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I—Minimal complete deterministic automaton

Minimal dfa :proofs

We asserted

Let L C Y* be some recognizable language.

1- There exists a minimal complete dfa recognizing L

2- If two complete dfa A, B are minimal and recognize L, then
these two automata are isomorphic (i.e. B can be obtained from A
just by state-renaming).

Let us now prove point 2 of the theorem. The proof will also
explain why the minimization algorithm is correct.
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I—Minimal complete deterministic automaton

Minimal dfa : a candidate

We denote by Q(L) the set of left-quotients of L :
QL) :={u 'L |uex}.
Let L C X*. We define the deterministic automaton :
M=(X,Q(L),L,R,0)

where

- L is the initial state

-R={PeQ(L) | e € P} is the set of final states
-0 :(P,x) — x P is the transition function

By induction over |w| : Yw € ¥*,6*(L,w) = w~1L. Hence
L(M) = L.
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I—Minimal complete deterministic automaton

Minimal dfa : 3 properties

We shall show that

M1- M is a finite deterministic automaton recognizing L,
M2- M is minimal

M3- every accessible complete dfa A recognizing L is such that
A/ =~ M where = is the Nerode equivalence over A.
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I—Minimal complete deterministic automaton

Minimal dfa : an automaton homomorphism

Let A= (Q,X,d,qo, F) be a complete dfa recognizing L. We
assume every state of A is accessible.
For every state g € Q, we note

L(g, A) :={w e X" | 6(q,w) € F}.
Let ¢ : Q—P(X*) defined by :

¢(q) = L(q, A).
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I—Minimal complete deterministic automaton

Minimal dfa : an automaton homomorphism

Vg € Q,Yw € ¥, ¢(3(q, w)) = w¢(q).
Proof:

o(3(ax) = L(3(g ), A)
= {weX|d(0(g,x),w) e F}
= {weX"|d(q,xw)e F}
= {weXl'|xwel(q, A}
= x'L(g,A)
= x'¢(q).

By induction over |w/|, we get the fact. O
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I—Minimal complete deterministic automaton

Minimal dfa : an automaton homomorphism

If 6*(qo, w) = g then
¢(q) = ¢(6" (g0, w)) = w™L(qo, A).

p(q) =w L e Q(L).

Since A has only accessible states, ¢ : Q—Q(L).Moreover, every
right-quotient w~1L(qo,.A) belongs to the image of ¢, hence

¢ : Q—Q(L) is surjective ,

showing that
Card(Q) > Card(Q(L)).

Hence Q(L) is finite (M1) and M is minimal (M2).

9/56



Formal Languages-Course 3.

I—Minimal complete deterministic automaton

Minimal dfa : an automaton homomorphism

The map ¢ : Q—Q(L) has the three properties :

e(0(g,x)) = 6(e(q),x) (1)
o(q) = L (2)
geF < (@ R (3)

Property (1) is a reformulation of the above fact 1. Properties (2,3)
are easily checked.

The map ¢ : Q — Q(L) is called an automaton-homomorphism
from A into M.
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I—Minimal complete deterministic automaton

Minimal dfa : an automaton homomorphism

Note that for every q,q’ € Q,
a=4q < »(q) =¢(q).

Let us consider the quotient automaton A/ = obtained by merging
the equivalent states :

'A/ == <Z7 Q7CTO:l_=75>

where :
-Q={[g]=19€Q}
- Qo= [qO]E

-F=A{lgl=1q€F}

- ([gl=, x) = 0(q,x)

The map @ : Q—Q(L) defined by : ¢([q]=) = ¢(q) is well-defined,
is bijective and is also an automaton-homomorphism. Hence it is an
automaton-isomorphism i.e. (M3).
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L Non-deterministic finite automata

Non-deterministic finite automata : motivation

We define a more general notion of finite automaton. But the class
of recognized languages is still the same.

This makes easier the task of proving that a language is
recognizable.

