
Cursus: M1, computer-science
Code UE: JEIN8602
Solutions to the subject: Formal languages theory
Date: 20 March 2016
Duration: 3H
Documents: authorized
Lectures by: Mr Géraud Sénizergues

Exercice 1 [/4] We consider the finite automaton A described on figure 1.

0

g c

e

f

1 2 3
ba d

Figure 1: finite automaton A

0- The following sequences are successful computations of A:

0, a, 1, b, 2, d, 3

0, a, 1, g, 0, a, 1, b, 2, d, 3

0, a, 1, f, 1, b, 2, d, 3

0, a, 1, b, 2, c, 1, b, 2, d, 3

0, e, 3

1- We transform A into a normalized extended f.a. A1 where i (resp. t) is the initial (resp.
terminal) state. We then eliminate successively states in the ordering: 0, 1, 2, 3. We obtain
the sequence of extended automata shown on figure 2.
It follows that:

e ∪ a(f ∪ (ga))∗ge ∪ a(f ∪ (ga))∗b[c(f ∪ (ga))∗b]∗[d ∪ c(f ∪ (ga))∗ge]

is a regular expression for LA.
2- A regular expression for the language h(LA) is obtained by replacing each letter x ∈
{a, b, c, d, e, f, g} by its image h(x) in the above regular expression. We thus obtain the
expression:

bb ∪ a(aa ∪ ba)∗bbb ∪ a(aa ∪ ba)∗ba[abb(aa ∪ ba)∗ba]∗[b ∪ abb(aa ∪ ba)∗bbb]

32
b

1

f

e

g

a
0

d

c

d

e

c

b

ε ε

ε ε321

f ∪ (ga) ge

t

ti

i

ε
t3

e ∪ a(f ∪ (ga))∗ge

2i
d ∪ c(f ∪ (ga))∗gea(f ∪ (ga))∗b

c(f ∪ (ga))∗b

i
e ∪ a(f ∪ (ga))∗ge ∪ a(f ∪ (ga))∗b[c(f ∪ (ga))∗b]∗[d ∪ c(f ∪ (ga))∗ge]

t

Figure 2: sequence of extended automata, ex. 2

3- A finite automaton recognizing the language h(LA) is depicted on figure 3

Exercice 2 [/4] Let us consider the regular expression:

e := (((ab) ∪ (bc))∗a)∗c

Let us apply Glushkov’s method.
The locally testable language associated to e is:

L′ := (((a1b1) ∪ (b2c1))
∗a2)

∗c2

We compute
Ini(L′) = {a1, b2, a2, c2}, F in(L′) = {c2},

Dig(L′) = {a1b1, b2c1, b1a1, b1b2, c1a1, c1b2, b1a2, c1a2, a2a1, a2b2, a2a2, a2c2}

This gives the finite automaton represented on figure 4, where the set of states is

{0, a1, a2, b1, b2, c1, c2}

2

0 1 2 3
a

a

bb

b b

d

a

a

b

ab

Figure 3: a finite automaton for h(LA)

0 is the unique initial state and c2 is the (unique) final state.

Exercice 3 [/4]
0-

δ̂(0, acaaa) = 5, δ̂(0, acbaa) = 5, δ̂(0, baa) = 5, δ̂(0, bcbaa) = 5.

hence all the words acaaa, acbaa, baa, bcbaa belong to LB.
Concerning the four other words we obtain:

δ̂(0, ac) = 4, and δ(4, c) is undefined

δ̂(0, bc) = 6, and δ(6, c) is undefined

δ̂(0, bca) = 2, and δ(2, b) is undefined

δ̂(0, acbaa) = 5, and δ(5, a) is undefined

hence the words acc, bcc, bcab, acbaaa, belong to the complement of LB.
1- The automaton is B deterministic: given a state q and a letter x, there exists at most one
state q′ such that q →x

B
q′.

