

Géraud Sénizergues

Bordeaux university

11/05/2020

Master computer-science MINF19, IEI, 2019/20

contents

1 Minimal complete deterministic automaton

2 Non-deterministic finite automata

3 Kleene's theorem

- From automata to regular expressions
- From regular expressions to automata

Minimal complete deterministic automaton

Minimal complete deterministic automaton

Minimal dfa :proofs

We asserted

Theorem

Let $L \subseteq \Sigma^*$ be some recognizable language. 1- There exists a minimal complete dfa recognizing L 2- If two complete dfa \mathcal{A}, \mathcal{B} are minimal and recognize L, then these two automata are isomorphic (i.e. \mathcal{B} can be obtained from \mathcal{A} just by state-renaming).

Let us now prove point 2 of the theorem. The proof will also explain why the minimization algorithm is correct.

Formal Languages-Course 3. Minimal complete deterministic automaton

Minimal dfa : a candidate

We denote by $\mathbb{Q}(L)$ the set of left-quotients of L :

$$\mathbb{Q}(L) := \{ u^{-1}L \mid u \in \Sigma^* \}.$$

Let $L \subseteq \Sigma^*$. We define the deterministic automaton :

$$\mathcal{M} = \langle \Sigma, \mathbb{Q}(L), L, R, \theta \rangle$$

where

- L is the initial state
- $R = \{P \in \mathbb{Q}(L) \mid \epsilon \in P\}$ is the set of final states
- θ : $(P, x) \mapsto x^{-1}P$ is the transition function

By induction over |w|: $\forall w \in \Sigma^*, \theta^*(L, w) = w^{-1}L$. Hence

 $\mathrm{L}(\mathcal{M})=L.$

Minimal dfa : 3 properties

We shall show that

M1- \mathcal{M} is a finite deterministic automaton recognizing L, M2- \mathcal{M} is minimal

M3- every accessible complete dfa \mathcal{A} recognizing \mathcal{L} is such that $\mathcal{A}/\equiv \approx \mathcal{M}$ where \equiv is the Nerode equivalence over \mathcal{A} .

Let $\mathcal{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a complete dfa recognizing *L*. We assume every state of \mathcal{A} is accessible. For every state $q \in Q$, we note

$$L(q, \mathcal{A}) := \{ w \in \Sigma^* \mid \delta^*(q, w) \in F \}.$$

Let $\varphi: Q {\rightarrow} \mathcal{P}(\Sigma^*)$ defined by :

 $\varphi(q) = L(q, A).$

7 / 56

Fact

$$\forall q \in Q, \forall w \in \Sigma^*, \varphi(\delta(q, w)) = w^{-1}\varphi(q).$$

Proof:

$$\begin{split} \varphi(\delta(q,x)) &= \operatorname{L}(\delta(q,x),\mathcal{A}) \\ &= \{w \in \Sigma^* \mid \delta^*(\delta(q,x),w) \in F\} \\ &= \{w \in \Sigma^* \mid \delta^*(q,xw) \in F\} \\ &= \{w \in \Sigma^* \mid xw \in \operatorname{L}(q,\mathcal{A})\} \\ &= x^{-1}\operatorname{L}(q,\mathcal{A}) \\ &= x^{-1}\varphi(q). \end{split}$$

By induction over |w|, we get the fact. \Box

If
$$\delta^*(q_0, w) = q$$
 then

$$arphi(q) = arphi(\delta^*(q_0, w)) = w^{-1} \mathcal{L}(q_0, \mathcal{A}).$$
 $arphi(q) = w^{-1} \mathcal{L} \in \mathbb{Q}(\mathcal{L}).$

Since \mathcal{A} has only accessible states, $\varphi : Q \rightarrow \mathbb{Q}(L)$. Moreover, every right-quotient $w^{-1}L(q_0, \mathcal{A})$ belongs to the image of φ , hence

 $\varphi: Q \rightarrow \mathbb{Q}(L)$ is surjective ,

showing that

$$\operatorname{Card}(Q) \geq \operatorname{Card}(\mathbb{Q}(L)).$$

Hence $\mathbb{Q}(L)$ is finite (M1) and \mathcal{M} is minimal (M2).

