
Context-free languages

Bruno Courcelle
Bordeaux I University, courcell@labri.fr

May 2007 (Revised June 2008)

1 Introduction

The Theory of Formal Languages deals with sets of sequences of letters. Such
a sequence is called a word and a set of words is called a language. "Formal"
means that there is no semantics attached to a word, contrary to the case of
Programming Languages, Logical Languages and Natural Languages.
The following topics are considered in this theory :
1) Finite descriptions of languages : they can be generative (grammars, reg-

ular expressions), algorithmic (deterministic finite automata, parsers), declara-
tive (logical formulas, informal mathematical descriptions).
2) Various types of descriptions can be compared. One wants algorithms

transforming a description of some (formalized) type into an equivalent one of
another type. Kleene’s Theorem provides such an algorithm for transforming
a generative description by a regular expression into an algorithmic one by a
deterministic finite automaton.
3) One wants methods for proving that a description is correct with respect

to a specification, either formalized or informal.
4) One wants methods (even better algorithms) for transforming descrip-

tions: for instance for restricting a described set by a logically specified condi-
tion.
5) However, certain important problems have no algorithmic solutions. Oth-

ers have algorithmic solutions, but with algorithms that take too much time to
be really usable.
6) Transformations of words (decoding is a good example) can also be defined

in declarative or algorithmic ways. This topic is also an important part of
language theory.

Applications concern description of programming languages (correct syntax),
compilation, text processing and searching (indexing, think of Google), DNA
reconstruction from short subsequences, codings of texts, sounds and images.

1

More fundamentally, finite and infinite words can model program behaviours
and algorithms. Many parts of Fundamental Computer Science are based on
Formal Languages : Complexity Theory and Semantics.
Extensions of Formal Language Theory involve the study of sets of finite or

countable terms, graphs or other combinatorial structures (like plane drawings
of graphs).

This course is limited to an introduction to two main aspects : Finite Au-
tomata and Context-Free grammars.
Finite automata are presented in the document by P. Weil (LaBRI, Bordeaux

University).
On line document :
J. Power, Formal Languages and parsing,
http://www.cs.nuim.ie/~jpower/Courses/parsing/new-main.html.
Book :
M. Harrison, Introduction to Formal Language Theory, Addison-Wesley se-

ries in computer science, 1978 (First edition).

2 Context-Free Grammars

Context-free grammars, introduced by Chomsky (linguist) around 1950 have
proved to be especially useful for describing Programming Languages.
They form a generative description method, by which every generated word

has at least one syntactic tree, called below a derivation tree. These trees are
useful to describe natural languages, and, in the case of implementations of
programming languages, to translate the analyzed program into an executable
program. Ambiguity means that a word has several syntactic trees, and more
fundamentally, several meanings. It is unavoidable in the case of natural lan-
guages, where the meaning of a word or a sentence depends on the "outside
world" and on a situation known by the speaker and by the listener (or by the
writer and the reader). On the contrary, ambiguity is carefully avoided by the
mathematician writing in natural language. Ambiguity is at the basis of the
political as well of the humoristical discourse. The grammars describing pro-
gramming languages must be nonambiguous for obvious reasons : one wishes
that a program works in the same way on all machines.

2.1 Rewriting rules.

Let A be a finite alphabet, and R a finite set of pairs of words on A. This
finite binary relation is extended in two steps into a binary relation on A∗.
First, into the binary relation defined by :
u −→R v iff u = u1xu2 , v = u1yu2 for some words u1, u2 and some pair

(x, y) in R.

2

It is called the one-step rewriting relation associated with R.
Second, by taking a transitive closure :
u −→+

R v iff there exists a sequence of words v1, ..., vk, with v = vk, such that
u −→R v1 −→R ... −→R vk : the sequence (u, v1, ..., vk) is called a derivation
sequence.

2.2 Context-free grammars

A context-free grammar G is defined with two alphabets, the terminal al-
phabet A, and the non-terminal one N. A production rule is a pair (S,w) where
S ∈ N , w ∈ (A ∪N)∗.
Let R be a finite set of rules of this type. Every nonterminal symbol S can

be taken as the start symbol of a derivation sequence S −→R v1 −→R ... −→R

vk starting by S. This sequence is called terminal if vk has no occurence of
nonterminal symbols (so that there is no way to continue the rewritings). We
say vk that is generated from S by the grammar.
The language of all words in A∗ generated from S is denoted by L(G,S).

The grammar itself is specified by the triple (A,N,R) or the 4-tuple (A,N,R, S)
if we want to specify a unique start symbol S.
The term context-free means that the rewriting rules are applied indepen-

dently of the context (the pair (u1, u2) in the definition of −→R). More complex
grammars, called context-sensitive have applicability conditions depending on
the context.

In grammars that define programming languages, one usually denote non-
terminals by short names between brackets :
The if-then-else construction can be defined by the production rule like :

hInsti −→ ifhBoolithenhInstielsehInsti

where hInsti generates instructions and hBooli generates Boolean condi-
tions.

In examples we write a production rule S −→ m rather than (S,m).

