Formal Languages-Course 2.

. wygod)
” - A5G P
universite el) R
e BOR BEAUX l:??;m LANGUAGE 3 “—OK'*V HU to}
5 ‘s Sh Ry ko ¢

el S - ik
Formal Languages-Course 2.

Géraud Sénizergues

Bordeaux university

07/05/2020

Master computer-science MINF19, |EI, 2019/20

1/50

Formal Languages-Course 2.

contents

Regular languages
m Prolog : arithmetical expressions
m Regular expressions
m Regular languages

Recognizable languages
m Deterministic finite automata
m Trim deterministic finite automata
m Minimal complete deterministic finite automata

2/50

Regular languages

3/50

Formal Languages-Course 2.
I—Regular languages

I—Prolog : arithmetical expressions

Prolog :arithmetical expressions

Let &, ® be binary symbols, — be a unary symbol. Here are
arithmetical expressions, with operator-symbols {®, ®, —} over the
alphabet of constant symbols ¥ = {0,1} :

=0, e=(181)a0)x1), a=({{(-)s) &1

These are words on the alphabet A= {0,1,®, x, (,)}.

4/50

Formal Languages-Course 2.
I—Regular languages

I—Prc:)log : arithmetical expressions

Prolog : arithmetical expressions

The set of all correct arithmetical expressions is the least language
AE C A* fulfilling :Ve, e’ € AE,
0€ AE, 1€ AE
(ed€) € AE
(e®e') € AE
(—e) € AE
(e) € AE

5 /50

Formal Languages-Course 2.
I—Regular languages

I—Prolog : arithmetical expressions

Prolog :arithmetical expressions,value

The value v(e) of an arithmetical expression e is the integer defined
(inductively) by :Ve, ¢’ € AE,

6 /50

Formal Languages-Course 2.
I—Regular languages

I—Prc:)log : arithmetical expressions

Prolog :arithmetical expressions,value

101)®0)®1)
®1)30))-v(1)
@ 1)) +v(0)) - v(1)

vieg) = v

_ =~

7/50

Formal Languages-Course 2.
I—Regular languages

I—Prolog : arithmetical expressions

Prolog :arithmetical expressions,value

v(e3)

Remark : the above rewritings are by no means an algorithm for
computing v(x); they are just illustrating why the previous
inductive properties of v(x) really define v(x).

8 /50

Formal Languages-Course 2.
I—Regular languages

L Regular expressions

Regular expressions :example

Let &, ® be binary symbols, x be a unary symbol,0 be a nullary
symbol. Here are regular expressions, with operator-symbols
{®, ®, *} over the alphabet of constant symbols ¥ = {a, b, c} :

ee=2a, @=((a0b)+c)®a, es=({(a0b)®a)x),

These are words on the alphabet A =X U {0,®,®,*, (,)}.

9/50

Formal Languages-Course 2.
I—Regular languages

L Regular expressions

Regular expressions :definition

Let ¥ be an alphabet. Let &, ® be binary symbols, x be a unary
symbol, 0 be a nullary symbol. Let A =X U {®, x,*,0,(,)} The
set of all correct regular expressions over X is the least language
RE C A* fulfilling :Vx € ¥,Ve, ¢ € AE,
0 € RE,x € RE
(ed€) € RE
(e@e') eRE
(ex) € RE
(e) € RE

10 /50

Formal Languages-Course 2.
I—Regular languages

L Regular expressions

Regular expressions :value

The value v(e) of a regular expression e is the language defined
(inductively) by :Vx € X, e, € € AE,
v(0) =0 v(x) ={x}
v((e@e)) =v(e) Ur(e)
v((e®€')) =wv(e) x v(e)
v({ex))=r(e)".
v((e)) = v(e)

11 /50

Formal Languages-Course 2.
I—Regular languages

L Regular expressions

Regular expressions : value

ee=2a, @=((a0b)®c)®a, ea=({(a0b)®a)x),

v(a) = {a},
v({({(a® b) ® c) ® a) = {aa, ba, ca}
v({{({a® b) ® a) x)) = {aa, ba}"

v({{{a® b) ® ay x)) = {e, aa, ba, aaaa, aaba, baaa, baba,} U
{aaaaaa, aaaaba, aabaaa, aababa, baaaaa, baaaba, babaaa, bababa}U
{aaaaaaaa, - -}

12 /50

Formal Languages-Course 2.
I—Regular languages
I—Regular languages

Regular languages :definition

We also note L, for the language v(e).

