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Introduction

This part of the course mainly focuses on “proof-theory”: it consists in
studying proofs within formal systems.

Historical origins

Let us try to give a (very) short and sketchy historical account on the evolu-
tion of logics and mathematics (we refer the reader to [Gui78] for an histor-
ical overview of mathematical logics and [Dow07] for some reflexion about
the interconnections between the deductive and the computational aspects
of mathematics).

For a long period (-300-1850) logics and mathematics were two different
areas of knowledge:

- logics was the study of reasoning; it focused on the correct forms of rea-
soning i.e. thoses which, surely, allowed to move from true assumptions to
true conclusions.

- mathematics was the study of numbers and space, viewed as modelizations
of some aspects of the physical world.

At the end of the 19th century (1850-1900), several new ideas created strong
links between logics and mathematics:

- after the works of G.Boole and others, it appeared that the correct ways of
reasoning could be described by some adapted algebraic structures (nowa-
days named “Boolean” algebras); it was later remarked (by H.Stone) that
it could be achieved by means of the classical notion of ring, a structure
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which was already used in number theory and geometry. Pushing further
the mathematical treatment of logics, G.Frege created a precise mathemati-
cal notion of “correct reasoning”, strong enough to express all mathematics.
This is what we nowadays call formal mathematics.

- mathematicians got progressively convinced that their discoveries were
less concerning some parts of the physical world than deduction by itself:
a theorem is nothing else than a statement that must be true, as soon as
the azxioms are true. The questions of defining exactly what are numbers,
points, straight lines became irrelevant; accordingly, the question whether
numbers, points, straight-lines were really fulfilling the axioms, did not make
sense any more.

- this change of thought about the nature of mathematical statements was
contemporary with a development of precise systems of axioms for geometry,
number theory, analysis by G.Peano, M.Pieri, D.Hilbert and others.

- at this time also appeared set theory, created by G.Cantor, which became a
unified framework in which one could express all of mathematics; set theory
itself was founded on an axiomatic ground by E.Zermelo and others.

Recently, after the appearance of computers, it became possible to compute
effectively formal proofs for non-trivial theorems. Some pratical achieve-
ments in this direction were obtained in the 1970$ by N.De Bruijn (he con-
verted a full analysis treatise by Landau into formal mathematics). Such
formal proofs can be obtained by the interaction of a human-being (with
strong mathematical culture) with a program, the proof-assistant.

One of the major proof-assistant which is now available is COQ. With the
help of such a program formal proofs of theorems that could not be achieved
by human beings, even within usual non-formal mathematics, were realized:
this is the case of the “four color theorem”, stating that every planar map
can be coloured with only four different colors in such a way that every pair
of regions with a non-trivial common frontier have different colors.

Questions After having modelized mathematical proofs by derivations in
a formal system (we shall consider in this course 4 formal systems called
NJ,NK, LJ, LK) we can then handle mathematically, questions about math-
ematical reasoning. Some (metamathematical) natural questions are:
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Q1: Are the above formal systems consistent? i.e. are they able to prove
the false constant ? (i.e. the most obviously false statement that we can
imagine). We expect they do not allow such a stupid derivation. But we
would like to demonstrate this property just by examining the combinatorial
properties of the systems i.e. by forgetting its relation with reasoning and
considering it, merely, as a special kind of formal grammar; the question
then becomes “does this grammar generate the word L ?

Q2: What is the relation between “truth” and “provability”? We of course
expect that every provable statement is true (though to make sure of this is
not easy and is what Q1 asks for). But does a converse hold ?

Q3: Can we decide whether a formal statement (i.e. a formula) is true ?

Q4: Can we decide whether a formal statement is provable ? The reader
might already have a pratical experience of searching formal proofs with the
help of some proof-assistant. But is there an algorithm able to tell whether
a formal proof exists 7

Q5: Does provability of the statement Yx3y ®(x,y) ensure that “y is com-
putable from x” 7 We guess that, if a proof of the existence of y is abstract
enough, we shall not be able to extract from it even a single example of y
fulfilling ®(x,y). Since the intuitionism was developed (historically) as an
opposition to the abuse of abstraction in proofs, it is natural to examine to
what extent an intuitionistic proof of a statement of the form Vz3y ®(z,y)
is enough to guaranty that from every concrete x we can effectively produce
a corresponding y such that ®(z,y).

Answers This course brings several (partial) answers to these questions.

In chapter 1 we describe carefully the basic ingredients of mathematical
proofs: terms, formulas, bindings, substitutions. We then define a formal
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system called natural deduction (NK) as well as its intuitionistic variant (NJ).

In chapter 2, we define an alternative formal system called sequent calculus
(LK) and its intuitionistic variant (LJ). We show that, up to some simple
translations, natural deduction as well as sequent calculus generate the same
set of judgments.

In chapter 3 we show a major property of derivations in system LK called
the cut elimination theorem. We then deduce from this property that LK is
consistent (which answers Q1) and that LJ is constructive, which answers
Q5 in the case of predicate calculus i.e. of mathematics without any axioms.
We then examine to which kinds of axiomatic theories this constructivity
property can be extended.

In chapter 4 we define a notion of “truth” for the judgments of our formal
systems. We are then in a position to compare (from the outside) the set of
true judgments with the set of provable judgments. We state the accuracy
theorem for predicate calculus which is a first answer to Q2. We then define a
notion of “intuitionistic truth” and state that the accuracy theorem remains
valid for the intuitionistic versions of natural deduction or sequent calculus
(on the side of proofs) and this intuitionistic notion of truth. It will be seen
through exercises that, when we focus on truth in a given mathematical
structure (typically the set of integers N endowed with sum, product and
equality), there must exist some judgments which are true but not provable.
This is another answer to Q2. By the same kind of considerations we shall
see that, in general, provability, as well as truth, are not decidable (this
answers Q3,Q4 in some “bad” cases).