1- For a given language one can build a smaller automaton

2- For a given language one can find easily a non-deterministic

automaton, while finding directly a deterministic automaton might
be difficult
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L Non-deterministic finite automata

Non-deterministic finite automata : motivation

Example

Ly ={a,b}*-b-{a,b}, Ly=a(ba)*U (abb)*a
Lz = {a,b}* \ [a(ba)* U (abb)*a]

For L1, L, : it is clear that they are regular. Are they recognizable ?
For L3 : is it regular? is it recognizable ?
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L Non-deterministic finite automata

Non-deterministic finite automata : examples

Some non-deterministic automata for L1, L :
a b
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L Non-deterministic finite automata

Non-deterministic finite automata : definition

Definition

A non-deterministic finite automaton is a 5-tuple
A=(Q,X%,9,qo, F) where

- Q is a finite set, called the set of states

- Y is an alphabet

-0 C Q XX x Q is the set of transitions

- qo € Q is called the initial state

- F C Q is the set of final states

NB : a non-deterministic automaton might be ... deterministic!
What “non-deterministic” actually means is : not promised to be
deterministic.
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L Non-deterministic finite automata

nfa : Computations

We call computation of the nfa A every sequence :
u = (po,x0, P1)(P1,x1,P2) - (Pe—1, Xe—1, Pr)
where, Vi € [0,¢],p; € Q, Vi € [0, — 1], x; € ¥ and
Vi e [0, —1],(pi, xi, pi+1) € 0.
The trace of the computation, tr(v) is the word :
W = XoX1* " Xp_1-

The computation u starts from pg and ends in state py. We then
note :

Po —.A P

which can be read : “.A moves from py to p, reading w'.
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L Non-deterministic finite automata

nfa : Computations

The language recognized by A is the set of all words w € ¥* such
that, there exists a computation of A, starting in qo, ending in
some g € F, with trace tr(u) = w. More formally :

L(A)={wex"[3g€F,q —aq}
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L Non-deterministic finite automata

determinization : example

Let us consider the nfa
-’41 — (Qh Z7517 qo, F>

with Q1 = {0,1,2}, ¥ = {a, b},
91 ={(0,4a,0),(0, b,0),(0,b,1),(1,a,2),(1,b,2)}, F={2}.
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L Non-deterministic finite automata

determinization : example

The determinized automaton :

<Q1,Z 517q0) >

with @, = {{0}, {0, 1}, {0,2}, {0,1,2)}, ¥ = {a, b},
F{ = {{0,2},{0,1,2}}. The map 4 is described by :

g\x| a |

0 0] 1
01 |02 012
02 |00t
012 | 02| 012
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L Non-deterministic finite automata

determinization : example

The determinized automaton Dj :
a b
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L Non-deterministic finite automata

determinization : the theorem

Theorem

For every non-deterministic finite automaton A there exists a
deterministic finite automaton D, which can be constructed from
A, such that

L(A) = L(D).

Sketch of proof

Let A= (Q,%,0,qo, F). We build D = (P(Q),X,A,{qo}, F)
where, for every PC Q,x € X
A(P,x)={q€Q|3peP,(p,xq)€d}

F={PeP(Q)| PNF#0D}.

We can prove by induction over |u| that :

A*(P,u)={q€Q|3peP,p—4g}
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L Non-deterministic finite automata

determinization : the theorem

A (P,uy={q€Q|3peP,p—r4q}.
It follows that :

velL(A) & 3JgeF,q0—4q
& A (P,u)NF#0
& A*(P,u) e F.

23/56



Formal Languages-Course 3.

L Non-deterministic finite automata

determinization : the theorem

Exercice

Build dfa D,, D3 recognizing the languages

Ly = a(ba)* U (abb)*a, Lz = {a,b}*\ [a(ba)* U (abb)*a]
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Kleene's theorem
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L Kleene's theorem

Kleene's theorem

For every finite alphabet we denote by :
- REG(X*) the set of regular languages over ¥
- REC(X*) the set of recognizable languages over ©

For every finite alphabet ¥, REG(X*) = REC(XZ*).