The map $\varphi: Q \rightarrow \mathbb{Q}(L)$ has the three properties :

$$\varphi(\delta(q,x)) = \theta(\varphi(q),x)$$
 (1)

$$\varphi(q_0) = L \tag{2}$$

$$q \in F \Leftrightarrow \varphi(q) \in R$$
 (3)

Property (1) is a reformulation of the above fact 1. Properties (2,3) are easily checked.

The map $\varphi : Q \to \mathbb{Q}(L)$ is called an *automaton-homomorphism* from \mathcal{A} into \mathcal{M} .

Minimal complete deterministic automaton

Minimal dfa : an automaton homomorphism

Note that for every $q, q' \in Q$,

$$q \equiv q' \Leftrightarrow \varphi(q) = \varphi(q').$$

Let us consider the quotient automaton \mathcal{A}/\equiv obtained by merging the equivalent states :

$$\mathcal{A}/\equiv=\langle \Sigma,ar{Q},ar{q}_0,ar{F},ar{\delta}
angle$$

where :

 $\begin{aligned} - \bar{Q} &= \{ [q]_{\equiv} \mid q \in Q \} \\ - \bar{q}_0 &= [q_0]_{\equiv} \\ - \bar{F} &= \{ [q]_{\equiv} \mid q \in F \} \\ - \bar{\delta}([q]_{\equiv}, x) &= \overline{\delta(q, x)} \end{aligned}$ The map $\bar{\varphi} : \bar{Q} \to \mathbb{Q}(L)$ defined by $: \bar{\varphi}([q]_{\equiv}) = \varphi(q)$ is well-defined, is bijective and is also an automaton-homomorphism. Hence it is an automaton-isomorphism i.e. (M3).

Non-deterministic finite automata

Non-deterministic finite

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Non-deterministic finite automata : motivation

We define a more general notion of finite automaton. But the class of recognized languages is still the same.

This makes easier the task of proving that a language is recognizable.

 For a given language one can build a smaller automaton
 For a given language one can find easily a non-deterministic automaton, while finding directly a deterministic automaton might be difficult

Non-deterministic finite automata : motivation

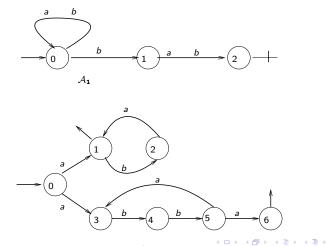
Example

$$L_1 = \{a, b\}^* \cdot b \cdot \{a, b\}, \ L_2 = a(ba)^* \cup (abb)^* a$$
$$L_3 = \{a, b\}^* \setminus [a(ba)^* \cup (abb)^* a]$$

For L_1, L_2 : it is clear that they are regular. Are they recognizable? For L_3 : is it regular? is it recognizable?

Non-deterministic finite automata : examples

Some non-deterministic automata for L_1, L_2 :



 \mathcal{A}_2

Non-deterministic finite automata : definition

Definition

A non-deterministic finite automaton is a 5-tuple

- $\mathcal{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ where
- Q is a finite set, called the set of states
- Σ is an alphabet
- $\delta \subseteq \boldsymbol{Q} \times \boldsymbol{\Sigma} \times \boldsymbol{Q}$ is the set of transitions
- $q_0 \in Q$ is called the initial state
- $F \subseteq Q$ is the set of final states

NB : a non-deterministic automaton might be ... deterministic ! What "non-deterministic" actually means is : not promised to be deterministic.

nfa: Computations

We call computation of the $~nfa~{\cal A}$ every sequence :

$$u = (p_0, x_0, p_1)(p_1, x_1, p_2) \cdots (p_{\ell-1}, x_{\ell-1}, p_\ell)$$

where, $\forall i \in [0, \ell], p_i \in Q, \ \forall i \in [0, \ell - 1], x_i \in \Sigma$ and
 $\forall i \in [0, \ell - 1], (p_i, x_i, p_{i+1}) \in \delta.$

The trace of the computation, tr(u) is the word :

$$w = x_0 x_1 \cdots x_{\ell-1}$$
.