In chapter 5, we study a “good” case, i.e. a mathematical structure (namely
the integers endowed with sum and equality) where it is possible to “decide
thruth” for statements ( this is another partial answer to Q3) by a reduction
to finite automata theory.



Chapter 1

Natural Deduction

1.1 Formulas

Let us call signature a sequence of predicate symbols followed by a sequence
of function symbols together with an aruty for every symbol:

= <R17R27"'7Rn;f17f27"'7fm>

with the arities

(11,72, ..., Tn; 1,02, ..., Q)

Let

V= {UQ,Ul,...,Un,...}

be a denumerable set. We call variables the elements of V. Every variable
has an arity 0. Let

C:={NV,—,, L}
be the set of connectors, and
Q:={v,3}

be the set of quantifiers.
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Definition 1.1.1 The set of terms over the signature S and the set of vari-
ables V, is the set of words generated by the grammar:

T — v forveV
T— fi(T,...,T) for1<j<m

We denote by T(S,V) the set of these terms.

Definition 1.1.2 The set of formulas over the signature S and the set of
variables V is the set of words generated by the following grammar Gi, over
the terminal alphabet SUVUCU QUA{(,),,} and the non-terminal alphabet
{T,F}:

T — v forveV

T— fi(T,....T) for1<j<m
F— R(T,...T) for1<i<n

F — (FoF) foro e {A,V,—}
F— -F

F— L

F— Qu F forQe Quey

Example 1.1.3 Let S := (EG; S, P) with arities (2;2,2). Then

® :=Vz Jy; 3y Jys Jys EG(x,S(P(y1,y1),S(P(y2,y2), S(P(y3,y3), P(ya,y4)))))

is a formula; if we think of EG as denoting the equality predicate and of S
(resp. P) as denoting the sum (resp. the product) of integers, this formula
expresses, intuitively, the fact that every natural integer is the sum of four
squares of integers.

(In the sequel we often replace the terminal letter , by the symbol , when no
confusion with the meta-character is possible). We denote by £(S,V) the
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set of these formulas. They are called first-order formulas over the signature
S and the set of variables V.

Every formula ® is mapped to a planar tree P(®), labeled over SUV in the
following way:

- the grammar G; is unambiguous

- therefore , every formula ® is generated through a unique construction
term C'T'(®) i.e. planar tree, where the nodes are labeled by the rules of Gy
and such that, if the rule N — w is the rule labelling a node u, then the
arity of this node is equal to |w|p py and the label of the i-th son of u is a
rule with lhs the i-th occurrence of a non-terminal in the word w.

- we define the tree P(®) by: Dom(P(®)) := Dom(CT(®)) and, for every
u € Dom(P(®))

if CT(®)(u) = T — v and v eV
then P(®)(u) := v

if CT(®)(u) = T — f;(T,...,7) and1<j<m
then P(®)(u) := fi

if CT(®)(u) = F — Ry(T,...,T) and1<i<n
then P(®)(u) := R;

if CT(®)(u)= F— (FoF) and ¢ € {A,V,—}
then P(®)(u) := o

if CT(®)(u) = F — -F
then P(®)(u) := -

if CT(®)(u) = F—1
then P(®)(u) := 1

if CT(®)(u) = F—QuF for Qe Q,veV
then P(®)(u) := Qu

For the formula ® of Example 1.1.3, the tree P(®) is depicted on figure 1.1.

1.2 Bindings

We describe in this section the notion of bindings between positions in a
formula. The general idea is that an occurrence of a variable v in a formula
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® can be bound by some position, more on the left, where the factor Vv
or Jv appears. We shall examine in details how these bindings can be
defined, in some algorithmic way, and how the names of the bound variables
can be changed, if necessary , in order to avoid some unexpected effects of
substitutions. We thus prepare the ground for a definition of substitution
that behaves correctly w.r.t truth.

Let ® € £1(S,V)and P(®) its associated planar tree. Let p be a position
of the formula ® i.e. and element p of the domain of P(®). We call p an
occurrence of the variable v € V if

P(®)(p) = v.
This occurrence of v is free iff
Vg € Dom(P(®)), ¢ <p= P(®(q)) ¢ {70, 30}.

In words: p is free if there is not ancestor of this node p which is labelled by
a qiuantification of v. This occurrence of v is bound by the quantification
in position ¢ € Dom(P(®)) iff

g=p and P(®(q)) € {Vv,Iv} and

Vr € Dom(P(®)), g <7 <p= P(®(q)) ¢ {Vv,3v}.

In words: p is bound by position ¢, if the label of ¢ is a quantification of the
variable v and, there is no other such quantification strictly between p and
q. We denote by FV(®) the set of variables v that have at least one free
occurrence in .

N.B. A given variable v may have both a free occurrence p in ® and a bound
occurrence p’ in ®.

Example 1.2.1 Let
®y :=Vor (I(vy,v1)V (31 EG(v1,0))).

(see its associated planar tree on figure 1.2). The set of occurrences of vy is
{000,001,0100}. The occurrences 000,001 are bound by the quantification
Yuy at position €. The occurrence 0100 is bound by the quantification vy at
position 01. Thus FVar(®1) =0

Dy := Vo (I(’Ul,’Ul) V (32}1 EG(’Ul,Ug))).
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(see its associated planar tree on figure 1.8).

The set of occurrences of vy is still {000,001,0100}. The occurrences 000,001
are free. The occurrence 0100 is bound by the quantification vy at position
01. The set of occurrences of vy is 0. Thus FVar(®9) = {v;}.