2-

δ̂(0, ε) = 0, δ̂(0, a) = 1, δ̂(0, b) = 2, δ̂(0, aa) = 3, δ̂(0, ac) = 4, δ̂(0, aaa) = 5, δ̂(0, bc) = 6,

hence every state of B is accessible.
3- B is not complete: there is no transition reading letter b from state 2.
4- Let us add a new state P to the set of states of B. We obtain the f.a. B′, whose set of
states is Q′ := {, 0, 1, 2, 3, 4, 5, 6, P}, with initial state 0, final state 5 and transition table:

x\q : 0 1 2 3 4 5 6 P

a 1 3 3 5 1 P 2 P

b 2 2 P P 1 P 1 P

c P 4 6 P P P P P

5- Let us compute the Nerode equivalence of B′:
We apply the refinement algorithm exposed in the lectures:

≡0= {{0, 1, 2, 3, 4, 6, P}, {5}}; ≡1= {{0, 1, 2, 4, 6, P}, {3}, {5}}; ≡2= {{0, 4, 6, P}, {1, 2}, {3}, {5}};

3

0

a1

a2

b1

b2 c1

c2

a

a

a

a

a

a
b

c

b

b

c

c

b

b

a

Figure 4: finite automaton for Le

≡3= {{0, 4, 6}, {P}, {1, 2}, {3}, {5}}; ≡4= {{0, 4, 6}, {P}, {1}, {2}, {3}, {5}};

≡5= {{0}, {4}, {6}, {P}, {1}, {2}, {3}, {5}}; ≡6=≡5 .

Hence the Nerode equivalence over Q′ is just the equality. This implies that B′ is minimal
(among all the complete deterministic finite automata recognizing LB).
It follows that B is minimal (among all the deterministic finite automata recognizing LB).
Exercice 4 [/5]

1- Let A = {a, b, c} and N = {S}. For every i ∈ {1, 2, 3}, we define a set of rules Ri over
A and N such that the c.f. grammar Gi := (A,N,Ri) generates the language Li.
R1 is the set of rules:

S → aSc, S → b.

R2 is the set of rules:
S → abS, S → abSc, S → abc

R3 is the set of rules:
S → aSa, S → bSb, S → c.

2- We remark that: ˜aba = aba 6= aaa. Hence abacaaa ∈ L4.
Similarly:

˜baba = abab 6= ab ⇒ babacab ∈ L4

4

b̃a = ab 6= abab ⇒ bacabab ∈ L4.

3-
3.1 Let us assume that

w = v1xv2cv3yv4

for some v1, v2, v3, v4 ∈ {a, b}∗, x, y ∈ {a, b} such that v4 = ṽ1, x 6= y.
Since ˜v1xv2 = ṽ2xṽ1, we get that the word xṽ1 = xv4 is a suffix of ˜v1xv2. On the other hand,
since x 6= y, this word xv4 is not a suffix of v3yv4. It follows that

˜v1xv2 6= v3yv4

hence
w ∈ L4.

3.2 Let us assume that
w = v1xv2cv4

for some v1, v2, v4 ∈ {a, b}∗, x ∈ {a, b} such that v4 = ṽ1.
Since ˜v1xv2 = ṽ2xṽ1 and v4 = ṽ1 we get that the word v4 is a strict suffix of ˜v1xv2, hence
˜v1xv2 6= v4, which shows that

w ∈ L4.

4- Suppose that
u = v1cv3yv4

for some v1, v3, v4 ∈ {a, b}∗, y ∈ {a, b} such that

v4 = ṽ1.

(we denote by (3.3) this form of word w). By an argument similar to that used in question
3.2,

w ∈ L4.

5- Let A = {a, b, c} and N4 = {S, T1, T2, L,R}. We build a c.f. grammar G4 := (A,N4, R4)
by defining R4 as the following set of rules:

S → aSa, S → bSb, S → aT1b, S → bT1a (1)

T1 → aT1, T1 → bT1, T1 → T2, T2 → T2a, T2 → T2b, T2 → c (2)

S → aL, S → bL, L → aL, L → bL, L → c (3)

S → Ra, S → Rb, R → Ra, R → Rb, R → c (4)

One can check that, together with the set (1), the subset (2) of rules generates exactly all
words w of form (3.1), the subset (3) of rules generates exactly all words w of form (3.2) and
the subset (4) of rules generates exactly all words w of form (3.3).
A given word of L4 fulfills exactly one of forms (3.1),(3.2),(3.3), hence a word w ∈ L4 can be
generated by the rules of set (1) augmented by only one of the sets of rules (2) or (3) or (4).
We conclude that

L(G4, S) = L4.

For every such form, the decomposition given in the text (form (3.1) or(3.2)) or given in our
solution of question 4 (form (3.3)) is also unique, implying that the derivation within the set

5

of rules (1, 2) [resp.(1, 3), (1, 4)] is unique.
Hence the grammar G4 is non-ambiguous.

