Cursus: M1, computer-science

Code UE: JEIN8602

Solutions to the subject: Formal languages theory
Date: March 2018

Duration: 3H

Documents: authorized

Lectures by: Mr Géraud Sénizergues

Exercice 1 [/4] We consider the finite automaton A described on figure 1.

b

e
\/a

b

Figure 1: finite automaton A

0- The following sequences are successful computations of A:

0,a,1,a,2,a,3
0,0,2,a,3
0,a,1,b,3,b,0,0,2,a,3
0,0,2,a,3,b,0,0,2,a,3
0,e,3

1- We transform A into a normalized extended f.a. A; where i (resp. t) is the initial (resp.
terminal) state. We then eliminate successively states in the ordering: 0,1,2,3. We obtain
the sequence of extended automata shown on figure 2.
It follows that:
[abU (bU aa)a) - [bab U (baa U bb U a)a]*

is a regular expression for L 4.

Exercice 2 [/4] Let us consider the regular expression:
e := (ac)*b(a U (be)*)*

Let us apply Glushkov’s method.
The locally testable language associated to e is:

L' := (aic1)*by1(ag U (baea)™)*

bab <:.(ba>a+ bb + a)a
ab+ (b + aa)a € N |

[ab+ (b+ aa)a] - [bab + (baa + bb + a)a]*

© O

Figure 2: sequence of extended automata, ex. 2

We compute
Im'(L') = {al,bl}, Fin(L') = {ag,CQ,bl},

Dig(L') = {aic1, cra1, c1by, biag, biba, bac, caba, azag, caaz, agbs }
This gives the finite automaton represented on figure 3, where the set of states is
{Oa ai, az, bla b2, C1, 62}

0 is the unique initial state and the set final states is {ag, co, b1 }.

Exercice 3 [/4]
1- The f.a. A, with set of states {Sp, S1, 52}, initial state Sp , final state So and the following

a
C1

¢
¢

(=)
IS

Figure 3: finite automaton for L.

transitition table, recognizes the language L(G, Sp):

l“\q ‘50 51 52‘

2- We take for B the above f.a. A, where the arrows (i.e. transitions) have been half-turned,
Sy is initial and Sy is final.

l“\q | So | S1 52 ‘
it

50,51

3- The following f.a. C is obtained by determinization of B: its set of states is {So, S1, S2, {So, S1}, 0},
its initial state is Sy , its final states are Sy and {Sp, S1}, and the transitition table is

m\q | So | | S5 | {S0,51} | 0|
0 {50,51 Sa {So, 51} | 0
0 {So, 51} 0

Since the states Sy, S1 are not accessible, we can just rename the (accessible) states by:
Sz + p1,{S0, 51} = p2,0 > p3,
and obtain a new deterministic and complete f.a. C’, recognizing ‘L(G, Sp):

‘P2‘P3‘

2

x\q I
S AF

P1
b1
p

P3 p3

4- Let us compute the Nerode equivalence of C’:
we apply the refinement algorithm exposed in the lectures:

=o= {{p1,p3}, {p2}}; =1= {1}, {p3}, {p2}}; =2==1;

Hence the Nerode equivalence over Q¢ is just the equality. This implies that C’ is minimal,
among all the complete deterministic finite automata recognizing ‘L(G, Sp).

Exercice 4 [/5] 1-Let A ={a,b,c,d}. Foreveryi € {1,2,3,4,5}, we define a non-terminal
alphabet N; and a set of rules R; over A and N;, such that the c.f. grammar G; := (A, N;, R;)
generates the language L;.

Ny = {S}, Ry is the set of rules:

S—aS, S—Sb, S—¢

Ny = {S},Rs is the set of rules:
S — aSbh, S — ¢,

N3 = {S,T},R3 is the set of rules:
S—aS, S—a, S—>T, T—alb, T —e.
Ny = {S,T},R, is the set of rules:
S —acS, S—ac, S—T, T —aclbd, T — €.
N5 = {0, S0, 51,T},R5 is the set of rules:
oc— Sy, o0 — 51, Sg—acSy, So— acl, S1 — S1bd, S1 — Tbhd,
T — acTbd, T — ¢.

2- (3 is non-ambiguous: for every p > ¢ > 0, the only derivation from S to aPb? is

S P71 P98 — aPIT =9 oPTH? — aPbi.
3- G4 is non-ambiguous: for every 0 < p < ¢, the only derivation from S to a?b? is

S P71 gP71S — o7 IT —9 aPTH? — aPbe.
4- Let us define the auxiliary language:

1y = {(a0)(bd)? | p> 0,4 > 0,p < g}.