Let us define a partition of the set of positions of a formula, according to
its status concerning variables. Let ® be some formula. let us abbreviate
Dom(P(®)) as D(®) and P(®)(p) as ®(p). The set D(P) is partitionned
into three subsets:

D.(®) = {p€ Dom(P(®))|P(®)(p) € SUCon}
Dy(®) = {p€ Dom(P(®))|P(P)(p) €V and this position is free}
Dy(®) := {p € Dom(P(®))|(P(®)(p) €V and this position is bound)

We the define the binary relation £(®) over D, (®) by:
L(®) :={(p,p') € Dy(®)xD,(®) | ®(p) € V and this occurrence is bound by ®(p') € QV}

(Every ordered pair (p,p’) € L(®) is a link, hence the letter £ for designating
this relation).

It is intuitively clear, for anybody aquainted with mathematical language,
that a statement like:

Ve ((z=u)= Ty x=y+1)
says the same thing (about the object designated by u) as the statement:
Vy (ly=u)) =Bz y=2+1)

The fact that these statement have the same meaning is analogous with the
fact that the two expressions have the same meaning. Yet another case of
such an equivalence of notation is the fact that the functions:

(m,y)t—>x2—{—y-u, (y,z)i—>y2—|—z-u

depending on the parameter u, are the same; within the notation of A cal-
culus:

Az - Ay - ((S((Px)x))(Py)u) Ay - Az - ((S((Py)y))(Pz)u))
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are two equivalent terms. In all the above examples the variables x,y (resp.
y,z) are bound; the “names” (i.e. variables) z,y play some intermediate
role in defining the meaning of the full formula, but the final formula has a
meaning independant of the precise names that have been used.

Let us give here a formal definition of this equivalence, which is denoted by

—x-

Definition 1.2.2 Let &,V € £4(S,V). The formula ®,V are called -
equivalent, which is denoted by ® =, V¥, iff

(1) De(®) = De(¥), Dy (@) = Dy (), DQ(q)) = DQ(\II)

(2) Vp € De(®) UDy(®), ®(p) = ¥(p)

(3) L(®) = L(T)

(4) ¥p € Dy(®),¥Q € Q, B(p) € QV & T(p) € QV.

Lemma 1.2.3 Let ® € £1(S,V). and V be a finite subset of V. Then one
can construct a formula ®" € L£1(S,V) such that

(1) ® =, ¥

(2) Vv € V,VQ € Q, Qu has no occurrence in ®'.

Proof:Let us consider an enumeration, without repetition, of the set
V\ (VUFV(®)):

Vo, Vlye-yUny...

Let @ be the formula defined by:

Vp € Do(®) UDy (@), ®'(p) := ®(p),
vp € Dq((I))’ if q)(p) € QV’ then (I),(p) = Qvf(p)’
where I(p) := Card{q € Dy(®) | ¢ <iex P A ®(q) € QV}
Vp € Dy(®), if ®(p) €V, then &'(p) := vy,

where (p,p') € L(®).
One can check that ® =, ® O
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1.3 Substitutions

In the ordinary mathematical (informal) discourse, we often use the following
procedure: we establish thet a statement ® is true for some general object
v (general means that we did not make any assumption about v). Then, we
replace v by the description of some particular object t and we infer, from
the truth of statement ® that the statement obtained by substitution of t to
v in @, is, a fortiori, true.

Moving now to the formalized mathematical discourse, we would like to
define a syntactical notion of “substituting ¢ to v in ®” that behaves so. Let
us look at some formalized example.

Example 1.3.1
¢ =3y I(z,y)

where we can think of I as denoting the < relation over natural integers.
Let
t1 := Succ(x), tg:= Succ(y)

where we can think of Succ as denoting the successor mapping over natural
integers. If we replace the free occurrence of y by t1 (resp. to) we obtain the
new formula:

Oy « t1] = Ty I(Succ(x),y), Py« ta] = Iy I(Succ(y),y).

We are not surprised to see that there exists some integer y which is strictly
larger than x + 1 (whatever this x is); but we shall not believe that there
exists some integer y which is strictly larger than y+1 !

The phenomenon observed in the tranformation ® — ®[y <« t3] is called
a “capture of the variable y”: it consists in substituting a term ¢, where a
variable v occurs, at a position p of ®, in such a way that the occurrence
of y created by the substitution is bound by some position of ®. We define
below the notion of substitution in such a way that this phenomenon cannot
occur.

Definition 1.3.2 Let ® € £1(S,V), t € T(S,V) and v € V. The formula
O[v « t] is the formula obtained by replacing every free occurrence of letter
v by the word t .



16 CHAPTER 1. NATURAL DEDUCTION

Definition 1.3.3 Let ® € £1(S,V), t € T(S,V) and v € V. The formula
®v :=t] is defined (up to « equivalence) as

P'[v + 1]

where ®' is any formula such that ® =, ® and ®' has no occurrence of a
quantification of any variable occurring in t.

Let us remark that Lemma 1.2.3, applied to the set V of all variables of ¢,
ensures that such a formula ®' exists; it should be clear also that, the a-
equivalence class of the result ®'[v < t] depends on the a-equivalence class
of ® but not on the chosen representative @ (provided it fulfills the freeness
assumption concerning all the variables occurring in t).

Example 1.3.4 Let ® := 3y I(x,y) and t := Succ(y). The formula @' :=
dz I(z,z) is a-equivalent to ® and has no occurrence of Yy or Jy. Hence
Oz :=t] = ®'[x + t] = Iz I(Succ(y), 2).

1.4 The system NK

The symbol NK denotes the formal system called Natural Deduction which
was devised by Gentzen in 1935 (?7). Letter N indicates that this sytem is
conceived as formalizing the “natural” way of proving theorems in ordinary
mathematical texts; letter K is the first letter of the german adjective “klas-
sich” (Gentzen’s article is written in german) , since the system formalizes
the so-called classical logic, as opposed to intuitionistic logics.