2.3 A first example.
Let A = {x, y, z,+, ∗, (,)}, let N = {E} and R be the set of rules :

{E −→ E +E, E −→ E ∗E,
E −→ (E), E −→ x, E −→ y, E −→ z}.

Then L(G,E) contains the following words :

x, x+ y, x+ y ∗ z, (x+ y) ∗ z, (((((((x))))))),

and infinitely many others. These words are "arithmetic" expressions written
with the three variables x,y,z, the two binary operations + and ∗, and the two
parentheses.

3

2.4 Exercises : (1) Give derivation sequences of these words. Prove that
(x+ y)) has no derivation sequence.
(2) Prove by induction on the length of a derivation that every generated

word has the same number of opening and closing parentheses.

2.5 Derivation trees : Example.

We use the above example 2.3. Let us give names (+, ∗, par, var − x, var −
y, var − z) to the production rules :

+ : E −→ E +E,
∗ : E −→ E ∗E,
par : E −→ (E),
var − x : E −→ x,
var − y : E −→ y,
var − z : E −→ z.

Let us consider the following derivation sequence :
E −→ E + E −→ E + E ∗E −→ E + (E) ∗E
−→ E + (E +E) ∗E −→ E + (x+E) ∗E
−→ y + (x+E) ∗E −→ y + (x+E) ∗ x −→ y + (x+ z) ∗ x.

Note that by comparing two successive steps one can determine which rule
is applied and at which position. (This not true for all grammars. Which
conditions insure that this is true?)
Let us organize the derivation sequence into a sequence of trees, see Figures

1 and 2.
The final tree, called the derivation tree of the sequence, indicates the "struc-

ture" of the generated expression. It can be used to evaluate the expression,
assuming that particular values are given to x, y, z. The integers 1,2 ,...,8 in
Figure 2 indicate in which order the production rules labelling the nodes are
chosen.
From any topological order of the derivation tree (that is, any linear of the

set of nodes such that any node comes before its sons), one gets a derivation
sequence having the same tree. Here are two important cases :
The topological order 1,6,2,3,4,5,8,7 gives the leftmost derivation : at each

step, the leftmost nonterminal symbol is rewritten. That is :
E −→ E + E −→ y +E −→ y +E ∗E
−→ y + (E) ∗E −→ E + (E +E) ∗E
−→ y + (x+E) ∗E −→ y + (x+ z) ∗E −→ y + (x+ z) ∗ x.

The topological order 1,2,7,3,4,8,5,6 gives the rightmost derivation : at each
step, the rightmost nonterminal symbol is rewritten. That is :

E −→ E + E −→ E + E ∗E −→ E +E ∗ x
−→ E + (E) ∗ x −→ E + (E +E) ∗ x
−→ E + (E + z) ∗ x −→ E + (x+ z) ∗ x −→ y + (x+ z) ∗ x.

4

Figure 1: Derivation sequence of 2.5 ; first part.

Figure 2: Derivation sequence of 2.5 ; second part.

5

(There are yet other topological orders like 1,6,2,3,7,4,5,8 yielding a deriva-
tion with no particular name.)

A grammar is linear if each righthand side of a production rule has at most
one nonterminal. In this case, the derivation tree is a string. At each step of the
derivation there is a unique nonterminal symbol to replace, unless the derivation
is terminal. There is a single derivation sequence for each tree. However, such a
grammar may be ambiguous (see 2.6). One may have several trees for a single
word.

2.6 Ambiguity.
A grammar is ambiguous is some generated word has derivation sequences

with different derivation trees. It is nonambiguous otherwise.
The grammar of Example 2.3 is ambiguous because the expression x+ y ∗ z

has two derivation trees, corresponding to the correct reading x+(y ∗ z) and to
the incorrect one (x+y)∗z. These trees give two different values if they are used
to evaluate the expression. Hence this grammar G is correct in the weak sense
that it only generates well-formed terms, but it is actually not because some
derivation trees are incorrect with respect to the intended use of the grammar.
The expression x + y + z has also two derivation trees corresponding to

x + (y + z) and to (x + y) + z. However this is harmless because addition is
associative.
Here is another grammar H for our expressions. Check on examples that it

is not ambiguous and gives "correct derivation trees". (A formal proof that the
grammar is not ambiguous but equivalent to the first one is a bit complicated).
To understand it, consider that E generates "expressions", T generates "terms",
F generates "factors". An expression is a sum of terms, a term is a product of
factors. Here are the rules of H.

{E −→ E + T, E −→ T,
T −→ T ∗ F, T −→ F,
F −→ (E), F −→ x, F −→ y, F −→ z}.

We have L(G,E) = L(H,E), H is nonambiguous and its derivation trees
are correct for the evaluation of expressions, with the usual priorities for + and
∗.
The grammar H remains correct for evaluation if we add the following rule

for difference : E −→ E − T.

2.7 Exercise : For some examples of words in L(G,E) compare their deriva-
tion trees relative to grammars G and H. (Of course, names must be chosen for
the rules of H).

