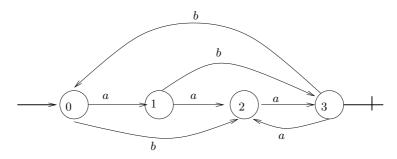
Cursus: M1, computer-science Code UE: JEIN8602 Solutions to the subject: Formal languages theory Date: March 2018 Duration: 3H Documents: authorized Lectures by: Mr Géraud Sénizergues

Exercice 1 [/4] We consider the finite automaton \mathcal{A} described on figure 1.



0- The following sequences are successful computations of \mathcal{A} :

$$0, a, 1, a, 2, a, 3$$

 $0, b, 2, a, 3$
 $0, a, 1, b, 3, b, 0, b, 2, a, 3$
 $0, b, 2, a, 3, b, 0, b, 2, a, 3$
 $0, e, 3$

1- We transform \mathcal{A} into a normalized extended f.a. \mathcal{A}_1 where *i* (resp. *t*) is the initial (resp. terminal) state. We then eliminate successively states in the ordering: 0, 1, 2, 3. We obtain the sequence of extended automata shown on figure 2.

It follows that:

$$[ab \cup (b \cup aa)a] \cdot [bab \cup (baa \cup bb \cup a)a]^*$$

is a regular expression for $L_{\mathcal{A}}$.

Exercice 2 [/4] Let us consider the regular expression:

$$e := (ac)^* b(a \cup (bc)^*)^*$$

Let us apply Glushkov's method.

The locally testable language associated to e is:

$$L' := (a_1c_1)^*b_1(a_2 \cup (b_2c_2)^*)^*$$

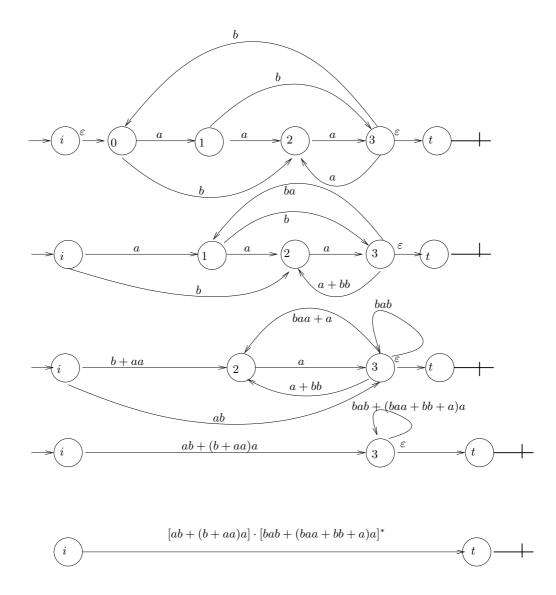


Figure 2: sequence of extended automata, ex. 2

We compute

$$Ini(L') = \{a_1, b_1\}, \quad Fin(L') = \{a_2, c_2, b_1\},$$
$$Dig(L') = \{a_1c_1, c_1a_1, c_1b_1, b_1a_2, b_1b_2, b_2c_2, c_2b_2, a_2a_2, c_2a_2, a_2b_2\}$$

This gives the finite automaton represented on figure 3, where the set of states is

 $\{0, a_1, a_2, b_1, b_2, c_1, c_2\}$

0 is the unique initial state and the set final states is $\{a_2, c_2, b_1\}$.

Exercise 3 [/4] 1- The f.a. \mathcal{A} , with set of states $\{S_0, S_1, S_2\}$, initial state S_0 , final state S_2 and the following

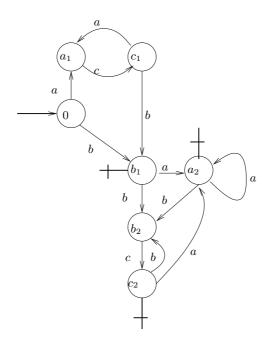


Figure 3: finite automaton for L_e

transitition table, recognizes the language $L(G, S_0)$:

$x \backslash q$:	S_0	S_1	S_2
a	S_1	S_1	S_2
b	S_2	S_2	—

2- We take for \mathcal{B} the above f.a. \mathcal{A} , where the arrows (i.e. transitions) have been half-turned, S_2 is initial and S_0 is final.

