

Formal Languages-Course 2.

Géraud Sénizergues

Bordeaux university

07/05/2020

Master computer-science MINF19, IEI, 2019/20

contents

- 1 Regular languages
 - Prolog : arithmetical expressions
 - Regular expressions
 - Regular languages
- 2 Recognizable languages
 - Deterministic finite automata
 - Trim deterministic finite automata
 - Minimal complete deterministic finite automata

Regular languages

Prolog :arithmetical expressions

Let \oplus, \otimes be binary symbols, - be a unary symbol. Here are arithmetical expressions, with operator-symbols $\{\oplus, \otimes, -\}$ over the alphabet of constant symbols $\Sigma = \{0, 1\}$:

$$e_1=0, \ e_2=\langle (\langle 1\oplus 1\rangle \oplus 0\rangle \otimes 1\rangle, \ e_3=\langle (\langle -1\rangle \oplus 1\rangle \oplus 1\rangle$$

These are words on the alphabet $A = \{0, 1, \oplus, \times, \langle, \rangle\}.$

Prolog: arithmetical expressions

The set of all correct arithmetical expressions is the least language $AE \subseteq A^*$ fulfilling $: \forall e, e' \in AE$,

$$0 \in AE, 1 \in AE$$

$$\langle e \oplus e' \rangle \in AE$$

$$\langle e \otimes e' \rangle \in AE$$

$$\langle -e \rangle \in AE$$

$$\langle e \rangle \in AE$$

Prolog :arithmetical expressions, value

The value $\nu(e)$ of an arithmetical expression e is the integer defined (inductively) by $\forall e, e' \in AE$,

$$u(0) = 0 \quad \nu(1) = 1 \in AE$$

$$\nu(\langle e \oplus e' \rangle) = \nu(e) + \nu(e')$$

$$\nu(\langle e \otimes e' \rangle) = \nu(e) \times \nu(e')$$

$$\nu(\langle -e \rangle) = -\nu(e).$$

$$\nu(\langle e \rangle) = \nu(e)$$

Prolog :arithmetical expressions, value

$$u(e_1) = \nu(0) = 0.$$

$$\nu(e_2) = \nu(\langle\langle\langle 1 \oplus 1 \rangle \oplus 0 \rangle \otimes 1 \rangle)$$

$$= \nu(\langle\langle 1 \oplus 1 \rangle \oplus 0 \rangle) \cdot \nu(1)$$

$$= (\nu(\langle 1 \oplus 1 \rangle) + \nu(0)) \cdot \nu(1)$$

$$= ((\nu(1) + \nu(1)) + 0) \cdot 1$$

$$= ((1+1)+0) \cdot 1$$

$$= 2.$$

Prolog :arithmetical expressions, value

$$\nu(e_3) = \nu(\langle\langle\langle-1\rangle \oplus 1\rangle \oplus 1\rangle) \\
= \nu(\langle\langle-1\rangle \oplus 1\rangle) + \nu(1) \\
= (\nu(\langle-1\rangle) + \nu(1)) + 1 \\
= ((-1) + 1) + 1 \\
= 0 + 1 \\
= 1$$

Remark : the above rewritings are by no means an algorithm for computing $\nu(*)$; they are just illustrating why the previous inductive properties of $\nu(*)$ really define $\nu(*)$.

Regular expressions :example

Let \oplus , \otimes be binary symbols, \star be a unary symbol,0 be a nullary symbol. Here are regular expressions, with operator-symbols $\{\oplus, \otimes, \star\}$ over the alphabet of constant symbols $\Sigma = \{a, b, c\}$:

$$e_1 = a, \ e_2 = \langle \langle a \oplus b \rangle + c \rangle \otimes a, \ e_3 = \langle \langle \langle a \oplus b \rangle \otimes a \rangle \star \rangle,$$

These are words on the alphabet $A = \Sigma \cup \{0, \oplus, \otimes, \star, \langle, \rangle\}$.

