
Cursus: M1, computer-science
Code UE: JEIN8602
Solutions to the subject: Formal languages theory
Date: March 2018
Duration: 3H
Documents: authorized
Lectures by: Mr Géraud Sénizergues

Exercice 1 [/4] We consider the finite automaton A described on figure 1.

0 1 2 3
a a a

a

b

b

b

Figure 1: finite automaton A

0- The following sequences are successful computations of A:

0, a, 1, a, 2, a, 3

0, b, 2, a, 3

0, a, 1, b, 3, b, 0, b, 2, a, 3

0, b, 2, a, 3, b, 0, b, 2, a, 3

0, e, 3

1- We transform A into a normalized extended f.a. A1 where i (resp. t) is the initial (resp.
terminal) state. We then eliminate successively states in the ordering: 0, 1, 2, 3. We obtain
the sequence of extended automata shown on figure 2.
It follows that:

[ab ∪ (b ∪ aa)a] · [bab ∪ (baa ∪ bb ∪ a)a]∗

is a regular expression for LA.

Exercice 2 [/4] Let us consider the regular expression:

e := (ac)∗b(a ∪ (bc)∗)∗

Let us apply Glushkov’s method.
The locally testable language associated to e is:

L′ := (a1c1)
∗b1(a2 ∪ (b2c2)

∗)∗



3210

321 t

ti

i

t32i

εε a

ε

ε

i

i

t

t
ε

3

b

b

a

b

a

a

a a a

b

b

ba

a+ bb

b+ aa a

baa+ a

a+ bb

ab

ab+ (b+ aa)a

bab+ (baa+ bb+ a)a

bab

[ab+ (b+ aa)a] · [bab+ (baa+ bb+ a)a]∗

Figure 2: sequence of extended automata, ex. 2

We compute
Ini(L′) = {a1, b1}, F in(L′) = {a2, c2, b1},

Dig(L′) = {a1c1, c1a1, c1b1, b1a2, b1b2, b2c2, c2b2, a2a2, c2a2, a2b2}

This gives the finite automaton represented on figure 3, where the set of states is

{0, a1, a2, b1, b2, c1, c2}

0 is the unique initial state and the set final states is {a2, c2, b1}.

Exercice 3 [/4]
1- The f.a. A, with set of states {S0, S1, S2}, initial state S0 , final state S2 and the following

2



0

a1 c1

b1 a2

b2

c2

a

a

a

a

a

bb

b

b

c

c b

Figure 3: finite automaton for Le

transitition table, recognizes the language L(G,S0):

x\q : S0 S1 S2

a S1 S1 S2

b S2 S2 −

2- We take for B the above f.a. A, where the arrows (i.e. transitions) have been half-turned,
S2 is initial and S0 is final.

x\q : S0 S1 S2

a − S0, S1 S2

b − − S0, S1

3- The following f.a. C is obtained by determinization of B: its set of states is {S0, S1, S2, {S0, S1}, ∅},
its initial state is S2 , its final states are S0 and {S0, S1}, and the transitition table is

x\q : S0 S1 S2 {S0, S1} ∅
a ∅ {S0, S1} S2 {S0, S1} ∅
b ∅ ∅ {S0, S1} ∅ ∅

Since the states S0, S1 are not accessible, we can just rename the (accessible) states by:

S2 7→ p1, {S0, S1} 7→ p2, ∅ 7→ p3,

and obtain a new deterministic and complete f.a. C′, recognizing tL(G,S0):

x\q : p1 p2 p3
a p1 p2 p3
b p2 p3 p3

3



4- Let us compute the Nerode equivalence of C′:
we apply the refinement algorithm exposed in the lectures:

≡0= {{p1, p3}, {p2}}; ≡1= {{p1}, {p3}, {p2}}; ≡2=≡1;

Hence the Nerode equivalence over QC′ is just the equality. This implies that C′ is minimal,
among all the complete deterministic finite automata recognizing tL(G,S0).
Exercice 4 [/5] 1- Let A = {a, b, c, d}. For every i ∈ {1, 2, 3, 4, 5}, we define a non-terminal
alphabet Ni and a set of rules Ri over A and Ni, such that the c.f. grammar Gi := (A,Ni, Ri)
generates the language Li.
N1 = {S}, R1 is the set of rules:

S → aS, S → Sb, S → ε

N2 = {S},R2 is the set of rules:
S → aSb, S → ε,

N3 = {S, T},R3 is the set of rules:

S → aS, S → a, S → T, T → aTb, T → ε.

N4 = {S, T},R4 is the set of rules:

S → acS, S → ac, S → T, T → acTbd, T → ε.

N5 = {σ, S0, S1, T},R5 is the set of rules:

σ → S0, σ → S1, S0 → acS0, S0 → acT, S1 → S1bd, S1 → Tbd,

T → acTbd, T → ε.

2- G3 is non-ambiguous: for every p > q ≥ 0, the only derivation from S to apbq is

S →p−q ap−qS → ap−qT →q apTbq → apbq.

3- G4 is non-ambiguous: for every 0 ≤ p < q, the only derivation from S to apbq is

S →p−q ap−qS → ap−qT →q apTbq → apbq.

