
Formal Languages-Course 3.

Formal Languages-Course 3.

Géraud Sénizergues

Bordeaux university

11/05/2020

Master computer-science MINF19, IEI, 2019/20

1 / 56

Formal Languages-Course 3.

contents

1 Minimal complete deterministic automaton

2 Non-deterministic finite automata

3 Kleene’s theorem
From automata to regular expressions
From regular expressions to automata

2 / 56

Formal Languages-Course 3.

Minimal complete deterministic automaton

Minimal complete deterministic
automaton

3 / 56

Formal Languages-Course 3.

Minimal complete deterministic automaton

Minimal dfa :proofs

We asserted

Theorem

Let L ⊆ Σ∗ be some recognizable language.
1- There exists a minimal complete dfa recognizing L

2- If two complete dfa A,B are minimal and recognize L, then
these two automata are isomorphic (i.e. B can be obtained from A
just by state-renaming).

Let us now prove point 2 of the theorem. The proof will also
explain why the minimization algorithm is correct.

4 / 56

Formal Languages-Course 3.

Minimal complete deterministic automaton

Minimal dfa : a candidate

We denote by Q(L) the set of left-quotients of L :

Q(L) := {u−1L | u ∈ Σ∗}.

Let L ⊆ Σ∗. We define the deterministic automaton :

M = 〈Σ,Q(L), L,R , θ〉

where
- L is the initial state
- R = {P ∈ Q(L) | ǫ ∈ P} is the set of final states
- θ : (P , x) 7→ x−1P is the transition function

By induction over |w | : ∀w ∈ Σ∗, θ∗(L,w) = w−1L. Hence

L(M) = L.

5 / 56

Formal Languages-Course 3.

Minimal complete deterministic automaton

Minimal dfa : 3 properties

We shall show that
M1- M is a finite deterministic automaton recognizing L,
M2- M is minimal
M3- every accessible complete dfa A recognizing L is such that
A/ ≡ ≈ M where ≡ is the Nerode equivalence over A.

6 / 56

Formal Languages-Course 3.

Minimal complete deterministic automaton

Minimal dfa : an automaton homomorphism

Let A = 〈Q,Σ, δ, q0,F 〉 be a complete dfa recognizing L. We
assume every state of A is accessible.
For every state q ∈ Q, we note

L(q,A) := {w ∈ Σ∗ | δ∗(q,w) ∈ F}.

Let ϕ : Q→P(Σ∗) defined by :

ϕ(q) = L(q,A).

7 / 56

Formal Languages-Course 3.

Minimal complete deterministic automaton

Minimal dfa : an automaton homomorphism

Fact

∀q ∈ Q,∀w ∈ Σ∗, ϕ(δ(q,w)) = w−1ϕ(q).

Proof:

ϕ(δ(q, x)) = L(δ(q, x),A)

= {w ∈ Σ∗ | δ∗(δ(q, x),w) ∈ F}

= {w ∈ Σ∗ | δ∗(q, xw) ∈ F}

= {w ∈ Σ∗ | xw ∈ L(q,A)}

= x−1
L(q,A)

= x−1ϕ(q).

By induction over |w |, we get the fact. �

8 / 56

Formal Languages-Course 3.

Minimal complete deterministic automaton

Minimal dfa : an automaton homomorphism

If δ∗(q0,w) = q then

ϕ(q) = ϕ(δ∗(q0,w)) = w−1
L(q0,A).

ϕ(q) = w−1L ∈ Q(L).

Since A has only accessible states, ϕ : Q→Q(L).Moreover, every
right-quotient w−1

L(q0,A) belongs to the image of ϕ, hence

ϕ : Q։Q(L) is surjective ,

showing that
Card(Q) ≥ Card(Q(L)).

Hence Q(L) is finite (M1) and M is minimal (M2).

9 / 56

Formal Languages-Course 3.

Minimal complete deterministic automaton

Minimal dfa : an automaton homomorphism

The map ϕ : Q→Q(L) has the three properties :

ϕ(δ(q, x)) = θ(ϕ(q), x) (1)

ϕ(q0) = L (2)

q ∈ F ⇔ ϕ(q) ∈ R (3)

Property (1) is a reformulation of the above fact 1. Properties (2,3)
are easily checked.
The map ϕ : Q → Q(L) is called an automaton-homomorphism
from A into M.

10 / 56

Formal Languages-Course 3.

Minimal complete deterministic automaton

Minimal dfa : an automaton homomorphism

Note that for every q, q′ ∈ Q,

q ≡ q′ ⇔ ϕ(q) = ϕ(q′).