Lj is the disjoint union of Ly and L). The set of rules o — Sy, Sy — acSo, So — acT, T —
aclbd, T — e generates Ly, in a non-ambiguous fashion (by question 3);

Similarly, the set of rules o — S1, S1 — Sibd, S1 — Tbd, T — aclbd, T — & generates
L, in a non-ambiguous fashion.

Thus L(G5,S0) = Ly and L(G5,S1) = L. It follows that L(G5,0) = Ls U L/, and, since the
union is disjoint, G5 is non-ambiguous.

Exercice 5 [/5] 1- We compute the subset of productive non-terminals of G by the fixpoint
technique explained in the lecture:

Vi = {T7 U}7V2 - {S7T7 U7 V}7‘/3 - {S7T7 U,V,W},V;l - {SaT7U7V7VV7Y}7V5 == V4-

Hence the set of productive non-terminals is {S,T,U, V, W, Y }.
2- The c.f. grammar obtained by removing all the non-productive non-terminals is thus:

G = (A, N, }A%) where A = {a, b}, N = {S,T,U,V,W,Y } and R consists of the following rules:

S—S8T S—->T S§->U
T—vI' T—e¢
U—-bU U—abW U—e
V-oblI' VUV

W —=TUV

Y 5>aYb Y —alW

We compute the subset of useful non-terminals of G by the fixpoint technique explained in
the lecture:

Nl = {S}7N2 = {S7T7U}7N3 - {S7T7U7W}7N4 - {SaT7U7V7W}7N5 :N4-

Hence the set of useful non-terminals is {S, T, U, V, W}.

3- We can thus transform the grammar G into an equivalent grammar G’ where every non-
terminal is productive and useful, just by restricting both the non-terminal alphabet and the
rules to the subset Ns:

G’ .= (A,N',R") where A = {a,b,c}, N' ={S,T,U,V,W} and R’ consists of the rules:

S—8T S—-T S—->U
T —bT T — ¢
U—=bU U—abW U—e
V-oblI' VUV

W —=TUV

4- Since S is productive (question 1), L(G, S) # 0.
5-
S —=*ST™ —* Sb" =% b"
hence {b" | n > 0} C L(G, S), which proves that L(G, S) is infinite.
Exercice 6 [/4] We consider the context-free grammar G := (A, N, R) where A = {a, b},
N ={S,T,U,V,W} and R consists of the following rules:

S—=STU S —Sa S— SbW
S—a T —aU
U—-dI' U—=bU U-—=b
W—=Wab W—->Wbb W —e¢

1- All the rules W — Wab, W — Wbb, W — ¢ are left-linear and they are generating L(G, W).
Hence L(G, W) is regular. In fact L(G, W) = (ab+ bb)*.

2- The set of rules
T—aU, U=, ;U—0bU, U—b

is enough to generate L(G,T),L(G,U). Since these rules are right-linear, the languages
L(G,T),L(G,U) are regular. From these rules we obtain the regular expressions:

L(G,T) = (ab*b)*ab™, L(G,U) = (ba + b)*b.

3- We consider the context-free grammar H := (A, N', R') where A’ = {a,b,t,u,w}, N' =
{S} and R’ consists of the following rules:

S — Sty S — Sa
S—Shw S—a

L(H,S) = (tu+ a + bw)*a.
4- The language L(G, S) is obtained from the language L(H, S) by applying the substitution

a—a, b—bt—LGT), u— L(G,U), w— L(G,W).
Using the above expressions, we obtain the following regular expression for L(G, S):
[(ab™)*ab™ (ba + b)*b + a + b(ab + bb)*|*a

5- The words a and aa both belong to L(G,S). But every simple language is prefiz-free.
Hence L(G, S) is not a simple language.
6- Let ¢ be a letter not in {a,b}. A simple grammar K generating the language L(G,S) - ¢
can be built along the following principles:
- build a f.a. A for the regular expression (ab™)*ab™ (ba + b)*b + a + b(ab + bb)*]*ac (that
represents L(G, S) - ¢)
- transform A into the minimal deterministic,complete f.a. B = (Q,{a,b,c},d, qo, F') recog-
nizing the same language; note that, since B is minimal, it has at most one non-coaccessible
state (that we call the sink); since L(B) is prefix-free, if p € F' and (p,x,q) € ¢, then ¢ is the
sink-state;
- build from B a right-linear grammar H generating L(G,S) - ¢: the set of non-terminals is
N :=Q\ F, the rules are all the

p— xq

for (p,z,q) € §,x # ¢, union all the
p—c

for (p,c,q) € 0.

Since every transition (p, ¢, q) must lead to the sink ¢, the above grammar H indeed generates
L(B). Suppose that p — xq,p — zr are two rules of H:

determinism of B implies that ¢ = r. Hence H is simple grammar that generates L(G, S) - c.