Definition
A language L C ¥* is called regular if and only if there exists some
regular expression e over ¥ such that

L =L,

Examples :
Ly ={u e {a,b}* | |u] is even}
This language is regular since : Ly = {aa, ab, ba, bb}* = L, for

e=(((((a@a)® (a®@ b)) ® (b® a)) ® (bR b)) x)

13 /50

Formal Languages-Course 2.
I—Regular languages
I—Regular languages

Regular languages :example

Ly = {u € {a,b}* | u is square-free}

L3 ={ue{0,1}* |

u is the binary notation of an integer that is divisible by 4}
These languages are regular since :

Ly ={e,a, b, aa, ab, ba, bb, aba, bab}

L3 =1{0}U{1}-{0,1}*- 00

14 /50

Formal Languages-Course 2.
I—Regular languages
I—Regular languages

Regular languages :extended expressions

From now on, we accept as regular expressions, expressions using
the usual symbols U (instead of @), - (instead of ®), using k-ary
notation for the product and for the union (since these operations
are associative). We add the symbol & with value

v(e) =v(0") = {e}.
For example :

e=(a-a-a)"-(¢UbU(b-b)) or even more compactly
f = (aaa)* - (¢ U b U (bb)).

15 /50

Formal Languages-Course 2.

L Recognizable languages

Recognizable languages

16 / 50

Formal Languages-Course 2.

L Recognizable languages

L Deterministic finite automata

Example

Let us describe the set of correct decimal integers.

ouA

oOUA

where A = {1,2,3,4,5,6,7,8,9}. 17 /50

Formal Languages-Course 2.
I—Recognizable languages

L Deterministic finite automata

Definition

Definition

A deterministic finite automaton is a 5-tuple A = (Q, X, 9, qo, F)
where

- Q is a finite set, called the set of states

- Y is an alphabet

-0: Q X X—Q is a (partial) function called the transition function
- qo € Q is called the initial state

- F C Q is the set of final states

Y is called the input alphabet. An automaton can be viewed as a
device that, for every word w € ¥*, treats the word and eventually
answers YES or NO.

18 /50

Formal Languages-Course 2.
I—Recognizable languages

L Deterministic finite automata

Example continued 2

Here A = <072757 qo, F> with Q = {q07q17q27q37q4}1
2 = {0? 172737475767778797.}' F= {q4}

19 /50

Formal Languages-Course 2.
I—Recognizable languages

L Deterministic finite automata

Example continued 3

0 is described by the table :
@) g\x[O0[1]---][9]e

90 92 | 91| 91 | 91| —
q1 91 |91 | 91 | 91| 93

—> Q oua Q a2 =1 = | =93
@ q3 s | Qa| Q4 | Q4| —

A * oua aa da | G4 | G4 | Q4| —

20/50

Formal Languages-Course 2.
I—Recognizable languages

L Deterministic finite automata

dfa : Computations

We call computation of the dfa A every sequence :
u = (po,x0, P1)(P1,x1,P2) - (Pe—1,Xe—1, Pr)
where, Vi € [0,¢],p; € Q, Vi € [0, — 1], x; € ¥ and
Vi e [0,¢—1],0(pi,xi) = piti-
The trace of the computation, tr(v) is the word :
W = XoX1* " Xp_1-

The computation u starts from pg and ends in state py. We then
note :

Po —.A P

which can be read : “.A moves from py to p, reading w'.
21 /50

Formal Languages-Course 2.
I—Recognizable languages

L Deterministic finite automata

dfa : Computations

The language recognized by A is the set of all words w € ¥* such
that, there exists a computation of A, starting in qo, ending in
some g € F, with trace tr(u) = w. More formally :

L(A)={wex"[3g€F,q —aq}

22 /50

Formal Languages-Course 2.
I—Recognizable languages

L Deterministic finite automata

dfa : Computations, examples

oUA

wip =20e25
ComPUtation : (qO’ 2’ Cll)(ql, 07 ql)(qla o, q3)(q37 27 q4)(q4’ 5’ CI4)

Since qq is final, wy is accepted. 250

Formal Languages-Course 2.
I—Recognizable languages

L Deterministic finite automata

dfa : Computations, examples

oOUA

wy = 201
computation : (qo,2,91)(g1,0,41)(q1,1, q1)

Since g1 is not final, wy is rejected.
24 /50

Formal Languages-Course 2.
I—Recognizable languages

L Deterministic finite automata

dfa : Computations, examples

oUA

w3 = 2lee

computation : (qo,2,91)(q1,0,q1)(q1, ®, g3) and 6(gs, ®) is undefined

Since no computation starting on gg can read ws, the word ws is

rejected. 25 /50

Formal Languages-Course 2.
I—Recognizable languages

L Deterministic finite automata

Complete dfa

Let A= (Q,X%,d,qo, F) be a DFA. It is called complete if the
transition function ¢ is a total map :

QR x X—=Q.
In this case ¢ can be extended into a total map
0 RQX X —>Q
by induction over the length of words : Vg € Q,Vx € X, Vw € X* :
§*(q,6) =gq

6*(q,x) = 0(q, x)
6*(q, wx) = 6(6"(q, w), x)

26 /50

Formal Languages-Course 2.
I—Recognizable languages

L Deterministic finite automata

Complete dfa : programming &*

The following program (scheme) computes, for every input w € X*,
the state 6*(qo, w) in linear time.