2.8 Derivation trees : General definitions.
In order to define derivation trees for a grammar (A,N,R), we identify

production rules by names. If p names a rule (U,w) where :

6

w = w1U1w2U2w3...wiUiwi+1,

U1, U2, ..., Ui are nonterminal symbols and w1, w2, w3, ..., wi are terminal
words (i.e., w1, w2, w3, ..., wi ∈ A∗), then we say that p has rank i. A terminal
rule has rank 0.
The derivation tree of a terminal derivation sequence will have its nodes

labelled by names of production rules and a node labelled by p of rank i will
have i sons, forming a sequence (the order of sons is significant). The derivation
tree of a derivation sequence that is not terminal will have nodes labelled by
names of production rules as above and some leaves labelled by nonterminal
symbols.
More precisely, for a derivation sequence S −→R v1 −→R ... −→R vk

where vk = y1X1y2X2y3...yiXiyi+1, X1,X2, ...,Xi are nonterminal symbols
and y1, y2, ..., yi ∈ A∗, the associated derivation tree has leaves labelled by
X1,X2, ...,Xi, in this order (if one traverses the set of leaves from left to right),
called nonterminal leaves and other leaves labelled by terminal production rules,
called terminal leaves. Figures 1 and 2 illustrate this. The terminal leaves are
labelled by var − x, var − y, var − z.

Formal definition
The formal definition of the derivation tree Der(d) associated with a deriva-

tion d = S −→R v1 −→R ... −→R vk is defined as follows by induction on the
length of the sequence :
1) If d has length 0, i.e. is reduced to S, the corresponding tree has a single

node, which is both a leaf and the root, labelled by S.
2) If d has length 1, i.e. d = S −→R v1, then Der(d) has a root (replacing

the previous S) labelled by p, the name of the production rule (S, v1).
If this rule is terminal then the root has no son, the construction is finished.
Otherwise, we can write v1 = w1U1w2U2w3...wiUiwi+1, with U1, U2, ..., Ui

nonterminal symbols and w1, w2, w3, ..., wi ∈ A∗. Then the root has i sons,
labelled from left to right by U1, U2, ..., Ui.
3) We now give the general inductive step.
We let d = S −→R v1 −→R ... −→R vk−1 −→R vk. We assume that the

derivation tree Der(d0) of d0 = S −→R v1 −→R ... −→R vk−1 has been con-
structed, and that vk−1 = w1U1w2U2w3...wiUiwi+1, with U1, U2, ..., w1, ... as
above. The nonterminal leaves are labelled by U1, U2, ... in this order.
Let the last step of d, vk−1 −→R vk replace Uj by y1Z1y2Z2y3...ymZmym+1,

using rule p = (Uj , y1Z1y2Z2y3...ymZmym+1). Hence :

vk = w1U1w2U2w3...wjy1Z1y2Z2y3...ymZmym+1wj+1...wiUiwi+1.

Then Der(d) is obtained from Der(d0) by changing the label Uj of the j-th
leaf into p, and attaching m sons to this node, labelled Z1, Z2, ..., Zm from left
to right.
In this step we have m = 0 if p is a terminal production rule. The number

of nonterminal leaves of Der(d) is one less than the number of those of Der(d0).

7

(Verify that the trees built from grammar H in Exercise 2.7 are correct for
this definition.)

Note that the order in which the nodes of Der(d) get their "final" labels by
names of production rules corresponds to the order in which these production
rules are used in d. Conversely :

2.9 Proposition : For every topological order ≤ of the derivation tree
Der(d) of a derivation sequence, there is a derivation sequence of the same
(terminal or nonterminal word) that creates the same derivation tree in the
order defined by ≤. The prefix order gives the corresponding leftmost derivation
sequence and the postfix order gives the rightmost one.

2.10 Concrete syntax

Derivation trees (as defined above) do not contain information about the
terminal symbols of the generated words, because production rules are only
given by their names and rank. Several concrete syntaxes can be associated
with a same grammar.
For example, the if-then-else construction that can be defined by a pro-

duction rule like :

hInsti −→ if hBooli then hInsti else hInsti

may have name cond (for conditional instruction) in several concrete imple-
mentations in various languages, giving in French :

hInsti −→ si hBooli alors hInsti sinon hInsti.

One can also enrich the derivation trees by terminal symbols, linked to the
nodes of the corresponding production rules. This is best understood from Figure
3 than from a formal description. Such concrete derivation trees are useful in
syntactic analysis. The derivation trees initially defined are better suited to
semantics and translation.

3 Context-free languages

3.1 Context-free languages
A language L is context-free if it is generated by a context-free grammar. By

generate, we mean exactly : L = L(G,S) for some grammar. It is not sufficient
to say "every word in L is generated by the grammar G".
We will denote by CFL(A∗) the family of context-free languages over the

alphabet A.

8

Figure 3: A derivation tree and its version showing the concrete syntax.