The proof is constructive :

- we give an algorithm translating every nfa A into a regular
expression e, such that L(A) = L.

- we give an algorithm translating every regular expression e into a
nfa A such that L(A) = L.
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I—Kleene's theorem

I—From automata to regular expressions

BMC-algorithm

The BMC-algorithm (Brzozowski-Mc-Kluskey) : translates every
nfa A into a regular expression e;

Three steps :

step 1 : normalisation of A : adds two new states.

step 2 : sequence of extended finite automaton, with strictly
decreasing number of states.

step 3 : last extended automaton has only one transition : its label
is e.
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I—Kleene's theorem

I—From automata to regular expressions

BMC-algorithm :e-automata

An extended-finite automaton is a 5-tuple A = (Q, X, 4, qo, F)
where

- Q is a finite set, called the set of states

- Y is an alphabet

-0 C Q x RE(X) x @ is the set of transitions

- qo € Q is called the initial state

- F C Q is the set of final states
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I—Kleene's theorem

I—From automata to regular expressions

BMC-algorithm :e-automata

We call computation of the efa A every sequence :
u = (po, e, p1)(p1,e1,p2) - (Pe—1, €1, Pe)
where, Vi € [0,4], pi € Q, Vi € [0,¢ — 1], e; € RE(X) and
Vi e [0,¢ —1],(pi, €, pi+1) € 0.
The trace of the computation, tr(v) is the word :
e=ep€r €1
The language recognized by A is defined by :
TR(A) = {e€RE(T)|3q€F,q0 —>a4}
LA = (J we.

ecTR(A)
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I—Kleene's theorem

I—From automata to regular expressions

BMC-algorithm :e-automata

Example :

(a® (b® b))

({(b®@ b byx)" ™\ (a® b) I
%> ) )

A

TR(A) = ((a® (bR b)))" - ((b® b® b)x) - (a® b).

L(A) = (aU (bb))* - (bbb)* - (aU b).
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L Kleene's theorem

I—From automata to regular expressions

BMC-algorithm : step 1

Step 1:

.

BMC-Step 1

Ay
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I—Kleene's theorem

I—From automata to regular expressions

BMC-algorithm : step 2

The current efais C = (Qc, X, dc, i, {t}). We assume there is at
most one transition from any state p to any other state p’ (just
make the union of all the labels (p, e, p’) if there are several such
transitions).

We remove a state g € Q¢ \ {/, t}.
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I—Kleene's theorem

I—From automata to regular expressions

BMC-algorithm : step 2

let p1,--- pj--- pp be the states in Q¢ \ {g} with transitions

(pj- €5 q)

let ri, - ri--- rp be the states in Q¢ \ {q} with transitions
(q) fkv rk)

Let
(9,84, 9)

be the transition from ¢ to ¢ (we add te transition (g, 0, q) if there
is no such transition).
We remove state g and add the transitions :

(pj» €j(gq) s ri)-
We obtain C' = (Qc¢, X, 0/, i, {t}) which has one less state and still

recognizes the same language. }
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I—Kleene's theorem

I—From automata to regular expressions

BMC-algorithm : step 2

Step 2 :

&q
B 55 )
pi \d {k

BMC-step 2

Tk

Removing a state g ¢ {/, t}.
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I—Kleene's theorem

I—From automata to regular expressions

BMC-algorithm : step 2

Step 2 :
We remove successively all the states in @, until we obtain an efa
of the form : C = ({i, t}, X, dc,i,{t}) where

dc ={(i,e, t)}.