INPUT :w = w[0]w[1]--- w[n —1].
q < qo { start with the initial state}
for k <~ 0ton—1do
q < (g, wlk]) { update the current state }
end for
return q

27 /50

Formal Languages-Course 2.
I—Recognizable languages

L Deterministic finite automata

Complete dfa :example

This dfa is complete.
What is the language L(.A)?

28 /50

Formal Languages-Course 2.
I—Recognizable languages

L Deterministic finite automata

Complete dfa :example

Computation over aababbb :
up = (0,a,1)(1,a,1)(1, b,2)(2,a,1)(1, b,2)(2, b,3)(3, b,3)

0*(0, aababbb) = 3 and 3 is final — aababbb is recognized.

20 /50

Formal Languages-Course 2.
I—Recognizable languages

L Deterministic finite automata

Complete dfa :example

<
=%
*
—~~

<
~—

NN R Rr OO O

TV (T LV |v|T|D™

0*(0, baabab) = 2 and 2 is not final — aababbb is not
recognized.

30/50

Formal Languages-Course 2.
I—Recognizable languages

L Deterministic finite automata

Complete dfa :example

Let LSP(w) denote the longuest suffix of w which is prefix of abb.

0%(0,w) = 3 <= abb is factor of w
0*(0,w) =i <2< |LSP(w)| =i.

This can be proved by induction on the length of w.
Hence L(A) = (aU b)* - abb - (a U b)*.

31/50

Formal Languages-Course 2.
I—Recognizable languages

L Deterministic finite automata

dfa completion

Proposition

For every dfa A, one can construct, in linear time,
a complete dfa A’ such that L(A) = L(.A’)

Proof : Let A = (Q,X,d, qo, F) be a non-complete dfa.
We build a new dfa A’ from A, by adding a "sink” P to the set of
states.

A =(Q, %, qo,F)

Q :=QU{P} where P¢ Q and ¢ : Q' x L= Q' is defined by :
§(q,x) = 0(q,x)ifge @,x€ X, and (g, x) € dom(d)
§(g,x) = Pifge Q,xe€ X and (qg,x) ¢ dom(d)
J(P.x) = Pifxex.

32/50

Formal Languages-Course 2.
I—Recognizable languages

L Deterministic finite automata

Completing a dfa : example

The completed automaton.

33/50

Formal Languages-Course 2.
I—Recognizable languages

L Trim deterministic finite automata

Reachability in dfa

A state ¢ is called reachable from state p if there exists some word
w such that
w
p—4q
A state q is called accessible if it is reachable from qg

A state ¢ is called co-accessible if some final state p € F is
reachable from ¢

A state q is called useful if it is both accessible and co-accessible

34 /50

Formal Languages-Course 2.
I—Recognizable languages

L Trim deterministic finite automata

Reachability :example

0 E& 8 : 8 is reachable from 0; 9 ﬂA 1: 1 is reachable from 9

6 —3 4 4 : 4 is reachable from 6; 0 i’m 6 : 6 is reachable from 0
Hence : 0,8, 6 are accessible, 6,9 are co-accessible.

35 /50

Formal Languages-Course 2.

L Recognizable languages

L Trim deterministic finite automata

Trim dfa

A Deterministic Finite Automaton A is called trim if every state of
A is useful.

Proposition (trim normal form)

For every dfa A one can achieve in linear time the following
1- test whether L(A) # ()

2- if L(A) # 0, then construct a trim dfa A’ such that
L(A) = L(A)

36 /50

Formal Languages-Course 2.
I—Recognizable languages

L Trim deterministic finite automata

Making trim a dfa

Proof of the proposition :

Let A=(Q,X,d, qo, F).

Let @y (respectively Q2) be the set of accessible (resp.
co-accessible) states .

0- We compute Q = Q1 N Q> (the set of useful states).
1- go € Q if and only if L(A) # 0

~

2- In the case where gg € Q, we let
A: <©>Z>S>q07’£>
where § = 0 | @ x X (the restriction of & on useful states),

F=FnQ.

