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Exercice 1 [/4] We consider the finite automaton A described on figure 1.
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Figure 1: finite automaton A

0- The following sequences are successful computations of A:

0,a,1,9,1,b,2,d,3
0,e,2,d,3
0,a,1,b,2,d,3,¢,2,d,3
0,a,1,f,0,e,2,d,3

1- We transform A into a normalized extended f.a. A; where i (resp. t) is the initial (resp.
terminal) state. We then eliminate successively states in the ordering: 0,1,2,3. We obtain
the sequence of extended automata shown on figure 2.
It follows that:
(a(f Uga)*bdUe)(cd)*

is a regular expression for L 4.
2- A regular expression for the language h(L4) is obtained by replacing each letter =z €
{a,b,c,d,e, f,g} by its image h(z) in the above regular expression. We thus obtain the
expression:

(a(ba U aa)*be U aa)* (bac)*

3- A finite automaton recognizing the language h(L 4) is depicted on figure 3

Exercice 2 [/4]
e := (ab*c)*ab(a U b)*



C a(fUga)bdUe ; e @ |
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@ (a(f U ga)*bd U e)(cd)* @ I

Figure 2: sequence of extended automata, ex.1

Let us apply Glushkov’s method.
The locally testable language associated to e is:

L= (alecl)*ang(ag U b3)*

We compute
ITL’L(L/) = {al,a2}, F’LTL(L,) = {bQ,a3, bg},
Dig(L") = {a1b1,b1b1,bic1, a1¢1, cra1, crag, azba, baas, babs, agas, asbs, bsbs, bsas }.

This gives the finite automaton represented on figure 4, where the set of states is {0, a1, as, ag, b1, ba, b3, c1 },
0 is the unique initial state and bo, as, b3 are the final states.

Exercice 3 [/4]



Figure 4: finite automaton for L.

1- The d.f. automaton Ay recognizes Lo (see figure 5).

2- Let us compute the Nerode equivalence of As:
we apply the refinement algorithm (called “ Moore’s algorithm” ) exposed in the lectures:

=0= {{07 L, 2}7 {3}}; =1= {{07 1}7 {2}7 {3}}; =2= {{0}7 {1}7 {2}7 {3}}

Hence =9==3==. Hence the Nerode equivalence over () is just the equality. This implies
that Ag is minimal (among all the complete deterministic finite automata recognizing Lo).
3- Since Aj is deterministic and complete, X* — Lo is recognized by the d.f.a. A} obtained
from Ay by exchanging the final states with the non-final states. Thus the set of final states
of A is {0,1,2}.

Since the state 3 is not co-accessible, we cancel this state and obtain a f.a. A5 which still
recognizes the language X* — Ly. Let us apply the Brozowsky-Mc-Cluskey algorithm on .47
(see figure 6). We obtain the rational expression:

b*(e Ua(aUba)* (e Ub))



Figure 5: d.f.a. Ay for Lo

4*- The d.f. automaton 4,, recognizes L,, (see figure 7).
Let i € [1,1+n]: ' A
50,68 =0¢ F, 6(i,b' """ =14neF

Hence 0 #1.
Let 4,5 € [1,1 4+ n] such that ¢ < j:

BB =14 e B 80 b ) =14n—(j i) ¢ F

Hence i #j.
It follows that all the states p € [0,1 + n] are two by two non-equivalent. Hence A, is the
minimal automaton of L,,. It has exactly 2 + n states.
5- L = {a,b}*abb*{a,b}*, hence L is regular.
The language M, is the product
M, =Ly Luy1.

It is thus the product of two regular languages, hence it is regular.
M NabTab®t = {ab"ab™ " | n > 1}.

The language {ab"ab™*! | n > 1} does not fulfill the star-lemma, hence is not regular. Since
the intersection of two regular sets is regular, M cannot be regular.

Exercice 4 [/5]

1- For every i € [1,5] we define a context-free grammar G; = (A, N;, R;) generating L; from
the start symbol S.

N; :={S}, Ry consists of the rules:

S s abS, §—e
Ny :={S}, Ry consists of the rules:
S — abSc, S — e.
N3 :={S,T}, Rs consists of the rules:
S —abSe, S—T, T —abT, T —¢
Ny :={S,T}, Ry consists of the rules:

S —abSd, S—T, T —abTc, T — ¢



N5 :={S,T1,T>}, R5 consists of the rules:
S — abSc, S — Tl, S — TQ, T1 — ale, T1 — ab, T2 — TQC, T2 — C

2- The grammar G5 is non-ambiguous:
If w = (ab)™c™ for some n > 0,m > 0,n > m, then it is generated by a derivation of the form

S =™ (ab)™Sc™ — (ab)"Tic™ =" (ab)™ ™.
If w = (ab)"c™ for some n > 0,m > 0,n < m, then it is generated by a derivation of the form
S =" (ab)"Sc™ — (ab)"Tac™ =" (ab)"c™.

Hence every word of L(G5,S) has ezxactly one leftmost derivation (and, in fact, since the
grammar is linear, exactly one derivation).

