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Exercice 1 [/4] 1-
u1 := c, u2 := ba, u3 := c, u4 := c

are fulfilling the required membership assertions. Note also that the first line of the table of
question 2 was based on this choice for u1, u3, u4
2-

u Le1
Le2

Le3
Le4

c yes no yes yes
abc yes no yes yes
ba no yes yes yes
abba no no no yes
ε no yes yes yes

(The first row is given as an example; no precise justification is required for this question).
3- Le3

= Le4
?:no, the word abba belongs to Le4

but does not belong to Le3
.

Le2
⊆ Le1

?:no, because ba ∈ Le2
but ba /∈ Le1

.
Le2

⊆ Le3
?:yes

Le3
= Le1

∪ Le2
?:yes

Exercice 2 [/4]
e := (ab∗c)∗ab(a ∪ b)∗

Let us apply Glushkov’s method.
The locally testable language associated to e is:

L′ := (a1b
∗
1c1)

∗a2b2(a3 ∪ b3)
∗

We compute
Ini(L′) = {a1, a2}, F in(L′) = {b2, a3, b3},

Dig(L′) = {a1b1, b1b1, b1c1, a1c1, c1a1, c1a2, a2b2, b2a3, b2b3, a3a3, a3b3, b3b3, b3a3}.

This gives the finite automaton represented on figure 1, where the set of states is {0, a1, a2, a3, b1, b2, b3, c1},
0 is the unique initial state and b2, a3, b3 are the final states.
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Figure 1: finite automaton for Le

Exercice 3 [/5] We transform A into a normalized extended f.a. A1 where i (resp. t)
is the initial (resp. terminal) state. We then eliminate successively states in the ordering:
3, 1, 0, 2. We obtain the sequence of extended automata shown on figure 2. It follows that:

(ab∗c)(b ∪ ab∗a)[c ∪ ac∗bb∗a ∪ ac∗bb∗c(ab∗c)∗(b ∪ ab∗a)]∗ac∗

is a regular expression for LA.
Exercice 4 [/5] We consider the finite automaton B.
1- It is deterministic.
2- Every state of B is accessible i.e. is reachable from the initial state.
3- It is also complete.
Computing the Nerode equivalence over the set of states by Moore’s algorithm, we obtain the
successive partitions:

≡0 = {{1, 2, 3, 4, 6, 7}, {0, 5}}

≡1 = {{1, 3, 6, 7}, {2, 4}, {0, 5}}

≡2 = {{1, 3}, {6, 7}, {2, 4}, {0, 5}}

≡3 = {{1, 3}, {6, 7}, {2, 4}, {0, 5}}

Thus ≡2 is the Nerode equivalence over the set of states of B. The minimal complete deter-
ministic finite automaton C that recognizes the same language is obtained by identifying the
states which are equivalent (w.r.t. ≡). It is described on figure 3.
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Exercice 5 [/6] 1- For every i ∈ [1, 5] we define a context-free grammar Gi = (A,Ni, Ri)
generating Li from the start symbol S.
N1 := {S},R1 consists of the rules:

S → abS, S → ε

N2 := {S},R2 consists of the rules:

S → abSc, S → ε.

N3 := {S, T},R3 consists of the rules:

S → abSc, S → T, T → abT, T → ε

N4 := {S, T},R3 consists of the rules:

S → abSd, S → T, T → abTc, T → ε

N5 := {S, T, U},R3 consists of the rules:

S → abS, S → T, T → abTd, T → U, U → abUc, U → ε

2- The grammar G5 is non-ambiguous.
Exercice 6 [/5] We consider the context-free grammar G := (A,N,R) where A = {a, b},
N = {S, T, U} and R consists of the following five rules:
r1: S → TU
r2: T → aTT
r3: T → b
r4: U → aUT
r5: U → bTT
The start symbol of G is S.
1- A leftmost derivation from T to aabbaabbb:

T → aTT → aaTTT → aabTT → aabbT → aabbaTT → aabbaaTTT → aabbaabTT → aabbaabbT → aabbaabbb

Give a rightmost derivation from T to aabbaabbb:

S → aTT → aTaTT → aTaTb → aTaaTTb → aTaaTbb → aTaabbb → aaTTaabbb → aaTbaabbb → aabbaabbb.

2- We know from q1 that:
S →∗ aabbaabbb

We remark that:
U → bTT → bbT → bbb

Hence, combining rule r1 with the two above derivations:

S → TU →∗ aabbaabbbU →∗ aabbaabbbbbb.

The above combination is also leftmost:

S → TU → aTTU → aaTTTU → aabTTU → aabbTU → aabbaTTU → aabbaaTTTU → aabbaabTTU
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→ aabbaabbTU → aabbaabbbU → aabbaabbbbTT → aabbaabbbbbT → aabbaabbbbbb.

A derivation-tree for aabbaabbbbbb is depicted on figure 4. The corresponding absract-syntax
tree (or construction-tree) is given on figure 5.

3- All the non-terminals are productive and useful.
4- The grammar G is not simple because the righthand side of rule r1 does not begin by a
terminal letter. Let us construct G′, by replacing the leading non-terminal symbol T in r1 by
its righthand-sides. We obtain the context-free grammar G′ := (A,N,R′) where A = {a, b},
N = {S, T, U} and R′ consists of the following five rules:
r1’: S → aTTU
r1”: S → bU
r2: T → aTT
r3: T → b
r4: U → aUT
r5: U → bTT
We know, from the lecture, that such a transformation preserves the language.
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Figure 2: sequence of extended automata
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Figure 5: abstract syntax tree
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