
Cursus: M1, computer-science
Code UE: JEIN8602
Solutions to the subject: Formal languages theory
Date: March 4th 2017
Duration: 3H
Documents: authorized
Lectures by: Mr Géraud Sénizergues

Exercice 1 [/4] We consider the finite automaton A described on figure 1.

0 1 2 3
ba d

g

f c

e

Figure 1: finite automaton A

0- The following sequences are successful computations of A:

0, a, 1, g, 1, b, 2, d, 3

0, e, 2, d, 3

0, a, 1, b, 2, d, 3, c, 2, d, 3

0, a, 1, f, 0, e, 2, d, 3

1- We transform A into a normalized extended f.a. A1 where i (resp. t) is the initial (resp.
terminal) state. We then eliminate successively states in the ordering: 0, 1, 2, 3. We obtain
the sequence of extended automata shown on figure 2.
It follows that:

(a(f ∪ ga)∗bd ∪ e)(cd)∗

is a regular expression for LA.
2- A regular expression for the language h(LA) is obtained by replacing each letter x ∈
{a, b, c, d, e, f, g} by its image h(x) in the above regular expression. We thus obtain the
expression:

(a(ba ∪ aa)∗bc ∪ aa)∗(bac)∗

3- A finite automaton recognizing the language h(LA) is depicted on figure 3

Exercice 2 [/4]
e := (ab∗c)∗ab(a ∪ b)∗

3210
d

d

e

b 321 t

ti

i

t32i

c

εε

g

f

e

ba

a

c

ε

f ∪ ga

a(f ∪ ga)∗b

e

d

c

ε

i

i

t

t

cd

εa(f ∪ ga)∗bd ∪ e

(a(f ∪ ga)∗bd ∪ e)(cd)∗

3

Figure 2: sequence of extended automata, ex.1

Let us apply Glushkov’s method.
The locally testable language associated to e is:

L′ := (a1b
∗
1c1)

∗a2b2(a3 ∪ b3)
∗

We compute
Ini(L′) = {a1, a2}, F in(L′) = {b2, a3, b3},

Dig(L′) = {a1b1, b1b1, b1c1, a1c1, c1a1, c1a2, a2b2, b2a3, b2b3, a3a3, a3b3, b3b3, b3a3}.

This gives the finite automaton represented on figure 4, where the set of states is {0, a1, a2, a3, b1, b2, b3, c1},
0 is the unique initial state and b2, a3, b3 are the final states.

Exercice 3 [/4]

2

0 1 2 3
a

a ba

a
a

a

b c

b4

5

6

Figure 3: a finite automaton for h(LA)

0

a1 b1 c1 a2 b2

a3

b3

a a

b

c

b c a b

a

b

b a

a

b

a

Figure 4: finite automaton for Le

1- The d.f. automaton A2 recognizes L2 (see figure 5).

2- Let us compute the Nerode equivalence of A2:
we apply the refinement algorithm (called “ Moore’s algorithm”) exposed in the lectures:

≡0= {{0, 1, 2}, {3}}; ≡1= {{0, 1}, {2}, {3}}; ≡2= {{0}, {1}, {2}, {3}}

Hence ≡2=≡3=≡. Hence the Nerode equivalence over Q is just the equality. This implies
that A2 is minimal (among all the complete deterministic finite automata recognizing L2).
3- Since A2 is deterministic and complete, X∗ − L2 is recognized by the d.f.a. A′

2 obtained
from A2 by exchanging the final states with the non-final states. Thus the set of final states
of A′

2 is {0, 1, 2}.
Since the state 3 is not co-accessible, we cancel this state and obtain a f.a. A′′

2 which still
recognizes the language X∗ − L2. Let us apply the Brozowsky-Mc-Cluskey algorithm on A′′

2

(see figure 6). We obtain the rational expression:

b∗(ε ∪ a(a ∪ ba)∗(ε ∪ b))

3

0 1 2 3

b

a

a

b b

a b

a

Figure 5: d.f.a. A2 for L2

4*- The d.f. automaton An recognizes Ln (see figure 7).
Let i ∈ [1, 1 + n]:

δ̂(0, b1+n−i) = 0 /∈ F, δ̂(i, b1+n−i) = 1 + n ∈ F

Hence 0 6≡i.
Let i, j ∈ [1, 1 + n] such that i < j:

δ̂(j, b1+n−j) = 1 + n ∈ F, δ̂(i, b1+n−j) = 1 + n− (j − i) /∈ F

Hence i 6≡j.
It follows that all the states p ∈ [0, 1 + n] are two by two non-equivalent. Hence An is the
minimal automaton of Ln. It has exactly 2 + n states.
5- L = {a, b}∗abb∗{a, b}∗, hence L is regular.
The language Mn is the product

Mn = Ln · Ln+1.