The computation u starts from p_0 and ends in state p_ℓ . We then note :

$$p_0 \stackrel{w}{\longrightarrow}_{\mathcal{A}} p_\ell$$

which can be read : " \mathcal{A} moves from p_0 to p_ℓ reading w''_{2} , p_{ℓ} is a set of the s

17 / 56

nfa: Computations

The language recognized by \mathcal{A} is the set of all words $w \in \Sigma^*$ such that, there exists a computation of \mathcal{A} , starting in q_0 , ending in some $q \in F$, with trace tr(u) = w. More formally :

$$\mathrm{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \exists q \in F, q_0 \stackrel{w}{\longrightarrow}_{\mathcal{A}} q \}$$

determinization : example

Let us consider the $\ nfa$

$$\mathcal{A}_1 = \langle Q_1, \Sigma, \delta_1, q_0, F \rangle$$

with
$$Q_1 = \{0, 1, 2\}$$
, $\Sigma = \{a, b\}$,
 $\delta_1 = \{(0, a, 0), (0, b, 0), (0, b, 1), (1, a, 2), (1, b, 2)\}$, $F = \{2\}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

determinization : example

The determinized automaton :

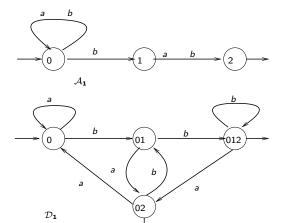
$$\mathcal{D}_1 = \langle Q'_1, \Sigma, \delta'_1, q'_0, F'_1 \rangle$$

with $Q'_1 = \{\{0\}, \{0, 1\}, \{0, 2\}, \{0, 1, 2\}\}, \Sigma = \{a, b\},$
 $F'_1 = \{\{0, 2\}, \{0, 1, 2\}\}.$ The map δ'_1 is described by :

$q \setminus x$	а	Ь
0	0	1
01	02	012
02	0	01
012	02	012

determinization : example

The determinized automaton \mathcal{D}_1 :



< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 21 / 56

determinization : the theorem

Theorem

For every non-deterministic finite automaton A there exists a deterministic finite automaton D, which can be constructed from A, such that

 $L(\mathcal{A}) = L(\mathcal{D}).$

Sketch of proof Let $\mathcal{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$. We build $\mathcal{D} = \langle \mathcal{P}(Q), \Sigma, \Delta, \{q_0\}, \mathcal{F} \rangle$ where, for every $P \subseteq Q, x \in \Sigma$ $\Delta(P, x) = \{q \in Q \mid \exists p \in P, (p, x, q) \in \delta\}$ $\mathcal{F} = \{P \in \mathcal{P}(Q) \mid P \cap F \neq \emptyset\}.$ We can prove by induction over |u| that :

$$\Delta^*(P, u) = \{ q \in Q \mid \exists p \in P, p \xrightarrow{u}_{\langle \Box \rangle} \mathcal{A}_{\Box} g \}.$$

determinization : the theorem

$$\Delta^*(P, u) = \{ q \in Q \mid \exists p \in P, p \stackrel{u}{\longrightarrow}_{\mathcal{A}} q \}.$$

It follows that :

$$egin{aligned} u \in \mathrm{L}(\mathcal{A}) & \Leftrightarrow & \exists q \in F, q_0 \overset{u}{\longrightarrow}_{\mathcal{A}} q \ & \Leftrightarrow & \Delta^*(P, u) \cap F
eq \emptyset \ & \Leftrightarrow & \Delta^*(P, u) \in \mathcal{F}. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● ○○○