Exercice 5 [/5] We consider the context-free grammar G := (A, N, R) where A = {a,b, c},
N = {51,55,53,54,S5} and R consists of the following 12 rules:

S1—aS1S1 Sy —=bS4S1 S — Ssc
Sy — aSy Sy — aSsa  S3 — S35
S3 — aSs S3— 515351 Si—a

Sy — 5154 S5 — ¢S5 S5 — aS5S52

The start symbol of G is S;.
1- We compute the subset of productive non-terminals of G by the fixpoint technique explained
in the lecture:

Vi = {84}, Vo = {84, S3}. V3 = {54, 53,51}, Va = V.

Hence the set of productive non-terminals is {S7, S3,S4}.
2- We compute the subset of useful non-terminals of G by the fixpoint technique explained
in the lecture:

N1 = {851}, No = {51, 53,54}, N3 = Ny

Hence the set of useful non-terminals is {S7, S3, S4}.

3- We can thus transform the grammar G into an equivalent grammar G’ where every non-
terminal is productive and useful, just by restricting both the non-terminal alphabet and the
rules to the subset No:

G’ .= (A,N',R") where A = {a,b,c}, N' = {51, 53,54} and R’ consists of the following 8 rules:

Sl — a5151 Sl — bS4Sl Sl — Sgc
Sg — 5351 53 — aS4 S3 — 515351
S4 — a S4 — 5154
4- The language L(G, S1) is not empty, since the non-terminal S is productive.

5- We observe that:
S1 = aS151 =¥ aSjaac and S; =" aac



hence {a"(aac)" ™'} C L(G, S1), which shows that the language L(G, S) is infinite.
Exercice 6 [/4] We consider the context-free grammar G := (A, N,R) where A =
{a,b,c,d}, N ={Sp, S1,S2,S3} and R consists of the following rules:
rl: Sy — aSt
r2: Sy — aSsy
r3: Sl — bSQ
r4: S; — cS3
r5: S2 — bSl
r6: SQ — ng
r7: Sg — &
The start symbol of G is Sp.
1-
S1 — bSy — bbS| —2 bbbbS; — bbbbcS3 — bbbbce = bbbbe.

S; —* bbbbS; — bbbbbSy — bbbbbd.S3 — bbbbbd.

Sy —* bbbbSy — bbbbdS3 — bbbbd,
Sy — bbbbSy — bbbbbS| — bbbbbe.Ss — bbbbbe.

So — aSs —* a(b*d) by Q2 .

The corresponding derivation-tree is depicted on figure 8.
4-4.1
L(G,S1) = (b®)*cU (b?)*bd, L(G,Ss) = (b*)*d U (b*)*be.

Let w € L(G, S1) N L(G, S) :

either w = b"c (case 1) or w = b"d (case 2).

case 1: S} —* w, hence n = 0 (mod 2) and S —* w, hence n = 1 (mod 2), which is
contradictory. Hence this case is impossible.

case 2: S —* w, hence n =1 (mod 2) and Sy —* w, hence n = 0 (mod 2), which is also
contradictory. Hence this case is impossible.

It follows that L(G,S1) N L(G, S2) = 0.

4.2 Let us first remark that, for every w € {a,b}*, there exists at most one left-derivation
S1 —* w and there exists at most one left-derivation Sy —* w

because: for v € {S1, 52} and = € {a,b} there exists exactly one rule in {v} x z - (N U A)*,
and for v = S3 there exists exactly one rule in {v} x (N U A)*.

Let us now consider a word w € a - (L(G, S1) U L(G, S2)):

w = aw’, where w' € L(G,S1) U L(G, Ss).

By 4.1, either w’ € L(G, S1) \ L(G, S2) (case 4.2.1) or w’' € L(G, S2) \ L(G, S1) (case 4.2.2).
In case 4.2.1 (resp. 4.2.2) there is exactly one derivation from Sy (resp. S3) to w’. It follows
that there exists exactly one derivation Sy —* w.

We have proved that G is non-ambiguous.

Since S3 — € has a rhs that does not begin with a terminal letter, G is not simple.

5- Let us note that L(G,Sy) = ab*{c,d}. This language is generated by the grammar:
G’ .= (A,N',R') where A ={a,b,c,d}, N' ={S',T} and R consists of the following rules:



rl: S’ — aT
r2: T — bT

r3: T —c

rd: T — d
which is simple.
6- We note that

L(H,Ty) = {b*"c#cb®™ | n > 0} U {b*" L d4db*™ T | n > 0},

L(H,Ty) = {b*"Tlegtcb® T | n > 0} U {b?"d#db*™ | n > 0}.

hence
L(H,S1)NL(H,Ss) = 0. (1)

and
L(H,Ty) = a(L(H,Th) U L(H,T»))a. (2)

Given a word w € L(H,Ty), by (2), it belongs either to aL(H,T})a or to aL(H,T5)a, and by
(1) it cannot belong to both. We conclude that H is non-ambiguous.

Since Ty — Uja has a rhs that does not begin with a terminal letter, H is not simple.

7- This language is generated by the grammar: H' := (A, N',R") where A = {a,b,c,d},
N’ ={T'",T} and R” consists of the following rules:

rl: 7" — aTa

r2: T — bTb

r3: T — cftc

rd: T — d#d

which is simple.



aUba

@z—: 1 eUalaUba)*(sUb) @

@b*(aUa(ana)*(an)) @

Figure 6: sequence of extended automata, ex.3

Figure 7: d.f.a. A, for L, (ex. 3)



So

Figure 8: a derivation tree for abbbbd