Let us consider the quotient automaton A/ ≡ obtained by merging
the equivalent states :

A/ ≡= 〈Σ, Q̄, q̄0, F̄ , δ̄〉

where :
- Q̄ = {[q]≡ | q ∈ Q}
- q̄0 = [q0]≡
- F̄ = {[q]≡ | q ∈ F}
- δ̄([q]≡, x) = δ(q, x)
The map ϕ̄ : Q̄→Q(L) defined by : ϕ̄([q]≡) = ϕ(q) is well-defined,
is bijective and is also an automaton-homomorphism. Hence it is an
automaton-isomorphism i.e. (M3).

11 / 56

Formal Languages-Course 3.

Non-deterministic finite automata

Non-deterministic finite
automata

12 / 56

Formal Languages-Course 3.

Non-deterministic finite automata

Non-deterministic finite automata : motivation

We define a more general notion of finite automaton. But the class
of recognized languages is still the same.
This makes easier the task of proving that a language is
recognizable.
1- For a given language one can build a smaller automaton
2- For a given language one can find easily a non-deterministic
automaton, while finding directly a deterministic automaton might
be difficult

13 / 56

Formal Languages-Course 3.

Non-deterministic finite automata

Non-deterministic finite automata : motivation

Example

L1 = {a, b}∗ · b · {a, b}, L2 = a(ba)∗ ∪ (abb)∗a
L3 = {a, b}∗ \ [a(ba)∗ ∪ (abb)∗a]

For L1, L2 : it is clear that they are regular. Are they recognizable ?
For L3 : is it regular ? is it recognizable ?

14 / 56

Formal Languages-Course 3.

Non-deterministic finite automata

Non-deterministic finite automata : examples

Some non-deterministic automata for L1, L2 :

A1

0 1 2
a b

a b

b

A2

0

1

a

a
b b

a

a

2

3 4 5 6

a

b

15 / 56

Formal Languages-Course 3.

Non-deterministic finite automata

Non-deterministic finite automata : definition

Definition

A non-deterministic finite automaton is a 5-tuple
A = 〈Q,Σ, δ, q0,F 〉 where
- Q is a finite set, called the set of states
- Σ is an alphabet
- δ ⊆ Q × Σ× Q is the set of transitions
- q0 ∈ Q is called the initial state
- F ⊆ Q is the set of final states

NB : a non-deterministic automaton might be ... deterministic !
What “non-deterministic” actually means is : not promised to be
deterministic.

16 / 56

Formal Languages-Course 3.

Non-deterministic finite automata

nfa : Computations

We call computation of the nfa A every sequence :

u = (p0, x0, p1)(p1, x1, p2) · · · (pℓ−1, xℓ−1, pℓ)

where, ∀i ∈ [0, ℓ], pi ∈ Q, ∀i ∈ [0, ℓ− 1], xi ∈ Σ and

∀i ∈ [0, ℓ− 1], (pi , xi , pi+1) ∈ δ.

The trace of the computation, tr(u) is the word :

w = x0x1 · · · xℓ−1.

The computation u starts from p0 and ends in state pℓ. We then
note :

p0
w

−→A pℓ

which can be read : “A moves from p0 to pℓ reading w ”.
17 / 56

Formal Languages-Course 3.

Non-deterministic finite automata

nfa : Computations

The language recognized by A is the set of all words w ∈ Σ∗ such
that, there exists a computation of A, starting in q0, ending in
some q ∈ F , with trace tr(u) = w . More formally :

L(A) = {w ∈ Σ∗ | ∃q ∈ F , q0
w

−→A q}

18 / 56

Formal Languages-Course 3.

Non-deterministic finite automata

determinization : example

Let us consider the nfa

A1 = 〈Q1,Σ, δ1, q0,F 〉

with Q1 = {0, 1, 2}, Σ = {a, b},
δ1 = {(0, a, 0), (0, b, 0), (0, b, 1), (1, a, 2), (1, b, 2)}, F = {2}.

19 / 56

Formal Languages-Course 3.

Non-deterministic finite automata

determinization : example

The determinized automaton :

D1 = 〈Q ′
1,Σ, δ

′
1, q

′
0,F

′
1〉

with Q ′
1 = {{0}, {0, 1}, {0, 2}, {0, 1, 2}}, Σ = {a, b},

F ′
1 = {{0, 2}, {0, 1, 2}}. The map δ′1 is described by :

q \ x a b

0 0 1

01 02 012

02 0 01

012 02 012

20 / 56

Formal Languages-Course 3.