Regular expressions :definition

Let Σ be an alphabet. Let \oplus , \otimes be binary symbols, \star be a unary symbol, 0 be a nullary symbol. Let $A = \Sigma \cup \{\oplus, \times, \star, 0, \langle, \rangle\}$ The set of all correct regular expressions over Σ is the least language $\mathrm{RE} \subseteq A^*$ fulfilling $: \forall x \in \Sigma, \forall e, e' \in \mathrm{AE}$,

$$0 \in RE, x \in RE$$

 $\langle e \oplus e' \rangle \in RE$
 $\langle e \otimes e' \rangle \in RE$
 $\langle e \star \rangle \in RE$
 $\langle e \rangle \in RE$

Regular expressions :value

The value $\nu(e)$ of a regular expression e is the language defined (inductively) by $: \forall x \in \Sigma, e, e' \in AE$,

$$\nu(0) = \emptyset \quad \nu(x) = \{x\}$$

$$\nu(\langle e \oplus e' \rangle) = \nu(e) \cup \nu(e')$$

$$\nu(\langle e \otimes e' \rangle) = \nu(e) \times \nu(e')$$

$$\nu(\langle e \star \rangle) = \nu(e)^*.$$

$$\nu(\langle e \rangle) = \nu(e)$$

Regular expressions: value

$$e_1 = a, \quad e_2 = \langle \langle a \oplus b \rangle \oplus c \rangle \otimes a, \quad e_3 = \langle \langle \langle a \oplus b \rangle \otimes a \rangle \star \rangle,$$

$$\nu(a) = \{a\},$$

$$\nu(\langle \langle a \oplus b \rangle \oplus c \rangle \otimes a) = \{aa, ba, ca\}$$

$$\nu(\langle \langle \langle a \oplus b \rangle \otimes a \rangle \star \rangle) = \{aa, ba\}^*$$

$$\nu(\langle \langle \langle a \oplus b \rangle \otimes a \rangle \star \rangle) = \{\varepsilon, aa, ba, aaaa, aaba, baaa, babaa\} \cup$$

$$\{aaaaaaaa, aaaaba, aabaaa, aababa, baaaaaa, baaaba, babaaa, bababa\} \cup$$

$$\{aaaaaaaaa, \dots\}$$

Regular languages : definition

We also note L_e for the language $\nu(e)$.

Definition

A language $L \subseteq \Sigma^*$ is called regular if and only if there exists some regular expression e over Σ such that

$$L = L_e$$
.

Examples:

$$L_1 = \{u \in \{a, b\}^* \mid |u| \text{ is even}\}$$

This language is regular since : $L_1 = \{aa, ab, ba, bb\}^* = L_e$ for

$$e = \langle \langle \langle \langle \langle a \otimes a \rangle \oplus \langle a \otimes b \rangle \rangle \oplus \langle b \otimes a \rangle \rangle \oplus \langle b \otimes b \rangle \rangle \star \rangle$$

Regular languages :example

```
 L_2 = \{u \in \{a,b\}^* \mid u \text{ is square-free}\} 
 L_3 = \{u \in \{0,1\}^* \mid u \text{ is the binary notation of an integer that is divisible by 4}\} 
 These languages are regular since : 
 L_2 = \{\varepsilon, a, b, aa, ab, ba, bb, aba, bab\} 
 L_3 = \{0\} \cup \{1\} \cdot \{0,1\}^* \cdot 00
```

Regular languages :extended expressions

From now on, we accept as regular expressions, expressions using the usual symbols \cup (instead of \oplus), \cdot (instead of \otimes), using k-ary notation for the product and for the union (since these operations are associative). We add the symbol ε with value

$$\nu(\varepsilon) = \nu(\emptyset^*) = \{\varepsilon\}.$$

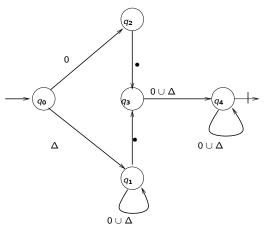
For example:

$$e = (a \cdot a \cdot a)^* \cdot (\varepsilon \cup b \cup (b \cdot b))$$
 or even more compactly $f = (aaa)^* \cdot (\varepsilon \cup b \cup (bb))$.