Exercice 5 [/5] We consider the context-free grammar G := (A,N,R) where A = {a, b, c},
N = {S1, S2, S3, S4, S5} and R consists of the following 12 rules:

S1 → aS1S1 S1 → bS3S1 S1 → S2c

S2 → S2S1 S2 → aS3 S2 → S1S2S1

S3 → a S3 → S1S3 S4 → cS4

S4 → aS4S5 S5 → aS5 S5 → aS4a

The start symbol of G is S1.
1- We compute the subset of productive non-terminals of G by the fixpoint technique explained
in the lecture:

V1 = {S4}, V2 = {S1, S4}.V3 = {S1, S4, S5}, V4 = V3.

Hence the set of productive non-terminals is {S1, S4, S5}.
2- The c.f. grammar obtained by removing all the non-productive non-terminals is thus:
Ĝ := (A, N̂ , R̂) where A = {a, b, c}, N̂ = {S1, S4, S5} and R̂ consists of the following rules:

S1 → aS4

S4 → bS3S4 S4 → aS4S4 S4 → b

S5 → aS4S5 S5 → bS1 S5 → aS5.

We compute the subset of useful non-terminals of Ĝ by the fixpoint technique explained in
the lecture:

N1 = {S1}, N2 = {S1, S4}, N3 = N2

Hence the set of useful non-terminals is {S1, S4}.
3- We can thus transform the grammar Ĝ into an equivalent grammar G′ where every non-
terminal is productive and useful, just by restricting both the non-terminal alphabet and the
rules to the subset N2:
G′ := (A,N ′, R′) where A = {a, b, c}, N ′ = {S1, S4} and R′ consists of the rules:

S1 → aS4, S4 → aS4S4, S4 → b

4- We note that:
S1 → aS4 → ab,

hence the language L(G,S1) is not empty.
(We can also invoke the fact that S1 is productive, by question 1).
5- We observe that:

S1 → aS4 and S4 →
∗ aS4b and S4 → b.

6

hence {an+1bn+1 | n ≥ 1} ⊆ L(G,S1), which shows that the language L(G,S1) is infinite.
6- One can prove, by induction over the length n of derivations that, for every w ∈ {a, b}∗:

S4
n

−→ w → |w|a − |w|b = −1

S1
n

−→ w → |w|a − |w|b = 0 (5)

Let us prove that the language L := L(G,S1) is not rational.
Suppose that L is recognized by some f.a. A with N states. Let w := aNbN ∈ L = LA. Let

q0
a

−→A q1 · · ·
a

−→A qi · · ·
a

−→A qN
bN

−→A q ∈ Qf ,

be some successful computation of A over w. Since N + 1 > N , ∃0 ≤ i < j ≤ N such that
qi = qj. It follows that

q0
ai

−→A qi = qj
aN−j

−→A qn
bN

−→A q,

is also a successful computation of A. Hence aN−(j−i)bN ∈ LA = L, which contradicts
implication (5). We have proved that such a f.a. A cannot exist.
Exercice 6 [/4] We consider the context-free grammar G := (A,N,R) where A =
{a, ā, b, b̄}, N = {S} and R consists of the following rules:

r1: S → aSā

r2: S → āSa

r3: S → bSb̄

r4: S → b̄Sb

r5: S → SS

r6: S → ε

The start symbol of G is S.
1-

S → aSā → abSb̄ā → abaSāb̄ā → abaaSāāb̄ā → abaaāāb̄ā.

This derivation is both rightmost and leftmost.
2-

S → SS → aSāS → aāS → aābSb̄ → aābb̄,

is a leftmost derivation.

S → SS → SbSb̄ → Sbb̄ → aSābb̄ → aābb̄,

is a rightmost derivation. A derivation-tree (corresponding to these two derivations) is de-
picted on figure 5.
3-Let us exhibit two different leftmost derivations for the word aāaā

S → SS → aSāS → aāS → aāaSā → aāaā

S → aSā → aāSaā → aāaā.

Their associated derivation-trees must be different since the correspondance between leftmost
derivations and derivation-trees is bijective.
4- The result of question 3 proves that the c.f. grammar G is ambiguous.

7

S

S S

S S

a b̄bāε ε

Figure 5: a derivation tree for aābb̄

5- The grammar G′ is non-ambiguous:it is linear and the first half of a word ww̄ completely
determines the sequence of rules that must be used in a leftmost derivation that generates
ww̄.
Every word in L(G′, S) has the same leftmost and rightmost letter. Hence aābb̄ ∈ L(G,S) \
L(G′, S).

8