Non-deterministic finite automata

determinization : example

The determinized automaton D1 :

D1

0 1 2
a b

a b

b

A1

a

a
a

b

a b

0 01

02

012
bb

21 / 56

Formal Languages-Course 3.

Non-deterministic finite automata

determinization : the theorem

Theorem

For every non-deterministic finite automaton A there exists a
deterministic finite automaton D, which can be constructed from
A, such that

L(A) = L(D).

Sketch of proof

Let A = 〈Q,Σ, δ, q0,F 〉. We build D = 〈P(Q),Σ,∆, {q0},F〉
where, for every P ⊆ Q, x ∈ Σ
∆(P , x) = {q ∈ Q | ∃p ∈ P , (p, x , q) ∈ δ}
F = {P ∈ P(Q) | P ∩ F 6= ∅}.
We can prove by induction over |u| that :

∆∗(P , u) = {q ∈ Q | ∃p ∈ P , p
u

−→A q}.
22 / 56

Formal Languages-Course 3.

Non-deterministic finite automata

determinization : the theorem

∆∗(P , u) = {q ∈ Q | ∃p ∈ P , p
u

−→A q}.

It follows that :

u ∈ L(A) ⇔ ∃q ∈ F , q0
u

−→A q

⇔ ∆∗(P , u) ∩ F 6= ∅

⇔ ∆∗(P , u) ∈ F .

�

23 / 56

Formal Languages-Course 3.

Non-deterministic finite automata

determinization : the theorem

Exercice

Build dfa D2,D3 recognizing the languages

L2 = a(ba)∗ ∪ (abb)∗a, L3 = {a, b}∗ \ [a(ba)∗ ∪ (abb)∗a]

24 / 56

Formal Languages-Course 3.

Kleene’s theorem

Kleene’s theorem

25 / 56

Formal Languages-Course 3.

Kleene’s theorem

Kleene’s theorem

For every finite alphabet we denote by :
- REG(Σ∗) the set of regular languages over Σ
- REC(Σ∗) the set of recognizable languages over Σ

Theorem

For every finite alphabet Σ, REG(Σ∗) = REC(Σ∗).

The proof is constructive :
- we give an algorithm translating every nfa A into a regular
expression e, such that L(A) = Le .
- we give an algorithm translating every regular expression e into a
nfa A such that L(A) = Le .

26 / 56

Formal Languages-Course 3.

Kleene’s theorem

From automata to regular expressions

BMC-algorithm

The BMC-algorithm (Brzozowski-Mc-Kluskey) : translates every
nfa A into a regular expression e ;
Three steps :
step 1 : normalisation of A : adds two new states.
step 2 : sequence of extended finite automaton, with strictly
decreasing number of states.
step 3 : last extended automaton has only one transition : its label
is e.

27 / 56

Formal Languages-Course 3.

Kleene’s theorem

From automata to regular expressions

BMC-algorithm :e-automata

An extended-finite automaton is a 5-tuple A = 〈Q,Σ, δ, q0,F 〉
where
- Q is a finite set, called the set of states
- Σ is an alphabet
- δ ⊆ Q × RE(Σ)× Q is the set of transitions
- q0 ∈ Q is called the initial state
- F ⊆ Q is the set of final states

28 / 56

Formal Languages-Course 3.

Kleene’s theorem

From automata to regular expressions

BMC-algorithm :e-automata

We call computation of the efa A every sequence :

u = (p0, e0, p1)(p1, e1, p2) · · · (pℓ−1, eℓ−1, pℓ)

where, ∀i ∈ [0, ℓ], pi ∈ Q, ∀i ∈ [0, ℓ− 1], ei ∈ RE(Σ) and

∀i ∈ [0, ℓ− 1], (pi , ei , pi+1) ∈ δ.

The trace of the computation, tr(u) is the word :

e = e0e1 · · · eℓ−1.

The language recognized by A is defined by :

TR(A) = {e ∈ RE(Σ) | ∃q ∈ F , q0
e

−→A q}

L(A) =
⋃

e∈TR(A)

ν(e).

29 / 56

Formal Languages-Course 3.

Kleene’s theorem

From automata to regular expressions

BMC-algorithm :e-automata

Example :

〈a ⊕ 〈b ⊗ b〉〉

0 1 2

A

〈a ⊕ b〉〈〈b ⊗ b ⊗ b〉⋆〉

TR(A) = (〈a ⊕ 〈b ⊗ b〉〉)∗ · 〈〈b ⊗ b ⊗ b〉⋆〉 · 〈a ⊕ b〉.