It consists of a set of judgments and a set of inference rules .

Judgments A judgment of NK is a couple (I', A) where I is a finite subset
of £1(S,V) and A is an element of £1(S,V). Such a couple is denoted by

Ny

We call these judgments NK-sequents. T is the set of antecedents (or set of
hypotheses) of the sequent while A is its subsequent (or its conclusion).
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Inference rules A rule of the system is a couple of the form

Sty S0
S
where Sy, ...,5, are NK-sequents. Such a rule will be used in derivations
(or proofs) to infer (or deduce) from the sequents Sy, ..., S, the new sequent

S. We call upper-part (resp. lower-part) of the rule the sequence Si,..., S,
(resp. the sequent S). In fact we shall give a finite number of rule schemes.
The full set of rules will be the set of all instances of these schemes. What
we call an instance of the rule is a couple Sl"s",’sn which is the image by
replacing, in the rule, every occurrence of a greek letter by a finite multiset
of formulas (up to a-conversion) and every occurrence of a latin letter, by a
formula (up to a-conversion); of course, a given letter must be replaced by
the same multiset (or formula) for all of its occurrences.

1-Axioms

TA— A%

r—a

B — Awkn

2-Structural rules

3-Connector rules

r}—AAB/\g I‘}—A/\B/\r

r }—a r}—B/\

Tf—a ‘elim ‘T—B
I't—AvB Al—cC F,BJ—CV r —aAa 4

r }— C elim T }_ A\/B\/intro

rb—a FJ—A%B_} .
F}—B elim

Lf—aArp—-a
F’—i elim

r-A p— L .
T ‘_ A classic

4-Quantifier rules

I'f—ve A e
F‘—A[x::t} elim F’_V$ A

I dzA T,A B . r Alz:=t
—E - B3 L (ifx ¢ FV(T, B)) ﬁﬂimo

elim T ;_ AANB intro

r—aB _ ,

T }_ AVB \/intro

LA g (i r ¢ FV(T))
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Let us give some examples of rules (i.e. instances of the rule-schemes).

Example 1.4.1 to be filled up

Proofs

Definition 1.4.2 A derivation (or proof) with the system NK is a finite
sequence Sy, S1,...,S, of sequents S; = Ty }— A; fulfilling: for every i €
0,7]

- either S; is an axiom

- or there exists j < i such that g—z s a Tule

L . 5,8, Si,S;
- or there exists j < k < i such that JS—'“ s a rule or % is a rule.
7

i

Example 1.4.3

Here the signature S posesses two unary predicate symbols P, Q.
0— P(z),P(z) - L} P(z) (4z)

1- P(x),P(x) > L} P(x) » L (4z)

2— P(x),P(z)—> L1 (1,2,— elim)

3— P(z)}— (P(z) > L) — L (2,— intro)

4— | P(x)— ((P(x) = L)— 1) (3,— intro)

5— —Vz P(x)— ((P(x) = L) — 1) (4,Vintro)

Example 1.4.4
Here the signature S posesses two propositional symbols P, Q i.e. predicate
symbols of arity 0.

0— PANQ,P—(Q—R)[—PAQ (4=)

1— PANQ,P—(Q—R)—Q (0,Aelim)

2— PAQ,P—(Q— R)}—P (1,Nelim)

3— PN\Q,P—-(Q—R)—P—(Q—R) (4z)
4— PANQ,P—(Q—R)[—(Q—R) (2,3,— elim)
5— PANQ,P—(Q—R)[—R (1,4,— elim)
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One can notice that the relations between upper-part and lower-part of each
application of rule induce a partial ordering of the sequents which can be
visualized as a planar tree. The proofs of examples 1.4.3,1.4.4, for example,
are depicted on figure 1.4. A real mathematical text is (physically) a linear
sequence of assertions, thus accurately modelized by definition 1.4.2. Nev-
ertheless, for reasoning about derivations, it is useful to take into account
the tree-structure exhibited above. This is why we shall rather present the
proofs as follows (we take examples 1.4.3-1.4.4 again):

ax

P(x),P(a;)—>J_I—P(a:), P(a:) P(x) - LFP(x)— L
P(z),P(z) > LF L
P(z), P(x) = L P(x);
P(z),P(x) » L+ P(z) —» L
FVx P(z) = (P(z) » L) — 1)
PAQP—(Q=RIFPAG: ",
PAQP—=(Q—-RFPAQ; . PAQP—(Q—-RFP ™™ PAQP—=(Q—-RFP—(Q—R)
PAQP S (QoRFQ o PAQ.P 5 (Q R F(Q—R)
PAQ. P> (QRFR -
P (Q—=RFHPAQ) =R
F(P—(Q—R)— (PAQ)— R)

—elim

—7intro

—7intro

Vintro

ax

—elim

elim

intro

—intro

1.5 The system NJ

The symbol NJ denotes the formal system called Intuitionistic Natural De-
duction. Its set of judgments is still the same as NK but its set of rules is
slightly different:

- it does not posess the rule L c1agsic

- instead, it posesses the weaker rule:

L1
F;—A e11m

that is sometimes called “intuitionistic absurd”. The fact that NJ is weaker
than NK is shown by the following derivation in NK:

'-_1
-AFL
r-A

wkn

J-classlc
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The fact that it is strictly weaker will be shown later on. Typical examples
of judgments which are derivable in NK but are not derivable in NJ are:

HAV-A
(the so-called “excluded third” principle)

——AF A

9

(the so-called “double negation ” rule)

—Vz P(z) F 3z - P(x)

(a duality principle for quantifiers).