Then :
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I—Kleene's theorem

I—From automata to regular expressions

BMC-algorithm : step 3

Step 3 :
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I—Kleene's theorem

I—From automata to regular expressions

BMC-algorithm : example
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I—Kleene's theorem

I—From automata to regular expressions

BMC-algorithm : example

ﬁ% o
\\\\\\b\\\\\\\S

c

cUac*bb*a

a
ab*c
€ @bUab*a .
) 3, : )—=—()
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I—Kleene's theorem

I—From automata to regular expressions

BMC-algorithm : example

S
ab*c cUac*bb*a

cUac*bb*aU ac*bb*c(ab*c)*(bU ab™a)

(ab™c)*(bU ab*a) ac”
©

(ab™c)*(bU ab*a)[c U ac™bb*a U ac*bb*c(ab*c)* (b U ab*a)]*ac™
©
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I—Kleene's theorem

I—From regular expressions to automata

Glushkov-algorithm

The Gluskov-algorithm : translates every regular expression e into
an nfa A :

Three stages of generality :

stage 1 : translation of locally-testable languages.

stage 2 : translation of linear regular expressions.

stage 3 : translation of general regular expressions.
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I—Kleene's theorem

I—From regular expressions to automata

Locally-testable languages

A language L C X* is called locally testable if and only if there
exist subsets /[, F C ¥, D C ¥? such that

L=(I-X*Nn¥*-F)\ Z*D*

” L={c}U[(/-Z*NX* F)\ X*Dx*|

where D = ¥2\ D.

In words : L is the set of all words that begin with a letter in /, end
with a letter in F and have all their factors of length 2 in the set D
(the letter D (resp./,F) are standing for “Digrams” (resp.

“Initials”,"Final”).
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I—Kleene's theorem

I—From regular expressions to automata

Glushkov-algo : stage 1

stage 1 : translation of a locally-testable language.

L=((/-Z)n(X*-F))\ (Z*DZ*).
Let
- <Q7 Z? 57 q07 F>
be the nfa defined by :

Q =X U{qo} (where go is a new symbol not in X )
d={(qo,x,x) | x € I} U{(x,y,y) | x,y € £,xy € D} Then

L = L(A).
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I—Kleene's theorem

I—From regular expressions to automata

Glushkov-algorithm : example

Y ={a,b,c}, L=(aX*NnXx*a)\ (X*bck")
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I—Kleene's theorem

I—From regular expressions to automata

Glushkov-algo : stage 1

stage 1 : translation of a locally-testable language.

L={cpU[((/- =) N (T F))\ (D).

Let
A= <Qa Za 57 qo, Fu {q0}>

be the nfa defined by :
Q =X U{qo} (where qo is a new symbol not in X )
0 ={(qo,x,x) | x€ I} U{(x,y,y) | x,y € X, xy € D} Then

L=L(A).

NB : we have added qq in the set of final states.

44 /56



Formal Languages-Course 3.
I—Kleene's theorem

I—From regular expressions to automata

Glushkov-algorithm : example

Y ={a,b,c}, L={e}U[(aZ¥" NX%c)\ (X"bcX")]
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L Kleene's theorem

I—From regular expressions to automata

Glushkov-algo : stage 2

stage 2 : translation of a linear regular expression.

A regular expression e, over ¥, is called linear if each letter of &
occurs at most once in the word e. Examples : (((ab)* U cd) U f)*
is linear

(((ab)* U ca) U f)* is not linear

Proposition

If e € RE(X) is linear then v(e) is locally testable.

It suffices to prove that :

if L1 € REG(X}), L € REG(X3) are locally testable languages
over disjoint alphabets ¥1,Y,, then :

LiULy, Ly-Ly, L]

are locally-testable too.
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I—Kleene's theorem

I—From regular expressions to automata

Glushkov-algorithm : stage 2

stage 2 : translation of a linear regular expression.
For every language L over X, we define :

N(L) = Ln{e},
(L) ={x € X |xL#0}, F(L)={xeX|Lx#0}
D(L) ={xy € ¥*| 3a,8 € T*, axyB € L}.
Example : for L = (abc)*d(ba)

N(L) =0, I(L) ={a,d},F(L) = {a},D(L) = {ab, bc, ca, cd, db, ba}.
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I—Kleene's theorem

I—From regular expressions to automata

Glushkov-algorithm : stage 2

Remark : if L is locally testable i.e.
L=(I-X*Nn¥*-F)\ Z*Dx*
(possibly with the additional word ¢) then
N(L)=0, I(L)=1, F(L)=F, D=D(L), D=1%%\D(L),
and N(L) = {e} ife € L.