3.2 Exercises : (1) Construct context-free grammars that generate the
following languages :

L = A∗abA∗,
M = {anbn | n ≥ 1}, and recall that this language is not recognizable,
P = {w ew | w ∈ A∗}, (recall that ew is the mirror image of w),
any finite language.
(2) Do the same for these languages :
M.M = {anbnambm | n,m ≥ 1},
R = {anbncm | n,m ≥ 1},
Q = {anbn, anb2n | n ≥ 1}.
(3) Try to do the same and observe that this is not possible for the languages:
T = {anbncn | n ≥ 1},
C = {ww | w ∈ A∗} (consider also the case where A has only one letter?).
(4) Which of the above grammars are linear? Construct examples of deriva-

tion trees.
(5) Modify the grammars for 0 instead of 1 in the above definitions.

Closure properties of the family CFL(A∗)

3.3 Theorem : (1) If L andK are context-free languages then the languages
L∪K,L.K,L∗ are context-free. There exist algorithms that construct grammars
for these languages from grammars defining L and K.
(2) There exist context-free languages L and K such that the languages

L ∩K,L−K are not context-free.

9

Proof :
(1) Let L = L(G,S),K = L(H,U) for grammars G,H and initial nontermi-

nals S,U .
Step 1 : One changes names of nonterminals if necessary so that the two

gramars have disjoint sets of nonterminals.
Step 2 for union : One takes the union of the sets of rules of G and H and

one adds a new nonterminal X with rules X −→ S,X −→ U.
Step 2 for concatenation : One takes the union of the sets of rules of G and

H and one adds a new nonterminal X with rule X −→ SU.
Unique step for star (iteration) : For L(G,S)∗ one adds a new nonterminal

X and rules X −→ ε,X −→ SX.

(2) The language T is not context-free (the proof is technical; see books to
find it) but T is the intersection of the two context-free languages R = {anbncm |
n,m ≥ 1} and S = {anbmcm | n,m ≥ 1}.
If CFL(A∗) would be closed under difference it would be closed under inter-

section since it is also closed under union. (Exercise : Complete the proof).¤

3.4 Exercise: Give an example showing that omitting Step 1 may yield an
incorrect construction.

Comparison with finite automata.

3.5 Proposition : For every alphabet A : Rec(A∗) ⊆ CFL(A∗), the inclu-
sion is strict if A has at least 2 letters.
Proof:
Fact : For every rational expression R one can construct (by an unique

algorithm) a context-free grammar that generates L(R), the language defined
by R.
The proof is by induction on the structure of R using Theorem 3.3. (Work

out some examples). Since every L in Rec(A∗) can be (effectively) given by a
rational expression R the result follows from the Fact.
Prove the strictness assertion with the above examples. ¤

3.6 Exercise : Prove this proposition by translating a finite automaton into
a right linear grammar, i.e. a grammar with rules of the form X −→ w or
X −→ wY with w terminal word and Y nonterminal symbol.

3.7 Exercise : Prove that the family CFL(A∗) is closed under morphisms:
A∗ −→ A∗.

10

4 Some transformations of context-free gram-
mars

4.1 Grammar cleaning
A nonterminal S of G is productive if L(G,S) is not empty.

4.2 Proposition : (1) There exists an algorithm that determines the set of
productive nonterminals.
(2) If L(G,S) is not empty then it is equal to L(G0, S) where G0 is obtained

from G by deleting improductive nonterminals and the production rules where
they occur.

Proof : Let G = (A,N,R).
(1) One defines an increasing sequence of subsets of N as follows :
N1 is the set of nonterminals S such that (S,w) ∈ R for some w with no

nonterminal symbol.
Ni+1 is Ni augmented with the set of nonterminals S such that (S,w) ∈ R

for some w ∈ (Ni ∪A)∗.
Fact : For all i, Ni is the set of nonterminals for which some terminal

derivation sequence has derivation tree of height at most i.
For this fact, two proofs must be done : one by induction on i that every

S in Ni has a terminal derivation sequence with derivation tree of height at
most i. The other one that if a terminal derivation sequence of length n has a
derivation tree of height at most i, then its initial nonterminal is in Ni. One
uses an induction on n.

Then, necessarily (why ?) Np+1 = Np for some p and then Np = Nq for all
q > p. It follows thatNp is computable and is the set of productive nonterminals.
(2) Clearly, L(G,S) ⊇ L(G0, S). For the other direction, observe that all

nonterminals occurring in a terminal derivation sequence are productive. ¤

4.3 Corollary : There is an algorithm that decides whether a context-free
grammar generates a nonempty language.

A nonterminal U is useful for S if it is used in a terminal derivation sequence
starting with S. In this derivation sequence, all nonterminals are productive.

4.3 Proposition : (1) There exists an algorithm that determines the set of
nonterminals that are useful for a given nonterminal S.
(2) If L(G,S) is not empty then it is equal to L(G0, S) where G0 is obtained

from G by deleting all nonterminals that are not useful for S, and all production
rules where they occur.
Proof : Let G = (A,N,R, S) be a grammar without improductive nonter-

minals.

11

(1) One defines an increasing sequence of subsets of N as follows :
M1 = {S},Mi+1 isMi augmented with the set of nonterminalsW such that

(U,wWw0) ∈ R for some U ∈Mi.
By using an argument similar to that of Proposition 4.2, prove that the

increasing sequence Mi is constant from a certain point, and that its value at
this point is the set of nonterminals useful for S.
(2) Complete the proof. ¤

A simple grammar transformation

Let G be a grammar (A,N,R) let U be a nonterminal symbol which has no
occurrence in the righthand sides of its rules. In other words, if (U,w) is a rule
in R, then U has no occurrence in w. With this hypothesis :

4.4 Proposition : One can transform G into a grammar G0 = (A,N −
{U}, R0) such that L(G0, S) = L(G,S) for every S in N − {U}.

