ−→ aabSS ℓ−→ aabaSSS ℓ−→ aababSS

ℓ−→ aababbS ℓ−→ aababbb

Hence aababbb ∈ L(G ,S).

48 / 56



Formal Languages-Course 4.

Context-free grammars

Derivations

Rightmost derivations

Definition

Let G = 〈A,N,R〉 be a context-free grammar. We define the binary
relation −→R,r ⊆ (A ∪ N)∗ × (A ∪ N)∗ by : u−→R,rv if and only if,
∃α ∈ (A ∪ N)∗,∃(ℓ, r) ∈ R ,∃β ∈ A∗

u = αℓβ, v = αrβ.

49 / 56



Formal Languages-Course 4.

Context-free grammars

Derivations

Rightmost derivations

∗
−→R,r=

⋃

n≥0

n
−→R,r ,

+
−→R,r=

⋃

n≥1

n
−→R,r .

A sequence (u0, u1, . . . , un) such that
u = u0 −→R,r u1 −→R,r . . . −→R,r ui −→R,r ui+1 . . . −→R,r un is
called a rightmost derivation (modulo R). Its length is n.

50 / 56



Formal Languages-Course 4.

Context-free grammars

Derivations

Rightmost derivations

Example

G = 〈A,N,R〉 with

A = {a, b}, N = {S},

R : S −→ aSS , S −→ b.

A rightmost derivation :

S −→R,r aSS −→R,r aSb −→R,r aaSSb −→R,r aaSaSSb

−→R,r aaSaSbb −→R,r aaSabbb −→R,r aababbb.

Hence aababbb ∈ L(G ,S).

51 / 56



Formal Languages-Course 4.

Context-free grammars

Derivations

Trees vs derivations

Theorem

Given a context-free G = 〈A,N,R〉 a non-terminal S ∈ N and a
word u ∈ A∗, the following propositions are equivalent :
(1) ∃T derivation-tree, with root labelled by S and frontier equal
to u.
(2) ∃D leftmost-derivation (modulo R) from S to u.
(3) ∃D rightmost-derivation (modulo R) from S to u.
(4) ∃D derivation (modulo R) from S to u.

52 / 56



Formal Languages-Course 4.

Context-free grammars

Derivations

Trees vs derivations

Let us sketch a proof of the theorem.
Recall : a “traversal” of a rooted tree, is a total ordering of its
nodes x1, x2, . . . , xn such that, if xi is an ancestor of xj , then i ≤ j .
(1) ⇒ (2) :
The depth-first, left-to-right, traversal of T gives a
leftmost-derivation of fr(T ).
(1) ⇒ (3) :
The depth-first, right-to-left, traversal of T gives a
rightmost-derivation of fr(T ).
(2) ⇒ (4) :
Every leftmost-derivation is a derivation.
(3) ⇒ (4) :
Every rightmost-derivation is a derivation.

53 / 56



Formal Languages-Course 4.

Context-free grammars

Derivations

Trees vs derivations

(4) ⇒ (1) : by induction on the length of the derivation.
Let us suppose that

D : S = v0 −→R v1 −→R . . . −→R vi −→R vi+1 . . . −→R vn = u

be a derivation (modulo R).
Basis : n = 1
The tree with root S and sons the letters of u is a derivation-tree
T with fr(T ) = u.
Induction-step : n ≥ 2

S→v1

is a rule of R :

v1 = w1U1 · w2 · U2 · · ·wkUkwk+1

where w1,w2 . . .wk+1 ∈ A∗,U1,U2, . . .Uk ∈ N
54 / 56



Formal Languages-Course 4.

Context-free grammars

Derivations

Trees vs derivations

Then u must have the form

u = w1u1 · w2u2 · · ·wkukwk+1

where

Uk
nk−→R uk ,

k∑

j=1

nk = n − 1

(this shape for u will be proved in course 7, fundamental lemma,
version 2).
By induction hypothesis : for every j ∈ [1, k], there exists a
derivation-tree Tk with root Uk and fr(Tk) = uk . The
derivation-tree T on next figure has root S and fr(T ) = u.

55 / 56



Formal Languages-Course 4.

Context-free grammars

Derivations

Trees vs derivations

Uk

S

w1

· · ·

T2 Tk
T1

w2 wk wk+1u1 u2 uk

U1 U2

Figure – The derivation-tree

56 / 56


	Closure properties of regular languages
	Decision problems for regular languages
	Non-regular languages
	Context-free grammars
	Word rewriting
	Context-free grammars
	Syntax-trees
	Derivations


