Cursus: M1, computer-science Code UE: JEIN8602 Solutions to the subject: Formal languages theory Date: 05 July 2013 Duration: 3H Documents: authorized Lectures by: Mr Géraud Sénizergues

Exercice 1 [/4] 1-

$$u_1 := c, \ u_2 := ba, \ u_3 := c, \ u_4 := c$$

are fulfilling the required membership assertions. Note also that the first line of the table of question 2 was based on this choice for  $u_1, u_3, u_4$ 2-

| u    | $L_{e_1}$ | $L_{e_2}$ | $L_{e_3}$ | $L_{e_4}$ |
|------|-----------|-----------|-----------|-----------|
| С    | yes       | no        | yes       | yes       |
| abc  | yes       | no        | yes       | yes       |
| ba   | no        | yes       | yes       | yes       |
| abba | no        | no        | no        | yes       |
| ε    | no        | yes       | yes       | yes       |

(The first row is given as an example; no precise justification is required for this question). 3-  $L_{e_3} = L_{e_4}$ ?:no, the word *abba* belongs to  $L_{e_4}$  but does not belong to  $L_{e_3}$ .  $L_{e_2} \subseteq L_{e_1}$ ?:no, because  $ba \in L_{e_2}$  but  $ba \notin L_{e_1}$ .  $L_{e_2} \subseteq L_{e_3}$ ?:yes  $L_{e_3} = L_{e_1} \cup L_{e_2}$ ?:yes

Exercice 2 [/4]

 $e := (ab^*c)^*ab(a \cup b)^*$ 

Let us apply Glushkov's method.

The locally testable language associated to e is:

$$L' := (a_1 b_1^* c_1)^* a_2 b_2 (a_3 \cup b_3)^*$$

We compute

$$Ini(L') = \{a_1, a_2\}, Fin(L') = \{b_2, a_3, b_3\},\$$

$$Dig(L') = \{a_1b_1, b_1b_1, b_1c_1, a_1c_1, c_1a_1, c_1a_2, a_2b_2, b_2a_3, b_2b_3, a_3a_3, a_3b_3, b_3b_3, b_3a_3\}$$

This gives the finite automaton represented on figure 1, where the set of states is  $\{0, a_1, a_2, a_3, b_1, b_2, b_3, c_1\}$ , 0 is the unique initial state and  $b_2, a_3, b_3$  are the final states.



Figure 1: finite automaton for  $L_e$ 

**Exercice 3** [/5] We transform  $\mathcal{A}$  into a normalized extended f.a.  $\mathcal{A}_1$  where *i* (resp. *t*) is the initial (resp. terminal) state. We then eliminate successively states in the ordering: 3, 1, 0, 2. We obtain the sequence of extended automata shown on figure 2. It follows that:

 $(ab^*c)(b \cup ab^*a)[c \cup ac^*bb^*a \cup ac^*bb^*c(ab^*c)^*(b \cup ab^*a)]^*ac^*$ 

is a regular expression for  $L_{\mathcal{A}}$ .

**Exercice 4** [/5] We consider the finite automaton  $\mathcal{B}$ .

1- It is deterministic.

2- Every state of  $\mathcal{B}$  is accessible i.e. is reachable from the initial state.

3- It is also complete.

Computing the Nerode equivalence over the set of states by Moore's algorithm, we obtain the successive partitions:

$$\begin{split} &\equiv_0 = \{\{1,2,3,4,6,7\},\{0,5\}\} \\ &\equiv_1 = \{\{1,3,6,7\},\{2,4\},\{0,5\}\} \\ &\equiv_2 = \{\{1,3\},\{6,7\},\{2,4\},\{0,5\}\} \\ &\equiv_3 = \{\{1,3\},\{6,7\},\{2,4\},\{0,5\}\} \end{split}$$

Thus  $\equiv_2$  is the Nerode equivalence over the set of states of  $\mathcal{B}$ . The minimal complete deterministic finite automaton  $\mathcal{C}$  that recognizes the same language is obtained by identifying the states which are equivalent (w.r.t.  $\equiv$ ). It is described on figure 3.

**Exercise 5** [/6] 1- For every  $i \in [1, 5]$  we define a context-free grammar  $G_i = (A, N_i, R_i)$  generating  $L_i$  from the start symbol S.  $N_1 := \{S\}, R_1$  consists of the rules:

$$S \to abS, S \to \varepsilon$$

 $N_2 := \{S\}, R_2$  consists of the rules:

$$S \to abSc, S \to \varepsilon.$$

 $N_3 := \{S, T\}, R_3$  consists of the rules:

 $S \rightarrow abSc, S \rightarrow T, T \rightarrow abT, T \rightarrow \varepsilon$ 

 $N_4 := \{S, T\}, R_3$  consists of the rules:

 $S \to abSd, S \to T, T \to abTc, T \to \varepsilon$ 

 $N_5 := \{S, T, U\}, R_3$  consists of the rules:

$$S \to abS, S \to T, T \to abTd, T \to U, U \to abUc, U \to \varepsilon$$

2- The grammar  $G_5$  is non-ambiguous.

**Exercise 6** [/5] We consider the context-free grammar G := (A, N, R) where  $A = \{a, b\}$ ,  $N = \{S, T, U\}$  and R consists of the following five rules: **r1**:  $S \to TU$  **r2**:  $T \to aTT$  **r3**:  $T \to b$  **r4**:  $U \to aUT$  **r5**:  $U \to bTT$ The start symbol of G is S. 1- A leftmost derivation from T to *aabbaabbb*:

 $T \rightarrow aTT \rightarrow aabTT \rightarrow aabbT \rightarrow aabbaTT \rightarrow aabbaaTT \rightarrow aabbaabTT \rightarrow aabba$ 

Give a rightmost derivation from T to *aabbaabbb*:

2- We know from q1 that:

$$S \rightarrow^* aabbaabbb$$

We remark that:

 $U \to bTT \to bbT \to bbb$ 

Hence, combining rule r1 with the two above derivations:

$$S \to TU \to^* aabbaabbbU \to^* aabbaabbbbbbb.$$

The above combination is also leftmost:

 $S \rightarrow TU \rightarrow aTTU \rightarrow aabTTU \rightarrow aabTTU \rightarrow aabbTU \rightarrow aabbaTTU \rightarrow aabbaaTTU \rightarrow aabbaaAabbaaAabbaaAabb$ 

 $\rightarrow aabbaabbTU \rightarrow aabbaabbbU \rightarrow aabbaabbbbTT \rightarrow aabbaabbbbbT \rightarrow aabbaabbbbbb.$ 

A derivation-*tree* for *aabbaabbbbbb* is depicted on figure 4. The corresponding absract-syntax tree (or construction-tree) is given on figure 5.

3- All the non-terminals are productive and useful.

4- The grammar G is not simple because the righthand side of rule r1 does not begin by a terminal letter. Let us construct G', by replacing the leading non-terminal symbol T in r1 by its righthand-sides. We obtain the context-free grammar G' := (A, N, R') where  $A = \{a, b\}$ ,  $N = \{S, T, U\}$  and R' consists of the following five rules: r1':  $S \to aTTU$ r1'':  $S \to bU$ r2:  $T \to aTT$ r3:  $T \to b$ r4:  $U \to aUT$ r5:  $U \to bTT$ 

We know, from the lecture, that such a transformation preserves the language.



Figure 2: sequence of extended automata



Figure 3:  $\mathcal{C}$ 



Figure 4: derivation tree



Figure 5: abstract syntax tree