Proof : We will transform G into G0 by iterating an elementary transfor-
mation step.
Elementary step :
Choose any rule (X,w) of the grammar G where w = w1Uw2...wpUwp+1, U

has p occurrences in w. The words w1, w2, ...wp, wp+1 may contain occurrences
of nonterminals other than U .
Let y1, ..., yk be the righthand sides of the production rules with lefthand

side U .
Replace the rule (X,w) by the set of rules (X,w0) for all words w0 =

w1z1w2...wpzpwp+1 where z1, ..., zp ∈ {y1, ..., yk}.
One obtains thus kp rules.
For an example, if the rules with lefthand side U are U −→ aS,U −→ b, and

if w = cSUdUTf , then one obtains the 4 rules :

X −→ cSaSdaSTf, X −→ cSbdaSTf,
X −→ cSaSdbTf, X −→ cSbdbTf.

Claim 1 : The obtained grammar, call it H, verifies the two properties :
L(H,S) = L(G,S) for every S (even if S = U),
U has no occurrence in the righthandsides of its rules in H.
Proof : For every word x, and every nonterminal S, x has a derivation

sequence from S in G iff it has one from S in H. These proofs use inductions
on the lengths of derivation sequences. Note that the derivation in H is shorter
(or of equal length) than the corresponding one in G.¤
Claim 2 : By finitely many applications of this elementary step to the given

grammar G, one obtains a grammar M such that U has no occurrence in any
righthand side.
Proof: This elementary step is applicable n times where n is the number of

production rules with U in the righthand side.

12

Each application decreases this number by one.
At each step the obtained grammar Gi is equivalent to the previous one

Gi−1. That is : L(Gi, S) = L(Gi−1, S) for every S (even if S = U).
After n elementary steps, one obtains by these two claims a grammar M

equivalent to G. But U is useless for generating words from S in N − {U}. By
deleting it one obtains a grammar as desired.¤

Here is an application.

4.5 Proposition : One can transform a grammar G = (A,N,R) into one
H = (A,N 0, R0) such that N 0 ⊇ N , the righthand sides of rules of R0 have
length at most 2 and L(G,S) = L(H,S) for every S in N .
Proof : One repeats as many times as necessary the following step :
If G contains a rule (S,w) with w of length n at least 3, then one writes

w = w1w2 with w1 and w2 of strictly smaller lengths (say dn/2e and n− dn/2e)
one introduces two new nonterminals U andW and one replaces the rule (S,w)
by the three rules (S,UW), (U,w1) and (W,w2). If w2 has length 1, one does
not introduce W and one uses instead the rule (S,Uw2).
The new grammar G1 verifies by the last proposition L(G1, S) = L(G,S)

for every S in N .
After finitely many steps (give an upper bound) one obtains a grammar as

desired.¤

4.6 Example :
Let G be defined by rules :
S −→ aSSSS, S −→ bcd.
After one step one obtains
S −→ UW , U −→ aSS, W −→ SS, S −→ bcd,
Then :
S −→ UW , U −→ TS, T −→ aS, W −→ SS, S −→ bcd,
and finally :
S −→ UW , U −→ TS, T −→ aS, W −→ SS,
S −→ Zd, Z −→ bc.

Another application is a kind of factorization : see Exercise 5.3.

5 LL(1) parsing

This section is a quick introduction to the notion of parsing, also called syntactic
analysis. (Lexical analysis is done by finite automata.) We will present top-
down parsing, that is, a construction of a derivation tree from its root, usually
represented on top of the figure, while the input word is read from left to right.
A leftmost derivation is constructed.

5.1 Example

13

Consider the grammar with rules :
S −→ E
E −→ TE0

E0 −→ +E E0 −→ ε
T −→ FT 0

T 0 −→ ∗T T 0 −→ ε
F −→ (E) F −→ id

Figure 4 shows the progressive top-down construction of a derivation tree,
while the input word is id+ id ∗ id is read. The marker | shows to its left the
prefix of the input word read at that point.

5.2 Simple deterministic grammars.
A grammar is simple deterministic if the rules are all of the form (S, aw) for

some terminal symbol a, and for every S and a there is at most one rule of this
form. A context-free language is simple deterministic if it is generated by at
least one simple deterministic grammar (and necessarily others which are not
simple deterministic (Exercise : why?)).
The class of LL(1) grammars contains simple deterministic grammars. It is

defined in terms of an extension of the parsing algorithm given below. The main
features of LL(1) grammars are shared by simple deterministic grammars.