L(A) = (a ∪ (bb))∗ · (bbb)∗ · (a ∪ b).

30 / 56

Formal Languages-Course 3.

Kleene’s theorem

From automata to regular expressions

BMC-algorithm : step 1

Step 1 :

BMC-Step 1

A

i t

A1

A = 〈Q,Σ, δ, q0,F 〉 We add to Q a new initial state i and a new
final state t together with the new transitions :

(i , ε, q0)) ∪ {(q, ε, t) | q ∈ F}.

Now only t is final.

31 / 56

Formal Languages-Course 3.

Kleene’s theorem

From automata to regular expressions

BMC-algorithm : step 2

The current efa is C = 〈QC ,Σ, δC , i , {t}〉. We assume there is at
most one transition from any state p to any other state p′ (just
make the union of all the labels (p, e, p′) if there are several such
transitions).
We remove a state q ∈ QC \ {i , t}.

32 / 56

Formal Languages-Course 3.

Kleene’s theorem

From automata to regular expressions

BMC-algorithm : step 2

let p1, · · · pj · · · ph be the states in QC \ {q} with transitions

(pj , ej , q)

let r1, · · · rk · · · rℓ be the states in QC \ {q} with transitions

(q, fk , rk)

Let
(q, gq , q)

be the transition from q to q (we add te transition (q, ∅, q) if there
is no such transition).
We remove state q and add the transitions :

(pj , ej (gq)
∗fk , rk).

We obtain C′ = 〈QC ,Σ, δ
′
C , i , {t}〉 which has one less state and still

recognizes the same language.
33 / 56

Formal Languages-Course 3.

Kleene’s theorem

From automata to regular expressions

BMC-algorithm : step 2

Step 2 :

q

pj

rk

rk

fk

gq

BMC-step 2

pj
ej

ejgq
∗fk

Removing a state q /∈ {i , t}.

34 / 56

Formal Languages-Course 3.

Kleene’s theorem

From automata to regular expressions

BMC-algorithm : step 2

Step 2 :
We remove successively all the states in Q, until we obtain an efa

of the form : C = 〈{i , t},Σ, δC , i , {t}〉 where

δC = {(i , e, t)}.

Then :
L(A) = L(C) = ν(e).

35 / 56

Formal Languages-Course 3.

Kleene’s theorem

From automata to regular expressions

BMC-algorithm : step 3

Step 3 :

e

i t

C

36 / 56

Formal Languages-Course 3.

Kleene’s theorem

From automata to regular expressions

BMC-algorithm : example

ac∗

0

1

2

3

a

a

ab

b

b

c

c

c

i t
ε

ε

0

1

2

a

b

b

c

c

i t
ε ac∗b

a

37 / 56

Formal Languages-Course 3.

Kleene’s theorem

From automata to regular expressions

BMC-algorithm : example

ac∗bb∗c

0

1

2

a

b

b

c

c

i t
ε ac∗b

a

ac∗

ac∗

i t0 2

ε

ab∗c
c ∪ ac∗bb∗a

b ∪ ab∗a

38 / 56

Formal Languages-Course 3.

Kleene’s theorem

From automata to regular expressions

BMC-algorithm : example

(ab∗c)∗(b ∪ ab∗a)[c ∪ ac∗bb∗a ∪ ac∗bb∗c(ab∗c)∗(b ∪ ab∗a)]∗ac∗

c

ac∗

i t0 2

ε

ab∗c
c ∪ ac∗bb∗a

b ∪ ab∗a

ac∗bb∗c

(ab∗c)∗(b ∪ ab∗a)

c ∪ ac∗bb∗a ∪ ac∗bb∗c(ab∗c)∗(b ∪ ab∗a)

ac∗

i t2

i t

39 / 56

Formal Languages-Course 3.

Kleene’s theorem

From regular expressions to automata

Glushkov-algorithm

The Gluskov-algorithm : translates every regular expression e into
an nfa A :
Three stages of generality :
stage 1 : translation of locally-testable languages.
stage 2 : translation of linear regular expressions.
stage 3 : translation of general regular expressions.

40 / 56

Formal Languages-Course 3.