The non-existence of intuitionnistic proofs for these judgments can be shown,
either by syntactic methods (these will be developed in chapter 3) or seman-
tical methods (these will be developed in chapter 4).

what is NJ interesting for 7
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Figure 1.1: The planar tree P(®).
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Figure 1.2: The planar tree P(®q).

Figure 1.3: The planar tree P(®2).
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Figure 1.4: The planar trees for examples 1.4.3,1.4.4
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Chapter 2

Sequent calculus

We describe in this chapter another formal system, called sequent calculus
and denoted by LK. It was devised by Gentzen ([Gen35al) in order to prove
some properties of the system NK. We prove here the equivalence between
both systems (as did Gentzen in [Gen35b]).

We postpone to chapter 3 the detailed study of the proofs in systems LJ, LK
as well as their consequences

2.1 The system LK

Judgments A judgment of LK is a couple (I'yA) where I'; A are finite
multisets of elements of £1(S,V)/ =4; such a couple is denoted by

r—A
We recall a multiset m of elements of a set 2 is a (total) map:
m: ) — N,

The set P(£2) can be identified with those multisets m such that for every
w € Q,m(w) € {0,1}. The addition of multisets is defined by:

Vw e Q, (m+m)(w):=mw)+m(w).

25
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Less formally: a sequent is a word of the form
Bi,...,Bnt— A1,..., Ay

where A;, Bj are formula that must be taken “up to a-equivalence” and
the precise ordering of the Bj’s (resp. the A;’s) is irrelevant; moreover,
it is possible that some formulas with different indices, are equal (or a-
equivalent). We shall see later that the formal system does even have some
rules (the structural rules) which may just modify the numbers of copies
of a given formula. Intuitively, such a sequent has the same meaning as
the formula (B1 A ... A By) — (A1 V...V A,). When m = 0 this means
A1 V...V A, and when n = 0 it means (By A...A By,) — L. We call these
judgments LK-sequents. T is the set of antecedents (or set of hypotheses) of
the sequent while A is the set of subsequents (or its set of conclusions).

Inference rules A rule of the system is a couple of the form

Siy...,Sh
S
where S1,. .., S, are LK-sequents. Such a rule will be used in derivations (or
proofs) to infer (or deduce) from the sequents Si, ..., S, the new sequent S.

We call upper-part (resp. lower-part) of the rule the set Si,...,Sy,,S (resp.
the sequent S). In fact we shall give a finite number of rule schemes. The
full set of rules will be the set of all instances of these schemes.

1-Axioms
= i) Y- - ax
2-Structural rules
r—a r—a
rAf— A kD r— W
rAAR— A I AAA
TA—a contry ey contr,

3-Connective rules
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FABJ—A r —AA r}—BA

FA/\B’—A I — ArBA
AR A FB}—A r }—A,B,Av
ILAVB |— A rt—avea "
r—AA F,B)—A_> I, Al— BA
[ASB|— A ¢ r—a-pa "
T=AA TA=A
r-af—a * rF—-4aa "

4-Quantifier rules

L A=t = Ay r—aa .
IVz A J}——A r }—J_vx AN r(if 2 @ FV(T, A))

A b—A . T |— Alz:=t],A
T3z A— AHZ( if z ¢ FV(I', A)) I3z Aa 3r

5-Cut rule
rb—aa Ar'}—A'
I —aa

2.2 The system LJ

Of course, as the name suggests, LJ is thought of, as being the intuitionis-
tic counterpart of LK. It is thus, as expected, a restriction of system LK.
Nevertheless, the restriction is not obtained, as for NJ, just by replacing one
rule by another weaker rule: the set of judgments of LJ is a strict subset of
the set of judgments of LK, while the rules are essentially the restriction of
the rules of LK to the upper-(and lower) sequences of judgments which are
still authorised.

Judgments A judgment of LJ is a couple (I'yA) where I', A are finite
multisets of elements of £1(S,V)/ =, and A has at most one element (i.e.
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either it is empty or it consists of a single formula ( like in judgments of
NK,NJ). Less formally: a sequent is a word of the form

Bi,...,Bn— A

where B; and A are formula that must be taken “up to a-equivalence” and
the ordering of formulas B; is irrelevant; it is possible that some formulas
with different indices, are equal (or a-equivalent); it is also possible that the
sequent has the form

Bla"',BmJ_

in which case it would mean the same as the sequent By,..., B, |— L. We
call these judgments intuitionistic sequents.

Inference rules The rules of the system have the form

where S1,...,S, are intuitionistic sequents. We give below a finite number
of rule schemes from which one can deduce, by adequate instantiation, the
full set of rules.

1-Axioms

2-Structural rules

I,A,A  [C]
71_‘714 ’_ [C] COIltI‘g

3-Connective rules
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F,A,B}—[C}/\ r —4 rJ—B
TANB [— 0] r— s Y
I A [C] FB}—[C r |—a v r}—BVQ
I AVB |— [C] rt—aAave " rt—AvB '’
r— A, B [C] I,A—B B_,
rasB—[ ¢ T—as5 "
r—a r A
r-Al— ¢ S
4-Quantifier rules
T, Alz:=t] |— [C] r—a .
TVz AJ— [C] Ve T — vz avr(ifz ¢ FV(I)

r A —[C] . I | Alzi=t]
maz( if z ¢ FV(T, [C])) mar

5-Cut rule

r—aA A0
o ‘_ il cut

2.3 Equivalence with NK,NJ

We show in this section that, essentially, the system LK (resp. LJ) proves
the same formulas as the system NK (resp. NJ): for every formula ¢, the
sequent f— ¢ is derivable in LK (resp. LJ) iff it is derivable in NK (resp.
NJ).