Recognizable languages

Example

Let us describe the set of correct decimal integers.



Definition

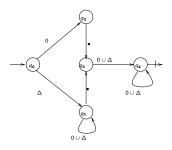
Definition

A deterministic finite automaton is a 5-tuple $\mathcal{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ where

- Q is a finite set, called the set of states
- Σ is an alphabet
- $\delta: Q \times \Sigma {
 ightarrow} Q$ is a (partial) function called the transition function
- $q_0 \in Q$ is called the initial state
- $F \subseteq Q$ is the set of final states

 Σ is called the *input* alphabet. An automaton can be viewed as a device that, for every word $w \in \Sigma^*$, treats the word and eventually answers YES or NO.

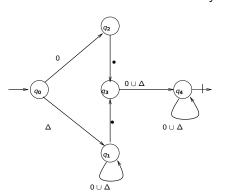
Example continued 2



Here
$$\mathcal{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$$
 with $Q = \{q_0, q_1, q_2, q_3, q_4\}$, $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, \bullet\}$, $F = \{q_4\}$

Example continued 3

δ is described by the table :



$q \setminus x$	0	1		9	•
q_0	q_2	q_1	q_1	q_1	-
q_1	q_1	q_1	q_1	q_1	q
q_2	_	_	_	_	q
q 3	q_4	q_4	q_4	q_4	-
q_4	q_4	q_4	q_4	q_4	-

dfa: Computations

We call computation of the dfa ${\cal A}$ every sequence :

$$u = (p_0, x_0, p_1)(p_1, x_1, p_2) \cdots (p_{\ell-1}, x_{\ell-1}, p_{\ell})$$

where, $\forall i \in [0,\ell], p_i \in Q$, $\forall i \in [0,\ell-1], x_i \in \Sigma$ and

$$\forall i \in [0, \ell-1], \delta(p_i, \mathbf{x}_i) = p_{i+1}.$$

The trace of the computation, tr(u) is the word :

$$w=x_0x_1\cdots x_{\ell-1}.$$

The computation u starts from p_0 and ends in state p_ℓ . We then note :

$$p_0 \stackrel{\mathsf{w}}{\longrightarrow}_{\mathcal{A}} p_\ell$$

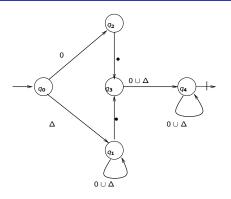
which can be read : " \mathcal{A} moves from p_0 to p_ℓ reading w" \mathbb{R}

dfa: Computations

The language recognized by $\mathcal A$ is the set of all words $w\in \Sigma^*$ such that, there exists a computation of $\mathcal A$, starting in q_0 , ending in some $q\in \mathcal F$, with trace $\mathrm{tr}(u)=w$. More formally :

$$L(\mathcal{A}) = \{ w \in \Sigma^* \mid \exists q \in F, q_0 \stackrel{w}{\longrightarrow}_{\mathcal{A}} q \}$$

dfa: Computations, examples

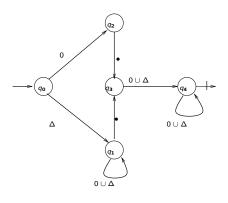


$$w_1 = 20 \bullet 25$$

computation : $(q_0, 2, q_1)(q_1, 0, q_1)(q_1, \bullet, q_3)(q_3, 2, q_4)(q_4, 5, q_4)$

Since q_4 is final, w_1 is accepted.

dfa: Computations, examples

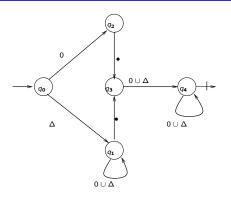


$$w_2 = 201$$

computation : $(q_0, 2, q_1)(q_1, 0, q_1)(q_1, 1, q_1)$

Since q_1 is not final, w_2 is rejected.

dfa: Computations, examples



$$w_3 = 21 \bullet \bullet$$

computation : $(q_0, 2, q_1)(q_1, 0, q_1)(q_1, \bullet, q_3)$ and $\delta(q_3, \bullet)$ is undefined Since no computation starting on q_0 can read w_3 , the word w_3 is rejected.