Kleene’s theorem

From regular expressions to automata

Locally-testable languages

A language L ⊆ Σ∗ is called locally testable if and only if there
exist subsets I ,F ⊆ Σ, D ⊆ Σ2 such that

L = (I · Σ∗ ∩ Σ∗ · F) \ Σ∗D̄Σ∗

or
L = {ε} ∪ [(I · Σ∗ ∩ Σ∗ · F) \ Σ∗D̄Σ∗]

where D̄ = Σ2 \ D.
In words : L is the set of all words that begin with a letter in I , end
with a letter in F and have all their factors of length 2 in the set D
(the letter D (resp.I ,F) are standing for “Digrams” (resp.
“Initials”,”Final”).

41 / 56

Formal Languages-Course 3.

Kleene’s theorem

From regular expressions to automata

Glushkov-algo : stage 1

stage 1 : translation of a locally-testable language.

L = ((I · Σ∗) ∩ (Σ∗ · F)) \ (Σ∗D̄Σ∗).

Let
A = 〈Q,Σ, δ, q0,F 〉

be the nfa defined by :
Q = Σ ∪ {q0} (where q0 is a new symbol not in Σ)
δ = {(q0, x , x) | x ∈ I} ∪ {(x , y , y) | x , y ∈ Σ, xy ∈ D} Then

L = L(A).

42 / 56

Formal Languages-Course 3.

Kleene’s theorem

From regular expressions to automata

Glushkov-algorithm : example

c

aq0 b

c

a

a

a

c

c
b

b

b

a

b

Σ = {a, b, c}, L = (aΣ∗ ∩Σ∗a) \ (Σ∗bcΣ∗)

43 / 56

Formal Languages-Course 3.

Kleene’s theorem

From regular expressions to automata

Glushkov-algo : stage 1

stage 1 : translation of a locally-testable language.

L = {ε} ∪ [((I · Σ∗) ∩ (Σ∗ · F)) \ (Σ∗D̄Σ∗)].

Let
A = 〈Q,Σ, δ, q0,F ∪ {q0}〉

be the nfa defined by :
Q = Σ ∪ {q0} (where q0 is a new symbol not in Σ)
δ = {(q0, x , x) | x ∈ I} ∪ {(x , y , y) | x , y ∈ Σ, xy ∈ D} Then

L = L(A).

NB : we have added q0 in the set of final states.

44 / 56

Formal Languages-Course 3.

Kleene’s theorem

From regular expressions to automata

Glushkov-algorithm : example

c

aq0 b

c

a

a

a

c

c
b

b

b

a

b

Σ = {a, b, c}, L = {ε} ∪ [(aΣ∗ ∩ Σ∗c) \ (Σ∗bcΣ∗)]

45 / 56

Formal Languages-Course 3.

Kleene’s theorem

From regular expressions to automata

Glushkov-algo : stage 2

stage 2 : translation of a linear regular expression.
A regular expression e, over Σ , is called linear if each letter of Σ
occurs at most once in the word e. Examples : (((ab)∗ ∪ cd) ∪ f)∗

is linear
(((ab)∗ ∪ ca) ∪ f)∗ is not linear

Proposition

If e ∈ RE(Σ) is linear then ν(e) is locally testable.

It suffices to prove that :
if L1 ∈ REG(Σ∗

1), L2 ∈ REG(Σ∗
2) are locally testable languages

over disjoint alphabets Σ1,Σ2, then :

L1 ∪ L2, L1 · L2, L∗1

are locally-testable too.
46 / 56

Formal Languages-Course 3.

Kleene’s theorem

From regular expressions to automata

Glushkov-algorithm : stage 2

stage 2 : translation of a linear regular expression.
For every language L over Σ, we define :

N(L) = L ∩ {ε},

I(L) = {x ∈ Σ | x−1L 6= ∅}, F(L) = {x ∈ Σ | Lx−1 6= ∅},

D(L) = {xy ∈ Σ2 | ∃α, β ∈ Σ∗, αxyβ ∈ L}.

Example : for L = (abc)∗d(ba)

N(L) = ∅, I(L) = {a, d},F(L) = {a},D(L) = {ab, bc , ca, cd , db, ba}.

47 / 56

Formal Languages-Course 3.

Kleene’s theorem

From regular expressions to automata

Glushkov-algorithm : stage 2

Remark : if L is locally testable i.e.

L = (I · Σ∗ ∩ Σ∗ · F) \ Σ∗D̄Σ∗

(possibly with the additional word ε) then

N(L) = ∅, I(L) = I , F(L) = F , D = D(L), D̄ = Σ2 \ D(L),

and N(L) = {ε} if ε ∈ L.
Hence, for a locally-testable language L, it suffices to compute
N(L), I(L),F(L),D(L) to be able to build a nfa recognizing L.