It is thus the product of two regular languages, hence it is regular.

M ∩ ab+ab+ = {abnabn+1 | n ≥ 1}.

The language {abnabn+1 | n ≥ 1} does not fulfill the star-lemma, hence is not regular. Since
the intersection of two regular sets is regular, M cannot be regular.
Exercice 4 [/5]
1- For every i ∈ [1, 5] we define a context-free grammar Gi = (A,Ni, Ri) generating Li from
the start symbol S.
N1 := {S}, R1 consists of the rules:

S → abS, S → ε

N2 := {S}, R2 consists of the rules:

S → abSc, S → ε.

N3 := {S, T}, R3 consists of the rules:

S → abSc, S → T, T → abT, T → ε

N4 := {S, T}, R4 consists of the rules:

S → abSd, S → T, T → abTc, T → ε

4

N5 := {S, T1, T2}, R5 consists of the rules:

S → abSc, S → T1, S → T2, T1 → abT1, T1 → ab, T2 → T2c, T2 → c

2- The grammar G5 is non-ambiguous:
If w = (ab)ncm for some n ≥ 0,m ≥ 0, n > m, then it is generated by a derivation of the form

S →m (ab)mScm → (ab)mT1c
m →n−m (ab)ncm.

If w = (ab)ncm for some n ≥ 0,m ≥ 0, n < m, then it is generated by a derivation of the form

S →n (ab)nScn → (ab)nT2c
n →m−n (ab)ncm.

Hence every word of L(G5, S) has exactly one leftmost derivation (and, in fact, since the
grammar is linear, exactly one derivation).
Exercice 5 [/5] We consider the context-free grammar G := (A,N,R) where A = {a, b, c},
N = {S1, S2, S3, S4, S5} and R consists of the following 12 rules:

S1 → aS1S1 S1 → bS4S1 S1 → S3c

S2 → aS2 S2 → aS5a S3 → S3S1

S3 → aS4 S3 → S1S3S1 S4 → a

S4 → S1S4 S5 → cS5 S5 → aS5S2

The start symbol of G is S1.
1- We compute the subset of productive non-terminals of G by the fixpoint technique explained
in the lecture:

V1 = {S4}, V2 = {S4, S3}.V3 = {S4, S3, S1}, V4 = V3.

Hence the set of productive non-terminals is {S1, S3, S4}.
2- We compute the subset of useful non-terminals of G by the fixpoint technique explained
in the lecture:

N1 = {S1}, N2 = {S1, S3, S4}, N3 = N2

Hence the set of useful non-terminals is {S1, S3, S4}.
3- We can thus transform the grammar G into an equivalent grammar G′ where every non-
terminal is productive and useful, just by restricting both the non-terminal alphabet and the
rules to the subset N2:
G′ := (A,N ′, R′) whereA = {a, b, c}, N ′ = {S1, S3, S4} andR′ consists of the following 8 rules:

S1 → aS1S1 S1 → bS4S1 S1 → S3c

S3 → S3S1 S3 → aS4 S3 → S1S3S1

S4 → a S4 → S1S4

4- The language L(G,S1) is not empty, since the non-terminal S1 is productive.
5- We observe that:

S1 → aS1S1 →
∗ aS1aac and S1 →

∗ aac

5

hence {an(aac)n+1} ⊆ L(G,S1), which shows that the language L(G,S1) is infinite.
Exercice 6 [/4] We consider the context-free grammar G := (A,N,R) where A =
{a, b, c, d}, N = {S0, S1, S2, S3} and R consists of the following rules:
r1: S0 → aS1

r2: S0 → aS2

r3: S1 → bS2

r4: S1 → cS3

r5: S2 → bS1

r6: S2 → dS3

r7: S3 → ε
The start symbol of G is S0.
1-

S1 → bS2 → bbS1 →
2 bbbbS1 → bbbbcS3 → bbbbcε = bbbbc.