4- Let us define the auxiliary language:

L′
4 := {(ac)p(bd)q | p ≥ 0, q ≥ 0, p < q}.

L5 is the disjoint union of L4 and L′
4. The set of rules σ → S0, S0 → acS0, S0 → acT, T →

acTbd, T → ε generates L4, in a non-ambiguous fashion (by question 3);
Similarly, the set of rules σ → S1, S1 → S1bd, S1 → Tbd, T → acTbd, T → ε generates
L′
4, in a non-ambiguous fashion.

Thus L(G5, S0) = L4 and L(G5, S1) = L′
4. It follows that L(G5, σ) = L4 ∪ L′

4 and, since the
union is disjoint, G5 is non-ambiguous.
Exercice 5 [/5] 1- We compute the subset of productive non-terminals of G by the fixpoint
technique explained in the lecture:

V1 = {T,U}, V2 = {S, T, U, V }, V3 = {S, T, U, V,W}, V4 = {S, T, U, V,W, Y }, V5 = V4.

4



Hence the set of productive non-terminals is {S, T, U, V,W, Y }.
2- The c.f. grammar obtained by removing all the non-productive non-terminals is thus:
Ĝ := (A, N̂ , R̂) where A = {a, b}, N̂ = {S, T, U, V,W, Y } and R̂ consists of the following rules:

S → ST S → T S → U

T → bT T → ε

U → bU U → abW U → ε

V → bT V → UV

W → TUV

Y → aY b Y → aW

We compute the subset of useful non-terminals of Ĝ by the fixpoint technique explained in
the lecture:

N1 = {S}, N2 = {S, T, U}, N3 = {S, T, U,W}, N4 = {S, T, U, V,W}, N5 = N4.

Hence the set of useful non-terminals is {S, T, U, V,W}.
3- We can thus transform the grammar Ĝ into an equivalent grammar G′ where every non-
terminal is productive and useful, just by restricting both the non-terminal alphabet and the
rules to the subset N5:
G′ := (A,N ′, R′) where A = {a, b, c}, N ′ = {S, T, U, V,W} and R′ consists of the rules:

S → ST S → T S → U

T → bT T → ε

U → bU U → abW U → ε

V → bT V → UV

W → TUV

4- Since S is productive (question 1), L(G,S) 6= ∅.
5-

S →∗ ST n →∗ Sbn →∗ bn

hence {bn | n ≥ 0} ⊆ L(G,S), which proves that L(G,S) is infinite.
Exercice 6 [/4] We consider the context-free grammar G := (A,N,R) where A = {a, b},
N = {S, T, U, V,W} and R consists of the following rules:

S → STU S → Sa S → SbW

S → a T → aU

U → bT U → bU U → b

W → Wab W → Wbb W → ε

1- All the rulesW → Wab,W → Wbb,W → ε are left-linear and they are generating L(G,W ).
Hence L(G,W ) is regular. In fact L(G,W ) = (ab+ bb)∗.

5



2- The set of rules
T → aU, U → bT, ;U → bU, U → b

is enough to generate L(G,T ),L(G,U). Since these rules are right-linear, the languages
L(G,T ),L(G,U) are regular. From these rules we obtain the regular expressions:

L(G,T ) = (ab∗b)∗ab+, L(G,U) = (ba+ b)∗b.

3- We consider the context-free grammar H := (A′, N ′, R′) where A′ = {a, b, t, u, w}, N ′ =
{S} and R′ consists of the following rules:

S → Stu S → Sa

S → Sbw S → a

L(H,S) = (tu+ a+ bw)∗a.

4- The language L(G,S) is obtained from the language L(H,S) by applying the substitution

a 7→ a, b 7→ b, t 7→ L(G,T ), u 7→ L(G,U), w 7→ L(G,W ).

Using the above expressions, we obtain the following regular expression for L(G,S):

[(ab+)∗ab+(ba+ b)∗b+ a+ b(ab+ bb)∗]∗a

5- The words a and aa both belong to L(G,S). But every simple language is prefix-free.
Hence L(G,S) is not a simple language.
6- Let c be a letter not in {a, b}. A simple grammar K generating the language L(G,S) · c
can be built along the following principles:
- build a f.a. A for the regular expression (ab+)∗ab+(ba + b)∗b + a + b(ab + bb)∗]∗ac (that
represents L(G,S) · c)
- transform A into the minimal deterministic,complete f.a. B = 〈Q, {a, b, c}, δ, q0 , F 〉 recog-
nizing the same language; note that, since B is minimal, it has at most one non-coaccessible
state (that we call the sink); since L(B) is prefix-free, if p ∈ F and (p, x, q) ∈ δ, then q is the
sink-state;
- build from B a right-linear grammar H generating L(G,S) · c: the set of non-terminals is
N := Q \ F , the rules are all the

p → xq

for (p, x, q) ∈ δ, x 6= c, union all the
p → c

for (p, c, q) ∈ δ.
Since every transition (p, c, q) must lead to the sink q, the above grammar H indeed generates
L(B). Suppose that p → xq, p → xr are two rules of H:
determinism of B implies that q = r. Hence H is simple grammar that generates L(G,S) · c.

6