However, since the four systems have different sets of judgments (in Lx* the
formulas have multiplicites while in Nx they have not, in LJ the right-parts
of the sequents can be empty while in NJ they cannot), some translations
are necessary to formulate a general equivalence which will be amenable to
a proof by recurrence over the size of derivations.

Theorem 2.3.1 Let T' be some set of formulas and A a formula. IfT |— A
is derivable in NK, then T' }— A is derivable in LK,
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(The second occurrence of I' }— A in the above statement is, in fact, the pair
of multisets (I',{A}) obtained by seeing sets as particular multisets where
every multiplicity belongs to {0,1}.)

Let us call derived rule of a formal system F'S, with upper-part Si,...,.S,
and lower-part S, a derivation of the system F'S where the leaves are labelled
by the S; (or are axioms) and the root is labelled by S. The notation
Sty...,5,
S FS
means that tere exists a derived rule in the system SF with upper-part

S1,...,S5, and lower-part S.

Proof: It suffices to prove that, for every scheme of rule 51’75’5” of NK,
S1,..,5n . .

I’T’LK. In some exceptional cases, we only prove that every instance of
the rule has a corresponding derived rule. We say that the initial scheme of

rule (resp. rule) g 1"5’5 2 of NK can be simulated within the system LK.

Rules ax,wkn, Aintro, —*intro:
These rules are (respectively) simulated by the rules (or sequences of rules)
(ax - wkny), wkng, Ap, —.

Rules Vintro, Jintro:
These rules are (respectively) simulated by the rules V.., 3,.

Rule V4, .
Derived rule:
r-A
——wkn,
I'-AB Y
r-AvB
Rule Vi .. .:There is an analogous derived rule in NK.

Rule —;er0:
Derived rule:
iy

TLAFL 1R
T, Al
T A

cut

I
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Rule N

elim’
Derived rule:

ax

AFA .
ABFAW:
-FAANB AANBEA
r-A
Rule AJ;;,:analogous derived rule in NK.
Rule Velim:

Derived rule:

I A-C TI,B+C

T-AVB [LAVBFC
I,TFC

T'-C

cut

contr;

Rule —elim-
Derived rule:

/

F l_ A wkn ax
r-A,B 'TI,B+B
I'+A— B ILA— BFB
I,T+B
I'+B

—1

cut

contr;

Rule Telim-
Derived rule:

T-A

T--A T,-AF
T,TF

T+
TFL

1

cut

contr;

wkn,

Rule Vehm:
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Derived rule:

Rule Elelim .
Derived rule:

Rule 1 jassic:

Derived rule:

CHAPTER 2. SEQUENT CALCULUS

ax

Alx :==t|F Az :=t]
F'FvzA VeAE Alx =t

7

cut

I'F Alz :=t]
LARC |
I'F3zA T,3zAFC lt
rec ‘"‘“
7F|—C contr;
AF A I,-AFL1 1F lt
oA A LA C“
TFA -

Theorem 2.3.2 Let I' be a set of formulas and A a formula. If T |— A is
derivable in NJ, then T' }— A is derivable in LJ.

Proof: We follow the same proof strategy as for the previous theorem: we
list all the rule-schemes of NJ and exhibit a simulation of it within LJ.

Rules ax, wkn, Aijntro, —intro Vintros Jintro:
Same arguments as in the case of LK.

Rule /¢

intro :
Derived rule:

T'FA Y
r-AvB
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Rule V¥

1ntro:
Derived rule:

r'-B
_—V
r-AvB

)4 T .
Rules lintros /\elima /\elima \/elim-
Same arguments as in the case of LK.

Rule —>elim-
Derived rule:

ax’

I'+A T,BFB

'-A—-B T,A-BFB
T.,T+ B

THB

-1

cut

contr;

Rules —e1in, Ve1in, Je1in:
Same arguments as in the case of LK.

Rule 1;:
Derived rule:

(]

Let us now show that, conversely, “every formula derivable in LJ is derivable
in NJ”. In order to formulate properly this statement (though the judgments
of LJ, NJ are different) we introduce a notation:

for every multiset M over a set €2, we denote by £(M) C € the set which is

the support of M
EM):={weQ| Me)#0}.

We define a map § that translates every judgment of LJ into a judgment of
NJ by:if T' is a multiset of formulas and A a formula

S f—A) = EM) — A; (0 ) :=&T) — L.
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Theorem 2.3.3 LetI" be a multiset of formulas and A a formula. IfT |— A
(resp. T'}— ) is derivable in LJ then E(T') — A (resp. E(T) }— L) is deriv-
able in NJ.

Proof: We show that, if % is a rule of LJ, then
5(S1),...,0(Sn)
6(5) NJ

i.e. that its translation into judgments of NJ can be simulated by a finite
derivation within NJ.

Rules ax,wkn;, VL V2 Ay =5, 2
these (schemes of) rules are also (schemes of) rules of NJ.

Rule cut:
Derived rule:

I AFC
EFA  THEASC
ET.T)F A ETTVFASC
ET.T)FC

—7intro

wkn

—7elim

Rule contry:

Since E(I', A, A) = £(T', A), the image by the translation § of this scheme of
rule is a trivial derived rule consisting of just one judgment (which is both
its upper-part and its lower-part).

Rule wkn;:
this scheme of rule is also a scheme of rule of NJ.