23 / 56

determinization : the theorem

Exercice

Build dfa $\mathcal{D}_2, \mathcal{D}_3$ recognizing the languages

 $L_2 = a(ba)^* \cup (abb)^*a, \ L_3 = \{a, b\}^* \setminus [a(ba)^* \cup (abb)^*a]$

Kleene's theorem

Kleene's theorem

<ロ > < 部 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > の < @ 25 / 56

Kleene's theorem

For every finite alphabet we denote by :

- $\operatorname{REG}(\Sigma^*)$ the set of regular languages over Σ
- $\operatorname{REC}(\Sigma^*)$ the set of recognizable languages over Σ

Theorem

For every finite alphabet
$$\Sigma$$
, $\operatorname{REG}(\Sigma^*) = \operatorname{REC}(\Sigma^*)$.

The proof is constructive :

- we give an algorithm translating every $\operatorname{nfa} \mathcal{A}$ into a regular expression *e*, such that $L(\mathcal{A}) = L_e$.

- we give an algorithm translating every regular expression e into a $nfa \mathcal{A}$ such that $L(\mathcal{A}) = L_e$.

Kleene's theorem

From automata to regular expressions

BMC-algorithm

The BMC-algorithm (Brzozowski-Mc-Kluskey) : translates every nfa \mathcal{A} into a regular expression e; <u>Three steps</u> : step 1 : normalisation of \mathcal{A} : adds two new states. step 2 : sequence of extended finite automaton, with strictly decreasing number of states. step 3 : last extended automaton has only one transition : its label is e.

Kleene's theorem

From automata to regular expressions

BMC-algorithm :e-automata

An extended-finite automaton is a 5-tuple $\mathcal{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ where

ヘロト 人間 とくほど 人居 とうほう

28 / 56

- Q is a finite set, called the set of states
- $\boldsymbol{\Sigma}$ is an alphabet
- $\delta \subseteq Q \times \operatorname{RE}(\Sigma) \times Q$ is the set of transitions
- $q_0 \in Q$ is called the initial state
- $F \subseteq Q$ is the set of final states

Kleene's theorem

From automata to regular expressions

BMC-algorithm :e-automata

We call computation of the $~{\rm efa}~{\cal A}$ every sequence :

$$\begin{split} u &= (p_0, e_0, p_1)(p_1, e_1, p_2) \cdots (p_{\ell-1}, e_{\ell-1}, p_\ell) \\ \text{where, } \forall i \in [0, \ell], p_i \in Q, \, \forall i \in [0, \ell-1], e_i \in \text{RE}(\Sigma) \text{ and} \\ \forall i \in [0, \ell-1], (p_i, e_i, p_{i+1}) \in \delta. \end{split}$$

The trace of the computation, tr(u) is the word :

$$\mathbf{e} = \mathbf{e}_0 \mathbf{e}_1 \cdots \mathbf{e}_{\ell-1}.$$

The language recognized by ${\mathcal A}$ is defined by :

$$TR(\mathcal{A}) = \{ e \in RE(\Sigma) \mid \exists q \in F, q_0 \stackrel{e}{\longrightarrow}_{\mathcal{A}} q \}$$
$$L(\mathcal{A}) = \bigcup_{e \in TR(\mathcal{A})} \nu(e).$$

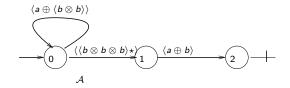
29 / 56

Kleene's theorem

From automata to regular expressions

BMC-algorithm :e-automata

Example :



 $\mathrm{TR}(\mathcal{A}) = (\langle a \oplus \langle b \otimes b \rangle \rangle)^* \cdot \langle \langle b \otimes b \otimes b \rangle \star \rangle \cdot \langle a \oplus b \rangle.$