Complete dfa

Let $\mathcal{A}=\langle Q,\Sigma,\delta,q_0,F\rangle$ be a DFA. It is called complete if the transition function δ is a total map :

$$Q \times \Sigma \rightarrow Q$$
.

In this case δ can be extended into a total map

$$\delta^*: Q \times \Sigma^* \rightarrow Q$$

by induction over the length of words : $\forall q \in Q, \forall x \in \Sigma, \forall w \in \Sigma^*$:

$$\delta^*(q, \varepsilon) = q$$

$$\delta^*(q, x) = \delta(q, x)$$

$$\delta^*(q, wx) = \delta(\delta^*(q, w), x)$$

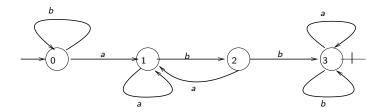
Complete dfa : programming δ^*

The following program (scheme) computes, for every input $w \in \Sigma^*$, the state $\delta^*(q_0, w)$ in linear time.

```
INPUT : w = w[0]w[1]\cdots w[n-1]. q \leftarrow q_0 { start with the initial state} for k \leftarrow 0 to n-1 do q \leftarrow \delta(q,w[k]) { update the current state } end for return q
```

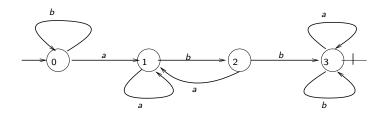
Deterministic finite automata

Complete dfa :example



This dfa is complete. What is the language L(A)?

Complete dfa :example

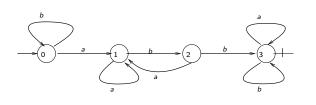


Computation over *aababbb* :

$$u_1 = (0, a, 1)(1, a, 1)(1, b, 2)(2, a, 1)(1, b, 2)(2, b, 3)(3, b, 3)$$

 $\delta^*(0, aababbb) = 3$ and 3 is final $\rightarrow aababbb$ is recognized.

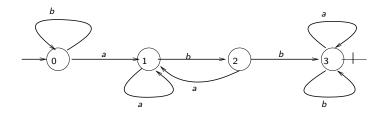
Complete dfa :example



и	$\delta^*(0,u)$
ε	0
Ь	0
а	1
а	1
Ь	2
а	1
b	2

 $\delta^*(0, baabab) = 2$ and 2 is **not** final $\rightarrow aababbb$ is **not** recognized.

Complete dfa:example



Let LSP(w) denote the longuest suffix of w which is prefix of abb.

$$\delta^*(0, w) = 3 \iff abb \text{ is factor of } w$$

$$\delta^*(0, w) = i \le 2 \Leftrightarrow |\mathrm{LSP}(w)| = i.$$

This can be proved by induction on the length of w. Hence $L(A) = (a \cup b)^* \cdot abb \cdot (a \cup b)^*$.

dfa completion

Proposition

For every $dfa \mathcal{A}$, one can construct, in linear time, a complete $dfa \mathcal{A}'$ such that $L(\mathcal{A}) = L(\mathcal{A}')$

Proof : Let $\mathcal{A}=\langle Q,\Sigma,\delta,q_0,F\rangle$ be a non-complete dfa. We build a new dfa \mathcal{A}' from \mathcal{A} , by adding a "sink" P to the set of states.

$$\mathcal{A}' := \langle Q', \Sigma, \delta', q_0, F \rangle$$

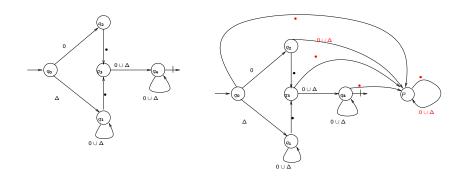
$$Q' := Q \cup \{P\} \text{ where } P \notin Q \text{ and } \delta' : Q' \times \Sigma \rightarrow Q' \text{ is defined by } :$$

$$\delta'(q, x) = \delta(q, x) \text{ if } q \in Q, x \in \Sigma, \text{ and } (q, x) \in \text{dom}(\delta)$$

$$\delta'(q, x) = P \text{ if } q \in Q, x \in \Sigma \text{ and } (q, x) \notin \text{dom}(\delta)$$

$$\delta'(P, x) = P \text{ if } x \in \Sigma.$$

Completing a dfa : example



The completed automaton.

