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Exercice 1 [/4] We consider the finite automaton A described on figure 1.

Figure 1: finite automaton A

0- The following sequences are successful computations of A:

0,a,1,b,2,d,3
0,a,1,9,0,a,1,b,2,d,3
0,a,1,f,1,b,2,d,3
0,a,1,b,2,¢,1,b,2,d,3
0,e,3

1- We transform 4 into a normalized extended f.a. A; where i (resp. t) is the initial (resp.
terminal) state. We then eliminate successively states in the ordering: 0,1,2,3. We obtain
the sequence of extended automata shown on figure 2.

It follows that:

eUa(fU(ga))*geUa(f U (ga)) ble(f U (ga))"b]"[dUc(f U (ga))*ge]

is a regular expression for L 4.

2- A regular expression for the language h(L4) is obtained by replacing each letter =z €
{a,b,c,d,e, f,g} by its image h(z) in the above regular expression. We thus obtain the
expression:

bb U a(aa U ba)*bbb U a(aa U ba)*ba[abb(aa U ba)*ba]*[b U abb(aa U ba)* bbb



c(f U (ga))"b

@ eUa(fU(ga))"geUalf U (ga)"ble(f U (ga)) b [dU c(f U (ga))"ge] /N
L

Figure 2: sequence of extended automata, ex. 2

3- A finite automaton recognizing the language h(L 4) is depicted on figure 3

Exercice 2 [/4] Let us consider the regular expression:
e := (((ab) U (be))*a)*c

Let us apply Glushkov’s method.
The locally testable language associated to e is:

L = (((albl) @] (bQCl))*QQ)*CQ

We compute
Ini(L') = {a1,bo,as,c2}, Fin(L') = {ca},

. !
Dig(L") = {a1b1, bacy, brar, biba, cra1, c1be, brag, c1az, azay, azbs, azasz, azcay}

This gives the finite automaton represented on figure 4, where the set of states is

{0,a1,a2,b1,b2,c1,c2}



Figure 3: a finite automaton for h(L 4)

0 is the unique initial state and ¢y is the (unique) final state.

Exercice 3 [/4]
0-
(0, acaaa) = 5, 6(0,acbaa) =5, §(0,baa) =5, 6(0,bcbaa) =5

hence all the words acaaa, acbaa, baa, bcbaa belong to Lg.
Concerning the four other words we obtain:

5(0,ac) =4, and §(4,c) is undefined
5(0,bc) =6, and 8(6,¢) is undefined
5(0,bca) =2, and §(2,b) is undefined
5(0,acbaa) =5, and §(5,a) is undefined

hence the words acc, bce, beab, acbaaa, belong to the complement of L.

1- The automaton is B deterministic: given a state g and a letter x, there exists at most one
state ¢’ such that ¢ =% ¢

2

5(0,e) =0, 6(0,a) =1, 6(0,b) =2, §(0,aa) =3, §(0,ac) =4, §(0,aaa) =5, §(0,bc) =6

hence every state of B is accessible.

3- B is not complete: there is no transition reading letter b from state 2.

4- Let us add a new state P to the set of states of B. We obtain the f.a. B, whose set of
states is Q' :={,0,1,2,3,4,5,6, P}, with initial state 0, final state 5 and transition table:

z\g: [0 |1]2 |3 |4]5]6|P|
a 113351 ]P]2]P
b 2 |2|P|P|1|P|1|P
c Pl4|6 |P|P|P|P|P

5- Let us compute the Nerode equivalence of B':
We apply the refinement algorithm exposed in the lectures:

=0=1{{0,1,2,3,4,6, P}, {5}}; =1={{0,1,2,4,6, P},{3},{5}}; =2={{0,4,6,P},{1,2},{3},{6}};



Figure 4: finite automaton for L.

=3= {{0’4’ 6}’{P}’{1’2}’{3}’{5}}; =4= {{0’4’6}’{P}’{1}’{2}’ {3}’{5}};
=5= {{0}7 {4}7 {6}7 {P}7 {1}7 {2}7 {3}7 {5}}; =6==5 -

Hence the Nerode equivalence over @' is just the equality. This implies that B’ is minimal
(among all the complete deterministic finite automata recognizing Lg).
It follows that B is minimal (among all the deterministic finite automata recognizing Lg).
Exercice 4 [/5]

1- Let A ={a,b,c} and N = {S}. For every i € {1,2,3}, we define a set of rules R; over
A and N such that the c.f. grammar G; := (A, N, R;) generates the language L;.
Ry is the set of rules:

S —aSc, S —b.

R5 is the set of rules:
S — abS, S — abSc, S — abc

Rj3 is the set of rules:
S — aSa, S — bSH, S —c.

2- We remark that: aba = aba = aaa. Hence abacaaa € Ly.
Similarly: .
baba = abab # ab = babacab € Ly



ba = ab # abab = bacabab € Ly.

3-
3.1 Let us assume that
W = V1TV2CV3YV4
for some vy, v, v3,v4 € {a,b}*,z,y € {a,b} such that vy = U1,z # y.
Since v1Zvy = Uoxvy, We get that the word xv; = xvy is a suffix of v1Zvy. On the other hand,
since = # y, this word xvy is not a suffix of vsyvy. It follows that

V1TV # V3YV4

hence
w € Ly.

3.2 Let us assume that
W = V1 TV2CVy
for some vy, vy, v4 € {a,b}*, x € {a,b} such that vy = v;.
Since v1Zve = vUoxv1 and vy = v7; we get that the word vy is a strict suffiz of v1Zve, hence
v1ZV9 # vy, which shows that
w € Ly.