 $L(\mathcal{A}) = (a \cup (bb))^* \cdot (bbb)^* \cdot (a \cup b).$

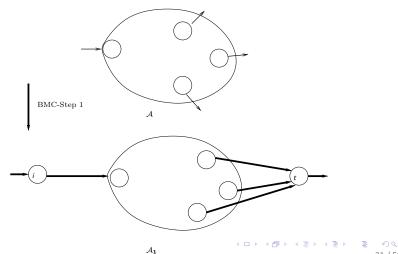
<ロト < 聞 > < 臣 > < 臣 > 二 臣 …

Kleene's theorem

From automata to regular expressions

BMC-algorithm : step 1

Step 1 :



Kleene's theorem

From automata to regular expressions

BMC-algorithm : step 2

The current efa is $C = \langle Q_C, \Sigma, \delta_C, i, \{t\} \rangle$. We assume there is at most one transition from any state p to any other state p' (just make the union of all the labels (p, e, p') if there are several such transitions).

We remove a state $q \in Q_C \setminus \{i, t\}$.

Kleene's theorem

From automata to regular expressions

BMC-algorithm : step 2

let $p_1, \dots p_j \dots p_h$ be the states in $Q_C \setminus \{q\}$ with transitions (p_j, e_j, q) let $r_1, \dots r_k \dots r_\ell$ be the states in $Q_C \setminus \{q\}$ with transitions (q, f_k, r_k)

Let

 $(q, \frac{g_q}{g_q}, q)$

be the transition from q to q (we add te transition (q, \emptyset, q) if there is no such transition).

We remove state q and add the transitions :

 $(p_j, e_j(\mathbf{g}_q)^* f_k, r_k).$

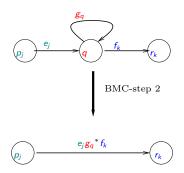
We obtain $C' = \langle Q_C, \Sigma, \delta'_C, i, \{t\} \rangle$ which has one less state and still recognizes the same language.

Kleene's theorem

From automata to regular expressions

BMC-algorithm : step 2

Step 2 :



Removing a state $q \notin \{i, t\}$.

Kleene's theorem

From automata to regular expressions

BMC-algorithm : step 2

Step 2 :

We remove successively all the states in Q, until we obtain an efa of the form : $C = \langle \{i, t\}, \Sigma, \delta_C, i, \{t\} \rangle$ where

$$\delta_C = \{(i, e, t)\}.$$

Then :

$$L(\mathcal{A}) = L(\mathcal{C}) = \nu(e).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

35 / 56

Kleene's theorem

From automata to regular expressions

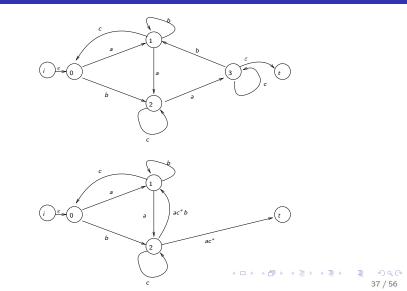
BMC-algorithm : step 3

Step 3 :

Kleene's theorem

From automata to regular expressions

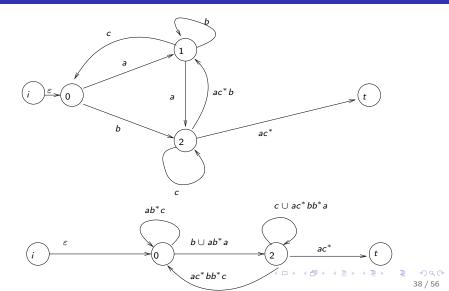
BMC-algorithm : example



Kleene's theorem

From automata to regular expressions

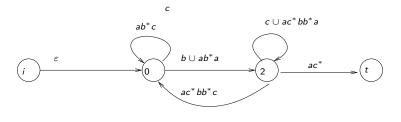
BMC-algorithm : example



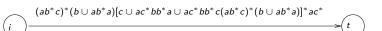
Kleene's theorem

From automata to regular expressions

BMC-algorithm : example



 $c \cup ac^* bb^* a \cup ac^* bb^* c(ab^* c)^* (b \cup ab^* a)$



Kleene's theorem

From regular expressions to automata

Glushkov-algorithm

The Gluskov-algorithm : translates every regular expression e into an $~n{\rm fa}~{\cal A}$:

Three stages of generality :

stage 1 : translation of locally-testable languages.

stage 2 : translation of linear regular expressions.

stage 3 : translation of general regular expressions.

Kleene's theorem

From regular expressions to automata

Locally-testable languages

A language $L \subseteq \Sigma^*$ is called locally testable if and only if there exist subsets $I, F \subseteq \Sigma, D \subseteq \Sigma^2$ such that

$$L = (I \cdot \Sigma^* \cap \Sigma^* \cdot F) \setminus \Sigma^* \overline{D} \Sigma^*$$

or

$$L = \{\varepsilon\} \cup [(I \cdot \Sigma^* \cap \Sigma^* \cdot F) \setminus \Sigma^* \overline{D} \Sigma^*]$$

where $\overline{D} = \Sigma^2 \setminus D$. In words : *L* is the set of all words that begin with a letter in *I*, end with a letter in *F* and have all their factors of length 2 in the set *D* (the letter *D* (resp.*I*,*F*) are standing for "Digrams" (resp. "Initials", "Final").

Kleene's theorem

From regular expressions to automata

Glushkov-algo : stage 1

stage 1 : translation of a locally-testable language.

$$L = ((I \cdot \Sigma^*) \cap (\Sigma^* \cdot F)) \setminus (\Sigma^* ar{D} \Sigma^*).$$

Let

$$\mathcal{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$$

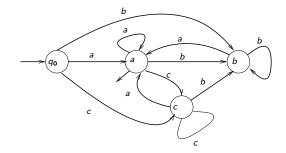
be the final defined by : $Q = \Sigma \cup \{q_0\}$ (where q_0 is a new symbol not in Σ) $\delta = \{(q_0, x, x) \mid x \in I\} \cup \{(x, y, y) \mid x, y \in \Sigma, xy \in D\}$ Then

 $L = L(\mathcal{A}).$

Kleene's theorem

From regular expressions to automata

Glushkov-algorithm : example



 $\Sigma = \{a, b, c\}, \ L = (a\Sigma^* \cap \Sigma^* a) \setminus (\Sigma^* b c \Sigma^*)$

Kleene's theorem

From regular expressions to automata

Glushkov-algo : stage 1

stage 1 : translation of a locally-testable language.

$$L = \{\varepsilon\} \cup [((I \cdot \Sigma^*) \cap (\Sigma^* \cdot F)) \setminus (\Sigma^* \overline{D} \Sigma^*)].$$

Let

$$\mathcal{A} = \langle Q, \Sigma, \delta, q_0, F \cup \{q_0\} \rangle$$

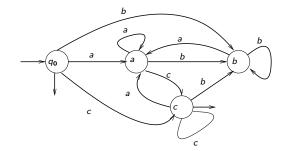
be the nfa defined by : $Q = \Sigma \cup \{q_0\}$ (where q_0 is a new symbol not in Σ) $\delta = \{(q_0, x, x) \mid x \in I\} \cup \{(x, y, y) \mid x, y \in \Sigma, xy \in D\}$ Then $L = L(\mathcal{A}).$

NB : we have added q_0 in the set of final states.

Kleene's theorem

From regular expressions to automata

Glushkov-algorithm : example



 $\Sigma = \{a, b, c\}, \ L = \{\varepsilon\} \cup [(a\Sigma^* \cap \Sigma^* c) \setminus (\Sigma^* b c \Sigma^*)]$

<ロト < 部ト < 目ト < 目ト 目 のQで 45/56

Kleene's theorem

From regular expressions to automata

Glushkov-algo : stage 2

stage 2 : translation of a linear regular expression.