48 / 56

Formal Languages-Course 3.

Kleene’s theorem

From regular expressions to automata

Glushkov-algorithm : stage 2

Given a regular expression e we define

N(e) = N(ν(e)), I(e) = I(ν(e)), F(e) = F(ν(e)), D(e) = D(ν(e)).

These four functions can be computed by the following recursive
rules :

f ∈ RE(f) N(f) I(f) F(f)

∅ ∅ ∅ ∅
ε {ε} ∅ ∅

x ∈ Σ ∅ {x} {x}
e ∪ e′ N(e) ∪ N(e′) I(e) ∪ I(e′) F(e) ∪ F(e′)

e · e′ N(e) ∩ N(e′) I(e) ∪ N(e)I(e′) F(e)N(e′) ∪ F(e′)

e∗ {ε} I(e) F(e)

e+ ∅ I(e) F(e)

49 / 56

Formal Languages-Course 3.

Kleene’s theorem

From regular expressions to automata

Glushkov-algorithm : stage 2

Recursive rules for D(∗) :

f ∈ RE(f) D(f)

∅ ∅

ε ∅
x ∈ Σ ∅
e ∪ e′ D(e) ∪ D(e′)

e · e′ D(e) ∪ D(e′) ∪ F(e)I(e′)

e∗ D(e) ∪ F(e)I(e)

e+ D(e) ∪ F(e)I(e)

50 / 56

Formal Languages-Course 3.

Kleene’s theorem

From regular expressions to automata

Glushkov-algorithm : stage 2

Stage 2 : Given a linear regular expression e :
- compute N(e), I(e),F(e),D(e)
- ν(e) = (I · Σ∗ ∩ Σ∗ · F) \ Σ∗D̄Σ∗

for I = I(e),F = F(e),D = D(e).
- compute the nfa A associated to I ,F ,D
- add q0 as final state if N(e) = {ε}.

51 / 56

Formal Languages-Course 3.

Kleene’s theorem

From regular expressions to automata

Glushkov-algorithm : stage 3

Given a general regular expression e over Σ :
Let Σ′ = {xi | 1 ≤ i ≤ |e|x}. Let e′ ∈ RE(Σ′) be a linear regular
expression that is mapped onto e by forgetting the indices in the
symbols (xi) ∈ Σ′.

Example

Σ = {a, b, c}, e = (aba)∗b(bb(ab)∗)∗ ∪ (cba)∗.

then
Σ′ = {a1, a2, a3, a4, b1, b2, b3, b4, b5, b6, c1}

e′ = (a1b1a2)
∗b2(b3b4(a3b5)

∗)∗ ∪ (c1b6a4)
∗.

We call e′ a “linearization” of the regular expression e.

52 / 56

Formal Languages-Course 3.

Kleene’s theorem

From regular expressions to automata

Glushkov-algorithm : stage 3

Stage 3 : Given a general regular expression e over Σ :
- linearize e into e′

- compute (by stage 2) a nfa A′ such that ν(e′) = L(A′).
- let A be obtained from A′ by replacing everywhere (i.e. in the
input-alphabet and in the transitions) each letter xi by x . Then

ν(e) = L(A).

53 / 56

Formal Languages-Course 3.

Kleene’s theorem

From regular expressions to automata

Glushkov-algorithm : example

e := (ab∗c)∗ab(a ∪ b)∗

The linarization of e is :

e′ := (a1b
∗
1c1)

∗a2b2(a3 ∪ b3)
∗

We compute

I(e′) = {a1, a2}, F(L′) = {b2, a3, b3},

D(e′) =
{a1b1, b1b1, b1c1, a1c1, c1a1, c1a2, a2b2, b2a3, b2b3, a3a3, a3b3, b3b3, b3a3}.

54 / 56

Formal Languages-Course 3.

Kleene’s theorem

From regular expressions to automata

Glushkov-algorithm : example

a

0

a1 b1 c1 a2 b2

a3

b3

a a

b

c

b c a b

a

b

b a

a

b

Figure – finite automaton for Le

55 / 56

Formal Languages-Course 3.

Kleene’s theorem

From regular expressions to automata

Kleene’s theorem :summary

regular expressions

nfa complete dfa minimal dfa

BMC-algorithmGlushkov algorithm

determinization minimization

Figure – Kleene’s theorem : summary.

56 / 56

	Minimal complete deterministic automaton
	Non-deterministic finite automata
	Kleene's theorem
	From automata to regular expressions
	From regular expressions to automata