4- Suppose that
U = V1CU3YV4

for some vy, v3,v4 € {a,b}*,y € {a, b} such that

Vg = V1.

(we denote by (3.3) this form of word w). By an argument similar to that used in question
3.2,

w € Ly.
5- Let A ={a,b,c} and Ny = {S,T1,T2, L, R}. We build a c.f. grammar G4 := (A, Ny, Ry)
by defining R, as the following set of rules:

S —aSa, S—bSb, S— alib, S — blia (1)
T1—>aT1, Tl—)le, T1—>T2, TQ—)TQG, TQ—)TQb, TQ—)C (2)
S—al, S—bL, L—al, L—-bL, L—c (3)
S—Ra, S— Rb, R— Ra, R— Rb, R— ¢ (4)

One can check that, together with the set (1), the subset (2) of rules generates exactly all
words w of form (3.1), the subset (3) of rules generates exactly all words w of form (3.2) and
the subset (4) of rules generates exactly all words w of form (3.3).
A given word of L, fulfills exactly one of forms (3.1),(3.2),(3.3), hence a word w € L4 can be
generated by the rules of set (1) augmented by only one of the sets of rules (2) or (3) or (4).
We conclude that

L(G4,S) = Ly.

For every such form, the decomposition given in the text (form (3.1) or(3.2)) or given in our
solution of question 4 (form (3.3)) is also unique, implying that the derivation within the set



of rules (1, 2) [resp.(1, 3), (1, 4)] is unique.
Hence the grammar G4 is non-ambiguous.

Exercice 5 [/5] We consider the context-free grammar G := (A4, N, R) where A = {a, b, ¢},
N = {51,5,53,854,55} and R consists of the following 12 rules:

S1 — aS5151 S1— bS3S1 S1 — Sac
So — 5251 S —aS; Sy — 51551
S3—a S3— 5153 Siy— Sy
Sy — aSySs S5 —aSs S; — aSia

The start symbol of G is 57.
1- We compute the subset of productive non-terminals of G by the fixpoint technique explained
in the lecture:

Vi ={Sa}, Vo = {51, 54} Vs = {51, 54,55}, Va = V.

Hence the set of productive non-terminals is {S1, Sy, S5}.
2- The c.f. grammar obtained by removing all the non-productive non-terminals is thus:
G := (A, N,R) where A = {a,b,c}, N ={S51,S54, 55} and R consists of the following rules:

Sl — aS4
S4 — ngS4 S4 — aS4S4 S4 —b
S5 — aS4S5 S5 — bSl S5 — aS5.

We compute the subset of useful non-terminals of G by the fixpoint technique explained in
the lecture:

Ny = {51}, No = {51, 54}, N3 = Ny

Hence the set of useful non-terminals is {S7, S4}.

3- We can thus transform the grammar G into an equivalent grammar G’ where every non-
terminal is productive and useful, just by restricting both the non-terminal alphabet and the
rules to the subset No:

G = (A,N',R’) where A = {a,b,c}, N' ={51,S54} and R’ consists of the rules:

Sl — (IS4, 54 — CLS4S4, 54 — b

4- We note that:
Sl — CLS4 — ab,

hence the language L(G, S1) is not empty.
(We can also invoke the fact that Sj is productive, by question 1).
5- We observe that:

S1 — aS4 and Sy —* aS4b and S4 — b.



hence {a"*16"*t! | n > 1} C L(G, S1), which shows that the language L(G, S1) is infinite.
6- One can prove, by induction over the length n of derivations that, for every w € {a,b}*:

Sy 5w = |wle — |wly = —1

S s w lwl, — |w|p =0 (5)

Let us prove that the language L := L(G, Sy) is not rational.
Suppose that L is recognized by some f.a. A with N states. Let w := a¥b" € L = L 4. Let

a a a N
qo—AqQ - ——AQ - ——AqN —AqE Qy,

be some successful computation of A over w. Since N +1 > N, 90 < i < j < N such that
q; = qj. It follows that

ai aN—i pN

Go —Aqi =q; —7AGn —AQ;

is also a successful computation of A. Hence V= U~9pN e L4 = L, which contradicts
implication (5). We have proved that such a f.a. A cannot exist.
Exercice 6 [/4] We consider the context-free grammar G := (A, N,R) where A =
{a,a,b,b}, N ={S} and R consists of the following rules:

rl: S — aSa
r2: S — aSa
r3: S — bSb
rd: S — bSb
r5: S — S8
r6: S —«¢

The start symbol of G is S.
1-
S — aSa — abSba — abaSaba — abaaSaaba — abaaaaba.

This derivation is both rightmost and leftmost.
92
S — 88 — aSaS — aaS — aabSbh — aabb,

is a leftmost derivation.
S — 8S — SbSb — Sbb — aSabb — aabb,

is a rightmost derivation. A derivation-tree (corresponding to these two derivations) is de-
picted on figure 5.

3-Let us exhibit two different leftmost derivations for the word aaaa

S — 585 —aSaS — aaS — aaaSa — aaaa
S — aSa — aaSaa — aaaa.

Their associated derivation-trees must be different since the correspondance between leftmost
derivations and derivation-trees is bijective.

4- The result of question 3 proves that the c.f. grammar G is ambiguous.



S S
S S
a € a b c b

Figure 5: a derivation tree for aabb

5- The grammar G’ is non-ambiguous:it is linear and the first half of a word ww completely
determines the sequence of rules that must be used in a leftmost derivation that generates
(ITIR

Every word in L(G’,S) has the same leftmost and rightmost letter. Hence aabb € L(G,S) \
L(G,S).