5.3 Examples
(1) The grammar K with rules :

+ : E −→ +EE,
∗ : E −→ ∗EE,
var − x : E −→ x,
var − y : E −→ y,
var − z : E −→ z

is simple deterministic. It generates arithmetic expressions written in Polish
prefix notation. This grammar is simple deterministic, hence nonambiguous
(see below 5.8). Its derivation trees are correct for evaluation, however long
expressions are rather unreadable.
The grammars of Examples 2.3 and 2.6 are not simple deterministic. We

will prove below that every simple deterministic language L is prefix-free: this
means that if u and v are two words such that u and uv belong to L, then
v must be the empty word. It follows that the language L(G,E) of Example
2.3 is not simple deterministic, because it contains the words x and x+ x. The
grammar G cannot be transformed into a simple deterministic one generating
L(G,E).

(2) Let us consider the grammar J with rules :
I −→ if B then I else I
I −→ if B then I
I −→ assignment

14

Figure 4: Top-down parsing

15

B −→ true

B −→ false

It is not simple deterministic and the language it generates is not prefix-free.
Let us modify the grammar J by adding terminal symbols playing the role

of closing parentheses, obtaining J 0

I −→ if B then I else I fi
I −→ if B then I fi
I −→ assignment

B −→ true

B −→ false

The generated language is prefix-free, but the grammar is not yet simple
deterministic. However, it can be transformed into the following simple deter-
ministic equivalent one J”:

I −→ if B then IZ
Z −→ else I fi
Z −→ fi

I −→ assignment

B −→ true

B −→ false

5.4 Exercise : Prove that L(J 0, I) = L(J”, I). One can use Proposition
4.4.

For a fixed grammar G = (A,N,R) we denote by w =⇒∗ w0 for w,w0

∈ (A ∪ N)∗ a leftmost derivation; the star in =⇒∗ means that we allow the
particular case of w0 = w, i.e, of a derivation of length 0.
The good properties of simple deterministic grammars regarding parsing are

in the following theorem.

5.5 Theorem : Let G = (A,N,R) be a simple deterministic grammar. Let
w in (A ∪N)∗ and let x be a terminal word (in A∗).
Then w =⇒∗ x iff
(1) either w = ε and x = ε, (ε denotes the empty word),
(2) or w = aw0 for some a in A and then, x = ax0 and w0 =⇒∗ x0,
(3) or w = Sw0 for some S in N and then, x = ax0 for some a in A and

mw0 =⇒∗ x0, where (S, am) ∈ R.
In Case (2) if x does not start with a, this is a syntax error.
In Case (3) if x does not start with a, or if no rule of the form (S, am) is

found, this is a syntax error.
In Case (3) there is at most one rule (S, am) to continue the analysis.

Proof : Let us assume w =⇒∗ x then :
If w = ε the only possibility (for any grammar) is x = w = ε, because no

rewriting from w is possible.

16

If w = aw0 for some a in A then, x = ax0 and w0 =⇒∗ x0 . This is actually
true for any grammar (nonterminal symbols remain in derivation steps).
If w = Sw0 for some S in N we cannot have x = ε because there is no rule

in a simple deterministic grammar with empty right handside. So no rewriting
can erase nonterminals. One can only replace them by nonempty words.
Hence we must have x = ax0 for some a in A. The leftmost derivation

w =⇒∗ x must rewrite S first, and by a rule (S, bm). Hence w =⇒∗ x is of the
form w = Sw0 =⇒ bmw0 =⇒∗ x = ax0. Hence we must have b = a. If there is
in R no rule of the form (S, am) there is an error, the hypothesis w =⇒∗ x is
wrong.
Then by (2) we have mw0 =⇒∗ x0.
The proofs in the other direction are simple verifications.¤

5.6 Example :
Consider the grammar following variant K0 of K of 5.3.

+ : E −→ +EF,
∗ : E −→ ∗EF,
var − x : E −→ x,
var − y : E −→ y,
var − z : E −→ z,
par : F −→ (E),
% : F −→ %E$F.

Consider the word + + x(y)%z$(z). By applying Theorem 5.5 we can see
that:

E =⇒∗ ++ x(y)%z$(z) iff (by Case (3) for rule +)
EF =⇒∗ +x(y)%z$(z) iff (by Case (3) for rule +)
EFF =⇒∗ x(y)%z$(z) iff (by Case (3) for rule var − x)
FF =⇒∗ (y)%z$(z) iff (by Case (3) for rule par)
E)F =⇒∗ y)%z$(z) iff (by Case (3) for rule var − y)
)F =⇒∗)%z$(z) iff (by Case (2))
F =⇒∗ %z$(z) iff (by Case (3) for rule %)
E$F =⇒∗ z$(z) iff (by Case (3) for rule var − z)
$F =⇒∗ $(z) iff (by Case (2))
F =⇒∗ (z) iff (by Case (3) for rule par)
E) =⇒∗ z) iff (by Case (3) for rule var − z)
) =⇒∗) iff (by Case (2))
ε =⇒∗ ε which is valid by Case (1).

The list of rules applied is that of the leftmost terminal derivation that we
have recognized. This computation can be organized into the following table
(see 5.7).