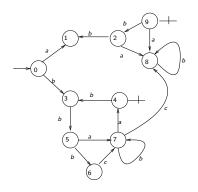
Reachability in dfa

A state q is called reachable from state p if there exists some word w such that

$$p \stackrel{w}{\longrightarrow}_{\mathcal{A}} q$$

A state q is called accessible if it is reachable from q_0 A state q is called co-accessible if some final state $p \in F$ is reachable from qA state q is called useful if it is both accessible and co-accessible Trim deterministic finite automata

Reachability :example



 $0 \stackrel{bbac}{\longrightarrow}_{\mathcal{A}} 8: 8$ is reachable from 0; $9 \stackrel{bb}{\longrightarrow}_{\mathcal{A}} 1: 1$ is reachable from 9 $6 \stackrel{ca}{\longrightarrow}_{\mathcal{A}} 4: 4$ is reachable from 6; $0 \stackrel{bb}{\longrightarrow}_{\mathcal{A}} 6: 6$ is reachable from 0 Hence: 0, 8, 6 are accessible, 6, 9 are co-accessible.

Trim dfa

Definition

A Deterministic Finite Automaton A is called <u>trim</u> if every state of A is <u>useful</u>.

Proposition (trim normal form)

For every dfa ${\cal A}$ one can achieve in linear time the following

- 1- test whether $L(A) \neq \emptyset$
- 2- if $L(A) \neq \emptyset$, then construct a trim dfa A' such that

$$L(A) = L(A')$$

Making trim a dfa

Proof of the proposition:

Let
$$\mathcal{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$$
.

Let Q_1 (respectively Q_2) be the set of accessible (resp. co-accessible) states .

- 0- We compute $\hat{Q}=Q_1\cap Q_2$ (the set of useful states).
- 1- $q_0 \in \hat{Q}$ if and only if $\mathrm{L}(\mathcal{A})
 eq \emptyset$
- 2- In the case where $q_0 \in \hat{Q}$, we let

$$\hat{\mathcal{A}} = \langle \hat{Q}, \Sigma, \hat{\delta}, q_0, \hat{F} \rangle$$

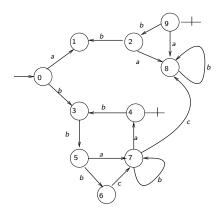
where $\hat{\delta} = \delta \upharpoonright \hat{Q} \times \Sigma$ (the restriction of δ on useful states), $\hat{F} = F \cap \hat{Q}$.

Making trim a dfa

point 0 : $Q_1 \text{ (resp. } Q_2 \text{) can be computed by a depth-first search, from } q_0 \text{ (resp. } F) \text{, in the oriented graph } \langle Q, E \rangle \text{ (resp. } \langle Q, E^{-1} \rangle \text{) where}$ $E = \{(q, q') \mid \exists x \in \Sigma, \delta(q, x) = q'\}$

Trim deterministic finite automata

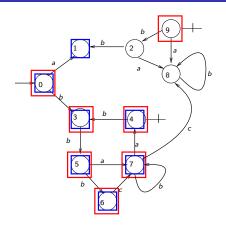
Making trim a dfa :example



Let \mathcal{A} be the above dfa.

Trim deterministic finite automata

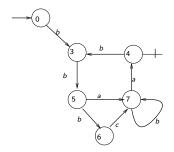
Making trim a dfa:example



In this example:

$$Q_1 = \{0, 1, 3, 5, 6, 7, 4\}, Q_2 = \{4, 7, 5, 6, 3, 0, 9\}$$

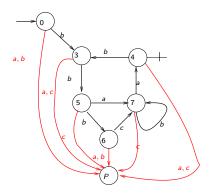
Making trim a dfa :example



We obtain the trim automaton \hat{A} .

