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Exercice 1 [/4]
e := ((abb)∗a(cb)∗) ∪ (ab)∗(ba)∗

Let us apply Glushkov’s method.
The locally testable language associated to e is:

L′ := ((a1b1b2)
∗a2(c1b3)

∗) ∪ (a3b4)
∗(b5a4)

∗

We compute
Ini(L′) = {a1, a2, a3, b5}, F in(L′) = {a2, b3, b4, a4},

Dig(L′) = {a1b1, b1b2, b2a1, b2a2, a2c1, c1b3, b3c1, a3b4, b4a3, b4b5, b5a4, a4b5}

This gives the finite automaton represented on figure 1, where the set of states is

{0, a1, a2, a3, a4, b1, b2, b3, b4, b5, c1}

0 is the unique initial state and a2, b3, b4, a4 are the final states.
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Figure 1: finite automaton for Le



Exercice 2 [/4] We transform A into a normalized extended f.a. A1 where i (resp. t)
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Figure 2: sequence of extended automata, ex. 2

is the initial (resp. terminal) state. We then eliminate successively states in the ordering:
2, 1, 0. We obtain the sequence of extended automata shown on figure 2. It follows that:

[b ∪ cb∗a ∪ ((a ∪ cb∗c)(b ∪ ab∗c)∗(c ∪ ab∗a))]∗[(a ∪ cb∗c)(b ∪ ab∗c)∗]

is a regular expression for LA.
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Exercice 3 [/5] The language Le is recognized by the following finite automaton A:
Making A complete and taking its complement, we obtain a finite automaton B recognizing
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Figure 3: a non-det automaton for Le

{a, b, c}∗ − Le. We transform B into a normalized extended f.a. B1 where i (resp. t) is the
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a ∪ c a ∪ bb ∪ c

Figure 4: a det automaton for {a, b, c}∗ − Le

initial (resp. terminal) state. We then eliminate successively states in the ordering: 1, 2, 3, 0.
We obtain the sequence of extended automata shown on figure 5. It follows that:

(abc)∗(b ∪ c ∪ aa ∪ ac ∪ aba ∪ abb)(a ∪ b ∪ c)∗

is a regular expression for {a, b, c}∗ − Le.
Exercice 4 [/4] We consider the context-free grammar G := (A,N,R) where A = {a, b},
N = {S, T1, T2} and R consists of the following rules:
r1: S → T1

r2: S → T2

r3: T1 → aT1

r4: T1 → aT1b

r5: T1 → a

r6: T2 → T2b

r7: T2 → aT2b

r8: T2 → b

The start symbol of G is S.
1- L(G,T1) = {apbq | p > q ≥ 0}
2- L(G,T2) = {apbq | q > p ≥ 0}
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3- L(G,S) = {apbq | p ≥ 0, q ≥ 0, p 6= q}
4- The word aaab has two different leftmost derivations:

S → T1 → aT1b → aaT1b → aaab

S → T1 → aT1 → aaT1b → aaab

This shows that G is ambiguous.
5- The ambiguity is due to the fact that rules r3, r4 are commuting and, as well r6, r7 are
commuting. Hence a word w is generated by G with exactly one derivation-tree iff w is
generated by a derivation tree T such that:
- either T uses r4 but not r3
- or T uses r7 but not r6
- or T uses r3 but not r4
- or T uses r6 but not r7
The two first types of derivation-trees give rise to the set of words:
{apbq | p ≥ 1, q ≥ 1, |p − q| = 1}
The third type of derivation-trees gives rise to the set of words: {ap | p ≥ 2}
The fourth type of derivation-trees gives rise to the set of words: {bq | q ≥ 2}.
Consequently:

L′ = {apbq | p ≥ 1, q ≥ 1, |p − q| = 1} ∪ {ap | p ≥ 2} ∪ {bq | q ≥ 2}

6- A non-ambigyous c.f. grammar could be, for example: G′ := (A,N ′, R′) where A = {a, b},
N ′ = {S, T1, T2, E} and R′ consists of the following rules:
r’1: S → T1

r’2: S → T2

r’3: T1 → aT1

r’4: T1 → aE

r’5: T1 → a

r’6: T2 → T2b

r’7: T2 → Eb

r’8: T2 → b

r’9: E → aEb

r’10: E → ab

Exercice 5 [/4] We consider the context-free grammar G := (A,N,R) where A = {a, b, c},
N = {S1, S2, S3, S4, S5} and R consists of the following 12 rules:

S1 → aS1S1 S1 → bS3S1 S1 → S2c

S2 → S2S1 S2 → aS3 S2 → S1S2S1

S3 → a S3 → S1S3 S4 → cS4

S4 → aS4S5 S5 → aS5 S5 → aS4a

The start symbol of G is S1.
1- We compute the subset of productive non-terminals of G by the fixpoint technique explained
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in the lecture:

V1 = {S3}, V2 = {S3, S2}.V3 = {S3, S2, S1}, V4 = V3.

Hence the set of productive non-terminals is {S1, S2, S3}.
2- We compute the subset of useful non-terminals of G by the fixpoint technique explained
in the lecture:

N1 = {S1}, N2 = {S1, S2, S3}, N3 = N2

Hence the set of useful non-terminals is {S1, S2, S3}.
3- We can thus transform the grammar G into an equivalent grammar G′ where every non-
terminal is productive and useful, just by restricting both the non-terminal alphabet and the
rules to the subset N2:
G′ := (A,N ′, R′) whereA = {a, b, c}, N ′ = {S1, S2, S3} andR′ consists of the following 8 rules:

S1 → aS1S1 S1 → bS3S1 S1 → S2c

S2 → S2S1 S2 → aS3 S2 → S1S2S1

S3 → a S3 → S1S3

4- The language L(G,S1) is not empty, since the non-terminal S1 is productive.
5- We observe that:

S1 → aS1S1 →
∗ aS1aac and S1 →

∗ aac

hence {an(aac)n+1} ⊆ L(G,S1), which shows that the language L(G,S1) is infinite.
Exercice 6 [/4] We consider the two following context-free grammarsG1 := (A,N1, R1), G2 :=
(A,N2, R2) where A = {a, b, c}, N1 = {S, T}, N2 = {U} ,R1 consists of the rules:
r1: S → aSbT

r2: S → cT

r3: T → aTTb

r4: T → c

and R2 consists of the rules:
r4: U → UUb

r5: U → a

1- The following context-free grammar generates the language L(G1, S) · L(G2, U):
G· := (A,N,R·) where A = {a, b, c}, N := N1 ∪N2 ∪ {σ} ,R· := R1 ∪R2 ∪ {σ → ST},
2- The following context-free grammar generates the language L(G1, S) ∪ L(G2, U):
G∪ := (A,N,R∪) where A = {a, b, c}, N := N1∪N2∪{σ} ,R∪ := R1∪R2∪{σ → S, σ → T},
3- The following context-free grammar generates the language L(G1, S)

∗:
G∗ := (A,N∗, R∗) where A = {a, b, c}, N∗ := N1 ∪ {σ} ,R∗ := R1 ∪ {σ → σS, σ → ε},
4- The following context-free grammar H1 generates ϕ(L(G1, S)): H1 := (B,N1, R1,ϕ) where
B = {x, y}, R1,ϕ consists of the rules:

S → xySyxT, S → yT, T → xyTTyx, T → y

The following context-free grammar H2 generates ϕ(L(G2, U)): H2 := (B,N2, R2,ϕ) where
B = {x, y}, R2,ϕ consists of the rules:
U → UUyx, U → xy.
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Figure 5: sequence of extended automata, ex. 3
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