17

Input read Input not read Content of pushdown
ε ++ x(y)%z$(z) E
+ +x(y)%z$(z) EF
++ x(y)%z$(z) EFF
++ x (y)%z$(z) FF
++ x(y)%z$(z) E)F
++ x(y)%z$(z))F
++ x(y) %z$(z) F
++ x(y)% z$(z) E$F
++ x(y)%z $(z) $F
++ x(y)%z$ (z) F
++ x(y)%z$(z) E)
+ + x(y)%z$(z))
+ + x(y)%z$(z) ε ε

Here is another example with the word ++ x(y%)%z$(z).
E =⇒∗ ++ x(y%)%z$(z) iff (by Case (3) for rule +)
EF =⇒∗ +x(y%)%z$(z) iff (by Case (3) for rule +)
EFF =⇒∗ x(y%)%z$(z) iff (by Case (3) for rule var − x)
FF =⇒∗ (y%)%z$(z) iff (by Case (3) for rule par)
E)F =⇒∗ y%)%z$(z) iff (by Case (3) for rule var − y)
)F =⇒∗ %)%z$(z) .
Here we find a mismatch between the two terminal symbols) and %. The

given word is not derivable from E.

5.7 Pushdown automata

Observe that in the first (successful) example, the input word is processed
letter by letter from left to right. This processing is similar to what is done by
a deterministic automaton recognizing a rational language. Here the successive
words E,EF,EFF, FF,E)F,)F etc ... play the role of states. We have actually
an automaton with an infinite set of states, which is a subset of the language
{E,F,+, ∗,%, (,), x, y, z}∗. The transitions from a state to another one are
defined in particular way : they can only erase the leftmost symbol of the word
representing the state or replace it by a word w coming from a production rule of
the form (S, aw). We call this a pushdown automaton because of the particular
way transitions use and modify the words representing the states. It can be
implemented with a (pushdown) stack, a data structure which manipulates lists
of objects (letters or pointers) by modifying them only by deleting or adding
items at one end. The automaton is deterministic because each transition is
determined in a unique way by the next letter. The automaton may reach an
error state, as we have seen in the example of the word ++ x(y%)%z$(z).
Its table is shown below : m stands for any word in {E,F,+, ∗,%, (,), x, y, z}∗.

Hence this table represents infinitely many transitions, but described in a fini-
tary way. Any case not covered in the table yields a transition to an error state

18

(or in a compiler, calls an error recovery procedure). Three examples are given
at the bottom of the table.

Next input Pushdown Transition Recognized
symbol content to rule
End of input ε SUCCESS
+ Em EFm +
∗ Em EFm ∗
x Em m var − x
y Em m var − y
z Em m var − z
(Fm E)m par
))m m
% Fm E%Fm %
$ $m m
End of input not ε ERROR
Any symbol ε ERROR
x Fm ERROR

5.8 Corollary : A simple deterministic language is prefix-free. A simple
deterministic grammar is nonambiguous.
Proof : It follows from Theorem 5.5 that if G is simple deterministic, if

S =⇒∗ uUm, and S =⇒∗ uTm0 for u a terminal word and U, T nonterminals,
then Um = Tm0.
Hence if L(G,S) contains u and uv, we have a single leftmost derivation

S =⇒∗ uUm, and we should have Um =⇒∗ v and Um =⇒∗ ε. This last fact
is not possible if v is not the empty word..
Every generated word is generated by a single leftmost derivation, also by

Theorem 5.5, hence G is nonambiguous. ¤

6 Inductive properties and intersection with rec-
ognizable languages.

The corresponding notions will be presented by representative exercises.

6.1 Proofs by induction :

All words u in L(G,E) for the grammar G of Example 2.3 have odd length,
written as property P (u). They also have as many opening as closing parenthe-
ses, written as property Q(u).
This fact can be proved by induction on the length of derivation sequences

in two different ways.

19

First method : Induction the length of terminal leftmost derivation se-
quences.
More precisely, one proves, by induction on n, that :

For every positive integer n, if E =⇒+ u is a terminal leftmost derivation
sequence of length n, written E =⇒n u, then P (u) holds.
One proves also by induction on n that:

For every positive integer n, if E =⇒n u then Q(u) holds.

Second method :
Properties P and Q are meaningful also for words w in ({E}∪A)∗ where A

is the alphabet.
One can prove by induction on n, that :

For every integer n ≥ 0, if E −→∗ w is a derivation sequence of length
n, then P (w) holds.
and that :

For every integer n ≥ 0, if E −→∗ w is a derivation sequence of length
n, then Q(w) holds.
This gives the results for the words in L(G,E). (Work out the proof).

6.2 Proposition : For every context-free grammar G and nonterminal S
of G, for every finite automaton B, one can construct a context-free grammar
H and a nonterminal U such that L(H,U) = L(G,S) ∩ L(B). Hence, the
intersection of a context-free and a rational language is a context-free language.

Compare with Theorem 3.3 and Kleene’s Theorem for rational languages.
We do not give a formal proof but we present a representative example:

6.3 Exercise :
Let G be the grammar with rules
E −→ aEF E −→ bEc E −→ c E −→ da
F −→ aFF F −→ dF F −→ cE.
Let K be the rational language consisting of all even words in {a, b, c, d}∗,

i.e., those of even length.We define nonterminals E0 and F0 intended to produce
the even words generated by E and F , and similarily, E1 and F1 intended to
produce the odd words generated by E and F .