Rule wkn,:
the map & sends this scheme on the scheme of rule g5, of NJ.
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Rule —:
Derived rule:
THA ) ILBFC
T,ABFA RA%BFA%B?Y r-B—-c "
IA—> BFB emFA%BFB%Cﬁ{
ILA—BFC o
Rule s
Derived rule:
, TrA
T,-AF -A T,-AF A
T,-AF L o
Rule Ay:
Derived rule:
ILABHC
[LAFB—C ff
LANBEAAB I'FA— (B—C) mz
' ANBFAAB N I ANBFA " T'YAABFA— (B— O) o
ILAANBFB o LLANBEB—=C o
[AANBFC o
Rule Vy:
Derived rule:
I AFC ___LBrC .
I,AVBFAVB  T,AVB,AFC [LAVB,BFC
[LAVBFC o
Rule V,:
Derived rule:
Az =t C N
THAz:=t]—-C T, VzAFVzA

elim

T ViAF Ale =1 > C " T,VzAF Alz = {]
I'\VzAFC

—7elim
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Rule J,:
Derived rule:
JrAF 3zA ”:
I'dzAF dzA rA+cC S
[, 3zAFC

We aim now at proving the converse of Theorem 2.3.1. We shall obtain this
result by going through an auxiliary logical system, that we call LA . We
first prove that LK can be simulated by LA and, later on, that LA can be
simulated by NK.

Let us define LA as the system where the judgments are exactly the judg-
ments of LJ and the rules are the rules of LJ augmented by the rule | jagsic-
We summarize this definition by writing

LA := LJ + Lciassic-

For every multiset of formulas A = Aq,..., A, we define the notation —=A
by A = —Aq,...,0A,.

Lemma 2.3.4 LetI', A be some multi-sets of formulas. If T' |— A is deriv-
able in LK then T',—~A |— L is derivable in LA.

Proof: We define a translation 7 from the set of judgments of LK into the
set of judgments of LA by:

TTH—A):=T-A} L
For every scheme of rule of LK, 51755”, we prove that

7(S1)y. .., 7(Sn)
7(S) LA.

Left introduction rules:
One can check that 7(Ag), 7(Ve), 7(—¢), 7(Ve), 7(3¢) are instances of the cor-
responding rules of LJ.
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Rules A, —, ., Y, 35

For every of these rules we can exhibit a derivation in LA of its image by 7,
by using the following principle:

- every rule acts on at most one formula on the right-hand side of each
sequent

- using 1 c1assic We can transform the image by 7 of a sequent into a sequent
where the active formula has moved from left to right

- we can then apply the rule of LJ on these tranformed sequents

- using -y we can move back the new formula (with the new connector) to
the left-hand side of the sequent

- finally, by a weakening rule, we can add the | symbol on the right.

Let us demonstrate this method on the case of rule A,:

the initial rule is

I —AA T }|—BA
'—AABA

its image by 7 is

I’,—WZX,'ﬂ14, F—— 1L I‘,—WZX, -B }—— 1
I''-A,~(AAB)}— L

which is simulated by:

r-A-AFL ~ T-A-BEL
F’—|A|—A classic F’—|A|—B classic
I''-A+-AAB
I'=A,-(AAB)
I,-A-(AANB)F L

T

1

wkn,

The other left introduction rules can be treated analogously.

Rules wkn,, contr,:
these rules are simulated (on the images by 7) respectively by rules wkny
and contry.

Rule cut:
The image by 7 of the cut rule is simulated by
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I'-A—-AF L L
[,-AF A e AL AR L
’ ’ wkn; 7 7 wkn;
I,T,-A, A - A .7, -A,-A,AF L
9T, 217, 2-A, 2-A/ F |

T, T, -A, A L

cut

contry

Rule Vv,:

The image by 7 of V, is
I',-A,-A,-B F—— 1L
I''-A,~(AVB)}— 1

Let us construct a simulation for this rule. We denote I, =A by U in this
simulation.

U-A-BF L
U-A+ B
U-A+AVB
U,-A,-(AVB)F
U-A—-(AVB)F L
U-(AVB)F A o
U-(AVB)-FAvVB '
U2-(AVB) F
U —-(AVB)+
U-(AVB)F L

classic

2
T

-

wkn,

classic

contr;

wkn,

O
We are ready for the converse of Theorem 2.3.1.

Theorem 2.3.5 Let ', A be multisets of formulas. If T'}— A is derivable
in LK, then E(I',—A) }— L is derivable in NK.

Proof: Suppose that I' — A is derivable in LK. By Lemma 2.3.4,

I',=A}— L is derivable in LA = LJ + L 1assic- (2.1)

Let us use the translation map ¢ defined in the proof of Theorem 2.3.3. The
proof of Theorem 2.3.3 consisted in proving that every rule of LJ has an
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image by § which is derivable in NJ. Moreover, the image by § of the rule
L c1assic 18 the same rule, which is a rule of NK. Hence, every rule of LA has
an image by 0 which is simulated in the system NK. We can thus deduce
from (2.1) that

O(T, =A }— 1) is derivable in NK

i.e. that
EM,-A)— L

is derivable in NK. O
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Chapter 3

Normalizing proofs

We have remarked that the system LK (or LJ) consists of structural rules,
introduction rules and a a special rule called cut rule. This rule is rather
natural since it can be considered as a generalization of the transitivity of
implication. Moreover, it was an essential ingredient for simulating the rules
of NK within LK.

Neverheless, from the point of view of uniformity of the full system, it is the
only rule that eliminates some part of the upper-sequents. This results in a
greater complexity of the problem of searching a proof for a given sequent.

We show here that, in fact, this rule can be safely eliminated from the
list of rules, without changing the set of derivable sequents. In section 3.3
we exploit this restricted form of derivations for proving several interesting
properties of LK, LJ, in particular some connections with computability.

3.1 Cut elimination

Definition 3.1.1 A derivation (in LK or LJ) is called normal if it does not
use the cut rule.

41
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Theorem 3.1.2 Let I'; A be multi-sets of formulas. If the sequent T' }— A
is derivable in LK (resp. LJ), then it admits some normal derivation in LK
(resp. LJ).

We prove this statement by induction over the set of proofs, endowed with
a suitable ordering. It turns out that this induction is easier to handle with
a more powerful rule than the cut rule, which we introduce now.