S1 →
4 bbbbS1 → bbbbbS2 → bbbbbdS3 → bbbbbd.

2-
S2 →

4 bbbbS2 → bbbbdS3 → bbbbd,

S2 →
4 bbbbS2 → bbbbbS1 → bbbbbcS3 → bbbbbc.

3-
S0 → aS2 →

∗ a(b4d) by Q2 .

The corresponding derivation-tree is depicted on figure 8.
4-4.1

L(G,S1) = (b2)∗c ∪ (b2)∗bd, L(G,S2) = (b2)∗d ∪ (b2)∗bc.

Let w ∈ L(G,S1) ∩ L(G,S2) :
either w = bnc (case 1) or w = bnd (case 2).
case 1: S1 →∗ w, hence n ≡ 0 (mod 2) and S2 →∗ w, hence n ≡ 1 (mod 2), which is
contradictory. Hence this case is impossible.
case 2: S1 →∗ w, hence n ≡ 1 (mod 2) and S2 →∗ w, hence n ≡ 0 (mod 2), which is also
contradictory. Hence this case is impossible.
It follows that L(G,S1) ∩ L(G,S2) = ∅.
4.2 Let us first remark that, for every w ∈ {a, b}∗, there exists at most one left-derivation
S1 →

∗ w and there exists at most one left-derivation S2 →
∗ w

because: for v ∈ {S1, S2} and x ∈ {a, b} there exists exactly one rule in {v} × x · (N ∪ A)∗,
and for v = S3 there exists exactly one rule in {v} × (N ∪A)∗.
Let us now consider a word w ∈ a · (L(G,S1) ∪ L(G,S2)):

w = aw′, where w′ ∈ L(G,S1) ∪ L(G,S2).

By 4.1, either w′ ∈ L(G,S1) \ L(G,S2) (case 4.2.1) or w′ ∈ L(G,S2) \ L(G,S1) (case 4.2.2).
In case 4.2.1 (resp. 4.2.2) there is exactly one derivation from S1 (resp. S2) to w′. It follows
that there exists exactly one derivation S0 →

∗ w.
We have proved that G is non-ambiguous.
Since S3 → ε has a rhs that does not begin with a terminal letter, G is not simple.
5- Let us note that L(G,S0) = ab∗{c, d}. This language is generated by the grammar:
G′ := (A,N ′, R′) where A = {a, b, c, d}, N ′ = {S′, T} and R consists of the following rules:

6

r1: S′ → aT
r2: T → bT
r3: T → c
r4: T → d
which is simple.
6- We note that

L(H,T1) = {b2nc#cb2n | n ≥ 0} ∪ {b2n+1d#db2n+1 | n ≥ 0},

L(H,T2) = {b2n+1c#cb2n+1 | n ≥ 0} ∪ {b2nd#db2n | n ≥ 0}.

hence
L(H,S1) ∩ L(H,S2) = ∅. (1)

and
L(H,T0) = a(L(H,T1) ∪ L(H,T2))a. (2)

Given a word w ∈ L(H,T0), by (2), it belongs either to aL(H,T1)a or to aL(H,T2)a, and by
(1) it cannot belong to both. We conclude that H is non-ambiguous.
Since T0 → U1a has a rhs that does not begin with a terminal letter, H is not simple.
7- This language is generated by the grammar: H ′ := (A,N ′, R′′) where A = {a, b, c, d},
N ′ = {T ′, T} and R′′ consists of the following rules:
r1: T ′ → aTa
r2: T → bT b
r3: T → c#c
r4: T → d#d
which is simple.

7

210
b

i

t
εa

ε

ε

b
a

i

i 0 1 t
ε

b

a

ε

a

ε ∪ b

a ∪ ba

b

ε
0 1 t

ε ∪ a(a ∪ ba)∗(ε ∪ b)

t
b∗(ε ∪ a(a ∪ ba)∗(ε ∪ b))

ε

Figure 6: sequence of extended automata, ex.3

0 1 2

b

a

a

b

a

bb b

a b

a

1+k 1+n

Figure 7: d.f.a. An for Ln (ex. 3)

8

S0

S2

S1

S2

S1

S2

S3

a b b b b d ε

Figure 8: a derivation tree for abbbbd

9

