Cursus: M1, computer-science
Code UE: JEIN8602
Solutions to the subject: Formal languages theory
Date: 05 July 2013
Duration: 3H
Documents: authorized
Lectures by: Mr Géraud Sénizergues

Exercice 1 [/4] 1-

$$
u_{1}:=c, \quad u_{2}:=b a, \quad u_{3}:=c, \quad u_{4}:=c
$$

are fulfilling the required membership assertions. Note also that the first line of the table of question 2 was based on this choice for u_{1}, u_{3}, u_{4}
2-

u	$L_{e_{1}}$	$L_{e_{2}}$	$L_{e_{3}}$	$L_{e_{4}}$
c	yes	no	yes	yes
$a b c$	yes	no	yes	yes
$b a$	no	yes	yes	yes
$a b b a$	no	no	no	yes
ε	no	yes	yes	yes

(The first row is given as an example; no precise justification is required for this question). 3- $L_{e_{3}}=L_{e_{4}}$?:no, the word abba belongs to $L_{e_{4}}$ but does not belong to $L_{e_{3}}$.
$L_{e_{2}} \subseteq L_{e_{1}}$?:no, because $b a \in L_{e_{2}}$ but $b a \notin L_{e_{1}}$.
$L_{e_{2}} \subseteq L_{e_{3}}$?:yes
$L_{e_{3}}=L_{e_{1}} \cup L_{e_{2}}$?:yes

Exercice 2 [/4]

$$
e:=\left(a b^{*} c\right)^{*} a b(a \cup b)^{*}
$$

Let us apply Glushkov's method.
The locally testable language associated to e is:

$$
L^{\prime}:=\left(a_{1} b_{1}^{*} c_{1}\right)^{*} a_{2} b_{2}\left(a_{3} \cup b_{3}\right)^{*}
$$

We compute

$$
\begin{gathered}
\operatorname{Ini}\left(L^{\prime}\right)=\left\{a_{1}, a_{2}\right\}, \operatorname{Fin}\left(L^{\prime}\right)=\left\{b_{2}, a_{3}, b_{3}\right\}, \\
\operatorname{Dig}\left(L^{\prime}\right)=\left\{a_{1} b_{1}, b_{1} b_{1}, b_{1} c_{1}, a_{1} c_{1}, c_{1} a_{1}, c_{1} a_{2}, a_{2} b_{2}, b_{2} a_{3}, b_{2} b_{3}, a_{3} a_{3}, a_{3} b_{3}, b_{3} b_{3}, b_{3} a_{3}\right\} .
\end{gathered}
$$

This gives the finite automaton represented on figure 1 , where the set of states is $\left\{0, a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}\right\}$, 0 is the unique initial state and b_{2}, a_{3}, b_{3} are the final states.

Figure 1: finite automaton for L_{e}

Exercice 3 [/5] We transform \mathcal{A} into a normalized extended f.a. \mathcal{A}_{1} where i (resp. t) is the initial (resp. terminal) state. We then eliminate successively states in the ordering: $3,1,0,2$. We obtain the sequence of extended automata shown on figure 2. It follows that:

$$
\left(a b^{*} c\right)\left(b \cup a b^{*} a\right)\left[c \cup a c^{*} b b^{*} a \cup a c^{*} b b^{*} c\left(a b^{*} c\right)^{*}\left(b \cup a b^{*} a\right)\right]^{*} a c^{*}
$$

is a regular expression for $L_{\mathcal{A}}$.
Exercice $4[/ 5]$ We consider the finite automaton \mathcal{B}.
1 - It is deterministic.
2- Every state of \mathcal{B} is accessible i.e. is reachable from the initial state.
3 - It is also complete.
Computing the Nerode equivalence over the set of states by Moore's algorithm, we obtain the successive partitions:

$$
\begin{aligned}
& \equiv_{0}=\{\{1,2,3,4,6,7\},\{0,5\}\} \\
& \equiv_{1}=\{\{1,3,6,7\},\{2,4\},\{0,5\}\} \\
& \equiv_{2}=\{\{1,3\},\{6,7\},\{2,4\},\{0,5\}\} \\
& \equiv_{3}=\{\{1,3\},\{6,7\},\{2,4\},\{0,5\}\}
\end{aligned}
$$

Thus \equiv_{2} is the Nerode equivalence over the set of states of \mathcal{B}. The minimal complete deterministic finite automaton \mathcal{C} that recognizes the same language is obtained by identifying the states which are equivalent (w.r.t. \equiv). It is described on figure 3 .