3- The following f.a. C is obtained by determinization of \mathcal{B} : its set of states is $\{S_0, S_1, S_2, \{S_0, S_1\}, \emptyset\}$, its initial state is S_2 , its final states are S_0 and $\{S_0, S_1\}$, and the transition table is

Since the states S_0, S_1 are not accessible, we can just rename the (accessible) states by:

$$S_2 \mapsto p_1, \{S_0, S_1\} \mapsto p_2, \emptyset \mapsto p_3, \emptyset$$

and obtain a new deterministic and complete f.a. \mathcal{C}' , recognizing ${}^{t}L(G, S_0)$:

$$\begin{array}{c|c|c} x \backslash q : & p_1 & p_2 & p_3 \\ \hline a & p_1 & p_2 & p_3 \\ b & p_2 & p_3 & p_3 \\ \end{array}$$

4- Let us compute the Nerode equivalence of \mathcal{C}' :

we apply the refinement algorithm exposed in the lectures:

$$\equiv_0 = \{\{p_1, p_3\}, \{p_2\}\}; \equiv_1 = \{\{p_1\}, \{p_3\}, \{p_2\}\}; \equiv_2 = \equiv_1;$$

Hence the Nerode equivalence over $Q_{\mathcal{C}'}$ is just the equality. This implies that \mathcal{C}' is minimal, among all the *complete* deterministic finite automata recognizing ${}^{t}L(G, S_0)$.

Exercise 4 [/5] 1- Let $A = \{a, b, c, d\}$. For every $i \in \{1, 2, 3, 4, 5\}$, we define a non-terminal alphabet N_i and a set of rules R_i over A and N_i , such that the c.f. grammar $G_i := (A, N_i, R_i)$ generates the language L_i .

 $N_1 = \{S\}, R_1$ is the set of rules:

$$S \to aS, S \to Sb, S \to \varepsilon$$

 $N_2 = \{S\}, R_2$ is the set of rules:

$$S \rightarrow aSb, S \rightarrow \varepsilon,$$

 $N_3 = \{S, T\}, R_3$ is the set of rules:

$$S \to aS, S \to a, S \to T, T \to aTb, T \to \varepsilon.$$

 $N_4 = \{S, T\}, R_4$ is the set of rules:

$$S \to acS, S \to ac, S \to T, T \to acTbd, T \to \varepsilon.$$

 $N_5 = \{\sigma, S_0, S_1, T\}, R_5$ is the set of rules:

$$\sigma \to S_0, \ \sigma \to S_1, \ S_0 \to acS_0, \ S_0 \to acT, \ S_1 \to S_1bd, \ S_1 \to Tbd,$$

 $T \to acTbd, \ T \to \varepsilon.$

2- G_3 is non-ambiguous: for every $p > q \ge 0$, the only derivation from S to $a^p b^q$ is

 $S \to^{p-q} a^{p-q} S \to a^{p-q} T \to^q a^p T b^q \to a^p b^q.$

3- G_4 is non-ambiguous: for every $0 \le p < q$, the only derivation from S to $a^p b^q$ is

$$S \to^{p-q} a^{p-q} S \to a^{p-q} T \to^q a^p T b^q \to a^p b^q.$$

4- Let us define the auxiliary language:

$$L'_4 := \{ (ac)^p (bd)^q \mid p \ge 0, q \ge 0, p < q \}.$$

 L_5 is the disjoint union of L_4 and L'_4 . The set of rules $\sigma \to S_0$, $S_0 \to acS_0$, $S_0 \to acT$, $T \to acTbd$, $T \to \varepsilon$ generates L_4 , in a non-ambiguous fashion (by question 3);

Similarly, the set of rules $\sigma \to S_1$, $S_1 \to S_1 bd$, $S_1 \to Tbd$, $T \to acTbd$, $T \to \varepsilon$ generates L'_4 , in a non-ambiguous fashion.

Thus $L(G_5, S_0) = L_4$ and $L(G_5, S_1) = L'_4$. It follows that $L(G_5, \sigma) = L_4 \cup L'_4$ and, since the union is disjoint, G_5 is non-ambiguous.

Exercice 5 [/5] 1- We compute the subset of *productive* non-terminals of G by the fixpoint technique explained in the lecture:

$$V_1 = \{T, U\}, V_2 = \{S, T, U, V\}, V_3 = \{S, T, U, V, W\}, V_4 = \{S, T, U, V, W, Y\}, V_5 = V_4.$$

Hence the set of productive non-terminals is $\{S, T, U, V, W, Y\}$.

2- The c.f. grammar obtained by removing all the non-productive non-terminals is thus: $\hat{G} := (A, \hat{N}, \hat{R})$ where $A = \{a, b\}, \hat{N} = \{S, T, U, V, W, Y\}$ and \hat{R} consists of the following rules:

$$\begin{array}{cccc} S \rightarrow ST & S \rightarrow T & S \rightarrow U \\ T \rightarrow bT & T \rightarrow \varepsilon \\ U \rightarrow bU & U \rightarrow abW & U \rightarrow \varepsilon \\ V \rightarrow bT & V \rightarrow UV \\ W \rightarrow TUV \\ Y \rightarrow aYb & Y \rightarrow aW \end{array}$$

We compute the subset of *useful* non-terminals of \hat{G} by the fixpoint technique explained in the lecture:

$$N_1 = \{S\}, N_2 = \{S, T, U\}, N_3 = \{S, T, U, W\}, N_4 = \{S, T, U, V, W\}, N_5 = N_4.$$

Hence the set of useful non-terminals is $\{S, T, U, V, W\}$.