Trim deterministic finite automata

completion of the trim dfa



 $\hat{\mathcal{A}}'$: the completion of the trim automaton $\hat{\mathcal{A}}$.

Formal Languages-Course 2.

Recognizable languages

Minimal complete deterministic finite automata

Minimal dfa

Definition

Let $\mathcal A$ be some complete $\ \mathrm{dfa}$. We call it minimal if, for every complete $\ \mathrm{dfa}\ \mathcal B$, if $L(\mathcal A)=L(\mathcal B)$ then $\mathcal A$ has fewer states than $\mathcal B$.

Theorem

Let $L \subseteq \Sigma^*$ be some recognizable language.

- 1- There exists a minimal complete dfa recognizing L
- 2- If two complete $dfa \mathcal{A}, \mathcal{B}$ are minimal and recognize L, then these two automata are isomorphic (i.e. \mathcal{B} can be obtained from \mathcal{A} just by state-renaming).

NB1 : point 1 is obvious : just take, among the complete dfa recognizing L, one which has the smallest number of states.

NB2 : point 2 is not obvious; we shall see later the main arguments

that prove this statement.

Minimization of a dfa: method

Let $\mathcal{A}=\langle Q,\Sigma,\delta,q_0,F\rangle$ be a complete dfa. Let us sketch a method for computing the unique minimal dfa \mathcal{M} which is equivalent with \mathcal{A} .

step 1: We compute an equivalence relation \equiv over Q (the "Nerode equivalence")

step 2 : We build the quotient automaton $\mathcal{M}=\mathcal{A}/\equiv$ by merging all the states that belong to the same equivalence class.

Nerode equivalence

We define an equivalence relation \equiv over Q as follows.

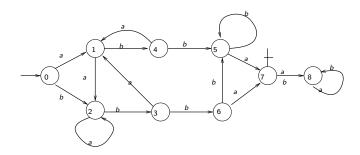
Definition

For every states $p, q \in Q$, $p \equiv q$ iff

$$\forall u \in \Sigma^*, \delta^*(p, u) \in F \Leftrightarrow \delta^*(q, u) \in F.$$

Minimal complete deterministic finite automata

Nerode equivalence :example



One easily checks that $5 \equiv 6$. $\delta^*(1, bba) = 7 \in F$ while $\delta^*(0, bba) = 1 \notin F$ hence $0 \not\equiv 1$.

Nerode equivalence : computation

We compute a decreasing sequence of equivalences \equiv_i over Q;

$$\equiv_0 := \{ (q, q') \mid (q \in F \text{ and } q' \in F) \text{ or } (q \notin F \text{ and } q' \notin F) \}$$

$$\equiv_{i+1} := \{ (q, q') \mid \forall x \in X \cup \{\epsilon\}, \delta^*(q, x) \equiv_i \delta^*(q', x) \}$$

For some $n \leq |Q|$:

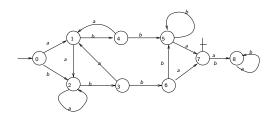
$$\equiv_n = \equiv_{n+1}$$
.

The Nerode equivalence is:

$$\equiv = (\bigcap_{k=0}^{\infty} \equiv_k) = \equiv_n$$

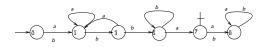
Minimal complete deterministic finite automata

Minimization of a dfa : example



Nerode equivalence :

Minimization of a dfa : example



Quotient automaton :obtained by merging

$$\bar{0} = \{0\}, \bar{1} = \{1, 2\}, \bar{3} = \{3, 4\}, \bar{5} = \{5, 6\}, \bar{7} = \{7\}, \bar{8} = \{8\}$$
$$\bar{\delta}(\bar{q}, x) := \overline{\delta(q, x)}$$

Minimization of a dfa : final algorithm

$$A \rightarrow B \text{ (trim)} \rightarrow C \text{ (complete)} \rightarrow D \text{ (minimal complete)}.$$