37/50

Formal Languages-Course 2.
I—Recognizable languages

L Trim deterministic finite automata

Making trim a dfa

point 0 :
Q1 (resp. Q) can be computed by a depth-first search, from g
(resp. F), in the oriented graph (Q, E) (resp. (Q, E~1)) where

E={(g.9)|3xe€x,d(q,x) =4}

38 /50

Formal Languages-Course 2.
I—Recognizable languages

L Trim deterministic finite automata

Making trim a dfa :example

Let A be the above dfa .

39/50

Formal Languages-Course 2.
I—Recognizable languages

L Trim deterministic finite automata

Making trim a dfa :example

In this example :

Q= {Ov 17375767774}7 Q= {4777576737079}

40 /50

Formal Languages-Course 2.
I—Recognizable languages

L Trim deterministic finite automata

Making trim a dfa :example

~

We obtain the trim automaton A.

41 /50

Formal Languages-Course 2.
I—Recognizable languages

L Trim deterministic finite automata

completion of the trim dfa

A’ : the completion of the trim automaton A.

42 /50

Formal Languages-Course 2.

L Recognizable languages

I—Minimal complete deterministic finite automata

Minimal dfa

Let A be some complete dfa . We call it minimal if, for every
complete dfa B, if L(A) = L(B) then A has fewer states than 5.

Let L C Y* be some recognizable language.

1- There exists a minimal complete dfa recognizing L

2- If two complete dfa A, B are minimal and recognize L, then
these two automata are isomorphic (i.e. B can be obtained from A
just by state-renaming).

NB1 : point 1 is obvious : just take, among the complete dfa
recognizing L, one which has the smallest number of states.
NB2 : point 2 is not obvious; we shall see later the main arguments

that prove this statement. P,

Formal Languages-Course 2.
I—Recognizable languages

I—Minimal complete deterministic finite automata

Minimization of a dfa : method

Let A= (Q,X,6,qo, F) be a complete dfa. Let us sketch a method
for computing the unique minimal dfa M which is equivalent with
A.

step 1 :We compute an equivalence relation = over Q (the

“Nerode equivalence”)
step 2 : We build the quotient automaton M = A/ = by merging
all the states that belong to the same equivalence class.

44 /50

Formal Languages-Course 2.

L Recognizable languages

I—Minimal complete deterministic finite automata

Nerode equivalence

We define an equivalence relation = over @ as follows.

For every states p,q € Q, p = q iff

Yue X 0%(p,u) € F < 0%(q,u) € F.

45 /50

Formal Languages-Course 2.
I—Recognizable languages

I—Minimal complete deterministic finite automata

Nerode equivalence :example

One easily checks that 5 = 6.
0*(1, bba) = 7 € F while §*(0, bba) =1 ¢ F hence 0 £1.

46 /50

Formal Languages-Course 2.
I—Recognizable languages

I—Minimal complete deterministic finite automata

Nerode equivalence : computation

We compute a decreasing sequence of equivalences =; over Q;
=0:={(9,9) | (g€ Fand g € F)or (q¢ F and ¢’ ¢ F)}

=ir1:={(q,4") | ¥x € XU{e},0"(q,x) =i 0"(q,)}

For some n < |Q)| :

=n ==n+1 -
The Nerode equivalence is :
o
== (ﬂ =x) ==,
k=0

47 /50

Formal Languages-Course 2.
I—Recognizable languages

I—Minimal complete deterministic finite automata

Minimization of a dfa : example

Nerode equivalence :
=0-= {{0’ 1,2,3,4,5,6, 8}’ {7}}7
=1:=1{{0,1,2,3,4,8},{5,6},{7}}
=2.= {{07 1,2, 8}7 {37 4}7 {57 6}7 {7}}7
=3:={{0,8},{1,2},{3,4},{5,6}.{7}},
== {{Oh}a {8}.{1,2},{3,4},{5,6},{7}}
=p—=4, NENCE ===y
48 /50

Formal Languages-Course 2.
I—Recognizable languages

I—Minimal complete deterministic finite automata

Minimization of a dfa : example

a b a b
* '
LS ; :
O O
b b b

Quotient automaton :obtained by merging

ol
I
—
o
-

[y}
I
—
=
N
-

(O8]}
1
—
VOJ
N
—
ol
1
—
o
(@)}
—
~lI
I
—
\‘
—
[ee]}
I
—~
(00)
—

49 /50

Formal Languages-Course 2.
I—Recognizable languages

I—Minimal complete deterministic finite automata

Minimization of a dfa : final algorithm

A — B (trim) — C (complete) — D (minimal complete).

50 /50

	Regular languages
	Prolog: arithmetical expressions
	Regular expressions
	Regular languages

	Recognizable languages
	Deterministic finite automata
	Trim deterministic finite automata
	Minimal complete deterministic finite automata