A regular expression e, over Σ , is called linear if each letter of Σ occurs at most once in the word e. Examples : $(((ab)^* \cup cd) \cup f)^*$ is linear $(((ab)^* \cup ca) \cup f)^*$ is not linear

Proposition

If $e \in \operatorname{RE}(\Sigma)$ is linear then $\nu(e)$ is locally testable.

It suffices to prove that : if $L_1 \in \operatorname{REG}(\Sigma_1^*), L_2 \in \operatorname{REG}(\Sigma_2^*)$ are locally testable languages over disjoint alphabets Σ_1, Σ_2 , then :

$$L_1 \cup L_2, \quad L_1 \cdot L_2, \quad L_1^*$$

are locally-testable too.

・ロト ・聞ト ・ヨト ・ヨト 三日

Kleene's theorem

From regular expressions to automata

Glushkov-algorithm : stage 2

stage 2 : translation of a linear regular expression. For every language L over Σ , we define :

$$N(L) = L \cap \{\varepsilon\},$$

$$I(L) = \{x \in \Sigma \mid x^{-1}L \neq \emptyset\}, \quad F(L) = \{x \in \Sigma \mid Lx^{-1} \neq \emptyset\},$$

$$D(L) = \{xy \in \Sigma^2 \mid \exists \alpha, \beta \in \Sigma^*, \alpha xy\beta \in L\}.$$
Example : for $L = (abc)^*d(ba)$

$$N(L) = \emptyset \quad I(L) = \{z, d\}, \quad F(L) = \{z\}, \quad D(L) = \{z\}, \quad bc, cz, cd, db, bz\}.$$

 $N(L) = \emptyset, \quad I(L) = \{a, u\}, \quad \Gamma(L) = \{a\}, \quad D(L) = \{ab, bc, ca, cu, ub, ba\}.$

Kleene's theorem

From regular expressions to automata

Glushkov-algorithm : stage 2

Remark : if L is locally testable i.e.

$$L = (I \cdot \Sigma^* \cap \Sigma^* \cdot F) \setminus \Sigma^* \overline{D} \Sigma^*$$

(possibly with the additional word ε) then

$$N(L) = \emptyset$$
, $I(L) = I$, $F(L) = F$, $D = D(L)$, $\overline{D} = \Sigma^2 \setminus D(L)$,

and $N(L) = \{\varepsilon\}$ if $\varepsilon \in L$.

Hence, for a locally-testable language *L*, it suffices to compute N(L), I(L), F(L), D(L) to be able to build a nfa recognizing *L*.

Kleene's theorem

From regular expressions to automata

Glushkov-algorithm : stage 2

Given a regular expression e we define

$$\mathrm{N}(e) = \mathrm{N}(\nu(e)), \ \mathrm{I}(e) = \mathrm{I}(\nu(e)), \ \mathrm{F}(e) = \mathrm{F}(\nu(e)), \ \mathrm{D}(e) = \mathrm{D}(\nu(e)).$$

These four functions can be computed by the following recursive rules :

$f \in \operatorname{RE}(f)$	N(f)	I(f)	$\mathrm{F}(f)$
Ø	Ø	Ø	Ø
ε	$\{\varepsilon\}$	Ø	Ø
$x \in \Sigma$	Ø	$\{x\}$	$\{x\}$
$e \cup e'$	$N(e) \cup N(e')$	$\mathrm{I}(e) \cup \mathrm{I}(e')$	$\mathrm{F}(e) \cup \mathrm{F}(e')$
$e \cdot e'$	$N(e) \cap N(e')$	$I(e) \cup N(e)I(e')$	$F(e)N(e') \cup F(e')$
e*	$\{\varepsilon\}$	I(e)	F(e)
e ⁺	Ø	I(e)	F(e)
	(日) (월) (불) (불) (불)		