Exercice $5[/ 6]$ 1- For every $i \in[1,5]$ we define a context-free grammar $G_{i}=\left(A, N_{i}, R_{i}\right)$ generating L_{i} from the start symbol S.
$N_{1}:=\{S\}, R_{1}$ consists of the rules:

$$
S \rightarrow a b S, \quad S \rightarrow \varepsilon
$$

$N_{2}:=\{S\}, R_{2}$ consists of the rules:

$$
S \rightarrow a b S c, \quad S \rightarrow \varepsilon
$$

$N_{3}:=\{S, T\}, R_{3}$ consists of the rules:

$$
S \rightarrow a b S c, \quad S \rightarrow T, \quad T \rightarrow a b T, \quad T \rightarrow \varepsilon
$$

$N_{4}:=\{S, T\}, R_{3}$ consists of the rules:

$$
S \rightarrow a b S d, \quad S \rightarrow T, \quad T \rightarrow a b T c, \quad T \rightarrow \varepsilon
$$

$N_{5}:=\{S, T, U\}, R_{3}$ consists of the rules:

$$
S \rightarrow a b S, \quad S \rightarrow T, \quad T \rightarrow a b T d, \quad T \rightarrow U, \quad U \rightarrow a b U c, \quad U \rightarrow \varepsilon
$$

2- The grammar G_{5} is non-ambiguous.
Exercice $6[/ 5]$ We consider the context-free grammar $G:=(A, N, R)$ where $A=\{a, b\}$, $N=\{S, T, U\}$ and R consists of the following five rules:
r1: $S \rightarrow T U$
r2: $T \rightarrow a T T$
r3: $T \rightarrow b$
r4: $U \rightarrow a U T$
r5: $U \rightarrow b T T$
The start symbol of G is S.
1- A leftmost derivation from T to aabbaabbb:
$T \rightarrow a T T \rightarrow a a T T T \rightarrow a a b T T \rightarrow a a b b T \rightarrow a a b b a T T \rightarrow a a b b a a T T T \rightarrow a a b b a a b T T \rightarrow a a b b a a b b T \rightarrow a a b b a a$
Give a rightmost derivation from T to $a a b b a a b b b$:
$S \rightarrow a T T \rightarrow a T a T T \rightarrow a T a T b \rightarrow a T a a T T b \rightarrow a T a a T b b \rightarrow a T a a b b b \rightarrow a a T T a a b b b \rightarrow a a T b a a b b b \rightarrow a a b b a a b$
2- We know from q1 that:

$$
S \rightarrow^{*} a a b b a a b b b
$$

We remark that:

$$
U \rightarrow b T T \rightarrow b b T \rightarrow b b b
$$

Hence, combining rule r1 with the two above derivations:

$$
S \rightarrow T U \rightarrow^{*} \text { aabbaabbbU } \rightarrow^{*} \text { aabbaaabbbbbb. }
$$

The above combination is also leftmost:
$S \rightarrow T U \rightarrow a T T U \rightarrow a a T T T U \rightarrow a a b T T U \rightarrow a a b b T U \rightarrow a a b b a T T U \rightarrow a a b b a a T T T U \rightarrow a a b b a a b T T U$

$$
\rightarrow a a b b a a b b T U \rightarrow a a b b a a b b b U \rightarrow a a b b a a b b b b T T \rightarrow a a b b a a b b b b b T \rightarrow a a b b a a b b b b b b .
$$

A derivation-tree for $a a b b a a b b b b b b$ is depicted on figure 4 . The corresponding absract-syntax tree (or construction-tree) is given on figure 5 .

3- All the non-terminals are productive and useful.
4- The grammar G is not simple because the righthand side of rule r1 does not begin by a terminal letter. Let us construct G^{\prime}, by replacing the leading non-terminal symbol T in r 1 by its righthand-sides. We obtain the context-free grammar $G^{\prime}:=\left(A, N, R^{\prime}\right)$ where $A=\{a, b\}$, $N=\{S, T, U\}$ and R^{\prime} consists of the following five rules:
r1': $S \rightarrow a T T U$
r1": $S \rightarrow b U$
r2: $T \rightarrow a T T$
r3: $T \rightarrow b$
r4: $U \rightarrow a U T$
r5: $U \rightarrow b T T$
We know, from the lecture, that such a transformation preserves the language.

Figure 2: sequence of extended automata

Figure 3: \mathcal{C}

Figure 4: derivation tree

Figure 5: abstract syntax tree