3- We can thus transform the grammar \hat{G} into an equivalent grammar G' where every nonterminal is productive and useful, just by restricting both the non-terminal alphabet and the rules to the subset N_5 :

G':=(A,N',R') where $A=\{a,b,c\},$ $N'=\{S,T,U,V,W\}$ and R' consists of the rules:

$$\begin{array}{cccc} S \rightarrow ST & S \rightarrow T & S \rightarrow U \\ T \rightarrow bT & T \rightarrow \varepsilon \\ U \rightarrow bU & U \rightarrow abW & U \rightarrow \varepsilon \\ V \rightarrow bT & V \rightarrow UV \\ W \rightarrow TUV \end{array}$$

4- Since S is productive (question 1), $L(G, S) \neq \emptyset$. 5-

 $S \to^* ST^n \to^* Sb^n \to^* b^n$

hence $\{b^n \mid n \ge 0\} \subseteq L(G, S)$, which proves that L(G, S) is infinite. **Exercice 6** [/4] We consider the context-free grammar G := (A, N, R) where $A = \{a, b\}$, $N = \{S, T, U, V, W\}$ and R consists of the following rules:

 $\begin{array}{cccc} S \rightarrow STU & S \rightarrow Sa & S \rightarrow SbW \\ S \rightarrow a & T \rightarrow aU \\ U \rightarrow bT & U \rightarrow bU & U \rightarrow b \\ W \rightarrow Wab & W \rightarrow Wbb & W \rightarrow \varepsilon \end{array}$

1- All the rules $W \to Wab, W \to Wbb, W \to \varepsilon$ are left-linear and they are generating L(G, W). Hence L(G, W) is regular. In fact $L(G, W) = (ab + bb)^*$. 2- The set of rules

$$T \to aU, \ U \to bT, \ ; U \to bU, \ U \to b$$

is enough to generate L(G,T), L(G,U). Since these rules are right-linear, the languages L(G,T), L(G,U) are regular. From these rules we obtain the regular expressions:

$$L(G,T) = (ab^*b)^*ab^+, \ L(G,U) = (ba+b)^*b.$$

3- We consider the context-free grammar H := (A', N', R') where $A' = \{a, b, t, u, w\}, N' = \{S\}$ and R' consists of the following rules:

$$\begin{array}{ll} S \to Stu & S \to Sa \\ S \to Sbw & S \to a \end{array}$$

$$\mathcal{L}(H,S) = (tu + a + bw)^*a.$$

4- The language L(G, S) is obtained from the language L(H, S) by applying the substitution

$$a\mapsto a, \ b\mapsto b,t\mapsto \mathcal{L}(G,T), \ u\mapsto \mathcal{L}(G,U), \ w\mapsto \mathcal{L}(G,W)$$

Using the above expressions, we obtain the following regular expression for L(G, S):

$$[(ab^{+})^{*}ab^{+}(ba+b)^{*}b+a+b(ab+bb)^{*}]^{*}a$$

5- The words a and aa both belong to L(G, S). But every simple language is *prefix-free*. Hence L(G, S) is not a simple language.

6- Let c be a letter not in $\{a, b\}$. A simple grammar K generating the language $L(G, S) \cdot c$ can be built along the following principles:

- build a f.a. \mathcal{A} for the regular expression $(ab^+)^*ab^+(ba+b)^*b + a + b(ab+bb)^*]^*ac$ (that represents $L(G, S) \cdot c$)

- transform \mathcal{A} into the minimal deterministic, complete f.a. $\mathcal{B} = \langle Q, \{a, b, c\}, \delta, q_0, F \rangle$ recognizing the same language; note that, since \mathcal{B} is minimal, it has at most one non-coaccessible state (that we call the sink); since $L(\mathcal{B})$ is prefix-free, if $p \in F$ and $(p, x, q) \in \delta$, then q is the sink-state;

- build from \mathcal{B} a right-linear grammar H generating $L(G, S) \cdot c$: the set of non-terminals is $N := Q \setminus F$, the rules are all the

 $p \to xq$

for $(p, x, q) \in \delta, x \neq c$, union all the

$$p \rightarrow c$$

for $(p, c, q) \in \delta$.

Since every transition (p, c, q) must lead to the sink q, the above grammar H indeed generates $L(\mathcal{B})$. Suppose that $p \to xq, p \to xr$ are two rules of H:

determinism of \mathcal{B} implies that q = r. Hence H is simple grammar that generates $L(G, S) \cdot c$.