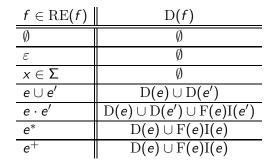
49 / 56

Kleene's theorem

From regular expressions to automata

Glushkov-algorithm : stage 2

Recursive rules for D(*):



Kleene's theorem

From regular expressions to automata

Glushkov-algorithm : stage 2

Stage 2 : Given a linear regular expression
$$e$$

- compute N(e), I(e), F(e), D(e)
- $\nu(e) = (I \cdot \Sigma^* \cap \Sigma^* \cdot F) \setminus \Sigma^* \overline{D} \Sigma^*$
for $I = I(e), F = F(e), D = D(e)$.
- compute the nfa \mathcal{A} associated to I, F, D

・ロト ・聞ト ・ヨト ・ヨト 三日

51/56

- add q_0 as final state if $N(e) = \{\varepsilon\}$.

Kleene's theorem

From regular expressions to automata

Glushkov-algorithm : stage 3

Given a general regular expression e over Σ : Let $\Sigma' = \{x_i \mid 1 \le i \le |e|_x\}$. Let $e' \in \operatorname{RE}(\Sigma')$ be a linear regular expression that is mapped onto e by forgetting the indices in the symbols $(x_i) \in \Sigma'$.

Example

$$\Sigma = \{a, b, c\}, \ e = (aba)^*b(bb(ab)^*)^* \cup (cba)^*.$$

then

$$\Sigma' = \{a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, b_5, b_6, c_1\}$$
$$e' = (a_1b_1a_2)^*b_2(b_3b_4(a_3b_5)^*)^* \cup (c_1b_6a_4)^*.$$

We call e' a "linearization" of the regular expression e.

Kleene's theorem

From regular expressions to automata

Glushkov-algorithm : stage 3

Stage 3 : Given a general regular expression e over Σ :

- linearize e into e'
- compute (by stage 2) a $\operatorname{nfa} \mathcal{A}'$ such that $\nu(e') = L(\mathcal{A}')$.
- let A be obtained from A' by replacing everywhere (i.e. in the input-alphabet and in the transitions) each letter x_i by x. Then

 $\nu(e) = L(\mathcal{A}).$

53 / 56

Kleene's theorem

From regular expressions to automata

Glushkov-algorithm : example

$$e := (ab^*c)^*ab(a \cup b)^*$$

The linarization of *e* is :

$$e':=(a_1b_1^*c_1)^*a_2b_2(a_3\cup b_3)^*$$

We compute

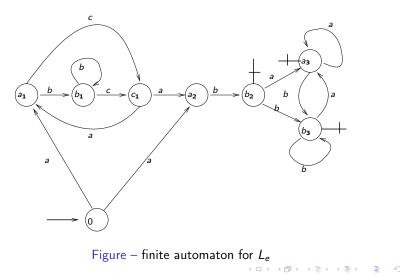
$$I(e') = \{a_1, a_2\}, F(L') = \{b_2, a_3, b_3\},\$$

 $D(e') = \{a_1b_1, b_1b_1, b_1c_1, a_1c_1, c_1a_1, c_1a_2, a_2b_2, b_2a_3, b_2b_3, a_3a_3, a_3b_3, b_3b_3, b_3a_3\}.$

Kleene's theorem

From regular expressions to automata

Glushkov-algorithm : example



Kleene's theorem

From regular expressions to automata

Kleene's theorem :summary

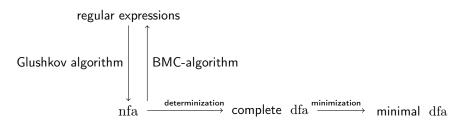


Figure – Kleene's theorem : summary.