Hence, for a locally-testable language L, it suffices to compute
N(L),I(L),F(L),D(L) to be able to build a nfa recognizing L.
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L Kleene's theorem
I—From regular expressions to automata

Glushkov-algorithm : stage 2

Given a regular expression e we define

N(e) = N(v(e)), I(e) =1(v(e)), F(e) =F(v(e)), D(e) = D(v(e)).

These four functions can be computed by the following recursive

rules :
feRE(f) || N(f) | I(f) \ F(f)
0 0 0 0
€ {e} 0 0
xeXx 0 {x} {x}
eUe N(e) UN(e') | I(e)ul(e) F(e) UF(¢)
e-é N(e) N N(€') | I(e) UN(e)I(¢') | F(e)N(e') UF(¢)
e’ {e} I(e) F(e)
et 0 I(e) F(e)
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I—Kleene's theorem

I—From regular expressions to automata

Glushkov-algorithm : stage 2

Recursive rules for D(x) :

f € RE(f) | D(f)

0 0

€ 0

X EX 0

eue D(e) UD(€')

e ¢ D(e) UD(e') UF(e)I(€)
e* D(e) UF(e)I(e)

et D(e) UF(e)I(e)
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I—Kleene's theorem

I—From regular expressions to automata

Glushkov-algorithm : stage 2

Stage 2 : Given a linear regular expression e :
- compute N(e),I(e),F(e),D(e)
-v(e)=(I-X*NX* - F)\ Z*Dx*

for I =1(e), F = F(e),D = D(e).

- compute the nfa A associated to /, F, D

- add qo as final state if N(e) = {e}.

51/56



Formal Languages-Course 3.

L Kleene's theorem

I—From regular expressions to automata

Glushkov-algorithm : stage 3

Given a general regular expression e over ¥ :

Let ¥ = {x; | 1 <i < |e|x}. Let € € RE(Y’) be a linear regular
expression that is mapped onto e by forgetting the indices in the
symbols (x;) € ¥'.

Example

Y ={a,b,c}, e=(aba)*b(bb(ab)*)* U (cba)*.

then
z/ = {al) dp, ds, d4, b17 b2) b37 b47 b57 b67 Cl}

e = (31blaz)*bz(b3b4(a3b5)*)* U (C1b634)*.

We call €’ a “linearization” of the regular expression e.
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I—Kleene's theorem

I—From regular expressions to automata

Glushkov-algorithm : stage 3

Stage 3 : Given a general regular expression e over ¥ :

- linearize e into €’

- compute (by stage 2) a nfa A" such that v(e') = L(A).

- let A be obtained from A’ by replacing everywhere (i.e. in the
input-alphabet and in the transitions) each letter x; by x. Then
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I—Kleene's theorem

I—From regular expressions to automata

Glushkov-algorithm : example

e := (ab*c)*ab(aU b)*
The linarization of e is :
e := (a1bjc1) axba(as U b3)*
We compute
I(e') = {a1,a2}, F(L')={bo,as,bs},
D(e') =

{a1b1, bib1, bic1,a1c1, c1a1, ciap, agbo, bpas, bobs, azas, azbs, bsbsz, bzas}.
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L Kleene's theorem

I—From regular expressions to automata

Glushkov-algorithm : example

30
a @b g b R
a

Figure — finite automaton for L,
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I—Kleene's theorem

I—From regular expressions to automata

Kleene's theorem :summary

regular expressions

Glushkov algorithm BMC-algorithm

determinization minimization

nfa —————— complete dfa ———— minimal dfa

Figure — Kleene's theorem : summary.
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