By some elementary observations like that a word avw is even if v is even
and w is odd, we deduce the following rules of the new grammar H

E0 −→ aE0F1 E0 −→ aE1F0
E0 −→ bE0c E0 −→ da
E1 −→ aE0F0 E1 −→ aE1F1
E1 −→ bE1c E1 −→ c.

F0 −→ aF0F1 F0 −→ aF1F0
F0 −→ dF1 F0 −→ cE1
F1 −→ aF0F0 F1 −→ aF1F1

20

F1 −→ dF0 F1 −→ cE0.

By using the first method of 6.1, prove that :
Every word u of L(G,E) (resp. of L(G,F)) is generated from E0,
resp. from F0 if it is even and from E1, resp. from F1 if it is odd.

The four assertions are proved in a unique induction as follows. Let us
write Even(u) (Odd(u)) the property to be even (resp.odd). The proof is, by
induction on n, that :

For every positive integer n :
for every word u in {a, b, c, d}∗ :

{ if E =⇒n u and Even(u) then E0 =⇒n u ,
and if F =⇒n u and Even(u) then F0 =⇒n u ,
and if E =⇒n u and Odd(u) then E1 =⇒n u ,
and if F =⇒n u and Odd(u) then F1 =⇒n u }.

Remark : The grammar G is simple deterministic, but H is not.

6.4 Corollary : There exists an algorithm that decides, for every given
context-free grammar G and nonterminal S, and every finite automaton D
whether L(G,S) ⊆ L(D).

Proof : Clearly, L(G,S) ⊆ L(D) iff L(G,S)∩(A∗−L(D)) = ∅. One builds
a finite automaton B such that L(B) = A∗ − L(D), one constructs H and U
such that :

L(H,U) = L(G,S) ∩ L(B) = L(G,S) ∩ (A∗ − L(D))

One tests whether L(H,U) = L(G,S) ∩ L(B) is empty using 4.3 this gives
the desired answer.¤

The first assertion of 6.1 can be established also by applying 6.4, because
property P defines a rational language. But this is not the same for property
Q of 6.1.

7 Exercises (a first list)

7.1
Construct context-free grammars generating : L = {anbp+2 | n 6= p + 2},

M = {anbp | n ≤ p ≤ 2n} and N = {anbm | m ≥ 3n+ 1, n ≥ 0}.

7.2

21

For each k, define a context-free grammar generating the language Lk con-
sisting of a single word a2

k

. Construct one of minimal size. (The size of a
grammar is the sum of lengths of its production rules).

7.3
1) Construct a context-free grammar that generates the mirror image of the

language L(K0, E) of 5.6. Prove the correctness of the construction.
2) Give a construction for an arbitrary context-free grammar.

7.4
We say that u is a prefix of v if v = uw for some w, a suffix of v if v = wu

for some w, a factor of v if v = wuw0 for some w,w0.
Let G be the grammar with rules
E −→ aEFF, E −→ bEc, E −→ cd,
F −→ aFF, F −→ dF, F −→ cE.
LetM be the set of prefixes of the words of L(G,E), N be the set of suffixes

of the words of L(G,E), P the set of factors of the words of L(G,E). Construct
grammars with as few rules as possible, that generate M,N,P .

7.5
Show that for some morphisms h to be determined we have
h(L) = {b3na2n | n ≥ 1},
h0(L) = {dn | n ≥ 1},
where L = {anbncn | n ≥ 1}.
Hence the image of a noncontext-free language under a homomorphism may

be context-free or even rational. Compare with Exercise 3.7.

7.6 (More difficult)
1) Give a simple deterministic grammar for the language {anbn | n ≥ 1} ∪

{cndn | n ≥ 1}.
2) Prove that {anbn | n ≥ 1} ∪ {anb2n | n ≥ 1} is not simple deterministic.

Compare with 3.7 and exercise 7.5.
3) Prove that {ancbn | n ≥ 1}∪{andb2n | n ≥ 1} is not simple deterministic.

For a simple deterministic grammar G, let P (G,S) be the set of words m
such that S =⇒∗ uUm for some terminal word u and some nonterminal symbol
U .
4) Prove that for the grammar H with rules :

S −→ bTUT , T −→ aU , T −→ b, U −→ aU , U −→ bT ,

the set P (H,S) is finite. Determine this set. Deduce from it that the language
L(H,S) is rational, and construct an automaton for it.
5) For a general simple deterministic grammar G, prove that if P (G,S) is

finite, then L(G,S) is rational.

22

6) For a nonempty language L, let k L k denote the length of a shortest word
of L.
For two nonempty languages L and K, compare k L k, k K k, k L.K k and

k L ∪K k .
7) Prove that if G has only productive nonterminals and P (G,S) is infinite,

then :
For every n, there is a terminal word u such that k L(G,S)/u k> n.

Conclude that L(G,S) is not rational. We recall that L/u denotes {w ∈ A∗ |
uw ∈ L}.
Is the grammar of 6.3 of this form ?

23