Definition 3.1.3 We call miz-rule the following scheme:

A IV A
TT, — A, A

where A is a formula, I" =Ty +nA (for some n € N), and A = Ay +mA
(for some m € N).

We denote by LKM the formal system obtained from LK by removing the cut
rule and adding the mix-rule. Let us show that LK and LKM are equivalent
(i.e. derive the same sequents).

Lemma 3.1.4 Fvery cut is also a mix.

This is straightforward: a cut is a mix where the integers n, m of definition
3.1.3 are taken to be equal to 1.

Lemma 3.1.5 Fvery mixz can be simulated by a finite number of structural
rules and at most one cut.

Proof: Let us consider a rule

I A IV A
TT, — A, A

where A is a formula, I" =17, + nA, A = Ay +mA and n,m € N.
Case 1in=01ie IV, =T"
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I A

T1, - A

i 7 wkn
F,]._‘Al_AA,A

Case 22m =01ie. Ay =A

TFA
LT, FA
A WA
y - A A

Case 3:n > 1 and m > 1.

I'FA4 s +mA nA+T, FA
TFALA TTAT, FA
I F Ay A

contrj

cut

(]

It is thus clear that the systems LK and LKM are equivalent. We are left
now with proving that every derivation in LKM can be transformed into a
normal derivation. Let us state the key-lemma of this section.

Lemma 3.1.6 Let m be a derivation in LKM whihs uses exactly one mix
rule and such that this mix is its last step. Then, there exists some normal
derivation ©' with the same conclusion as .

We postpone the proof of lemma 3.1.6 and show immediately why it is
sufficient for proving Theorem 3.1.2.

Proof of Theorem 3.1.2:

We proceed by induction over the number of mixes (i.e. applications of the
mix rule) of derivation 7.

Base: 7 has no mix.

Then 7 is normal.

Induction step: 7 has n + 1 mixes.

Let us choose some node where the mix rule is applied and such that the two
subderivations 7y, o that are “above” this mix are normal. The derivation
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7 has the following form:

T T2
mix
:THA :
—R
3

(where, possibly, the rule R and the subderivation 73 do not exist). By
Lemma 3.1.6 the subderivation ending in I" = A can be transformed into a
normal derivation 74 with the same last sequent. Making this replacement
in the derivation 7, we obtain the following derivation 7, which has only n
mixes:

Doy
4R

3

By induction hypothesis, the derivation 7 is equivalent with some normal
derivation 7.

End of the proof of Theorem 3.1.2. We now have to prove Lemma
3.1.6. We shall do this by induction over a notion of rank of a mix rule, that
we define below.

Definition 3.1.7 Let us consider a miz:
T o

R1 R
rA T/FA

mix

DT Ay, A

(on this figure w1 (resp. m2) designates a tuple of proofs that have, as last
sequents, the upper-sequents of the mix.

- A is the formula of the miz.

- the active occurrences of A are those which are cancelled by the miz in the
multisets A and T".

- the degree d of the miz is the size of A (i.e. its number of connectors and
quantifiers)

- the height h of the mix is the sum |m1| + |ma| where |w| designates the
number of nodes of the derivation .

- the rank r of the miz is the couple of integers (d,h).
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The principal formula of a rule introducing a symbol @ (a connector or a
quantifier) is the formula which contains the new occurrence of ). A mix is
called strict if both integers n,m in Definition 3.1.3 are non-null. Since our
proof of Lemma 3.1.5 has shown that a non-strict mix can be simulated by
a derivation without cut, we only have to treat strict mixes.

We consider all the possible values of (R1,R2) to gether with the fact that
the principal formula of rule R1 (resp. R2) is active in the mix ( or not). In
principle we should thus examine 182 x 4 = 1296 cases. Fortunately, these
cases can be grouped into only a reasonable number of “types of cases”. We
shall enumerate and treat such types of cases.

CASE 1: R1 or R2 is an axiom.

Subcase 1.1: Rl is 1.

Then m = 0 i.e. the mix is not strict.

Subcase 1.2: R2 is 1; and L is inactive.

Then n = 0 i.e. the mix is not strict.

Subcase 1.3: R2 is 1; and L is active.

T

R1
r-A 1+

L

mix

THA,

One can prove, by induction over the length of derivations that:

for every multisets of formulas I'; A and integer m > 0, if there exists some
normal derivation for I' H A 4+ m_L, then there exists some normal deriva-
tion for I' = A. (This is a tedious but routine proof that we ... leave to the
reader).

Subcase 1.4: Rl is ax and the introduced formula (on the right) is inactive.
Hence m = 0 and the mix is not strict.

Subcase 1.5: Rl is ax and the introduced formula (on the right) is active.

ax R2

AFA T'EA

mix

AT, - A

We recall that IV = IV + nA. Since the formula A of ax is active, n > 1. If
n = 1, my followed by R2, is a normal derivation of A, I, - A’. If n > 2, the
derivation g, followed by R2 and then (n — 1) left-contractions, is a normal
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derivation of A,T", - A’

Subcase 1.6: R2 is ax.

This subcase is symmetric with subcases 1.4, 1.5 treated above (left-contractions
must be replaced by right-contractions in the subcase where the formula, in-
troduced on the left, is active).

CASE 2: R1 or R2 is a structural rule.

Subcase 2.1: R1 is a left-weakening.

m
2
I'-A

wkn; : R2

I'BFA T'FA

mix

T,B,I' - Ay, A

We can derive the same final sequent by the following derivation:

1 T2
R2
A T'FA
LT Ay A
Wknl

I,B,I' - Ay A

The unique mix of this derivation has rank (|B|, |r1|+ |m2|) while the initial
mix has a rank equal to (|B|, |m1|4+1+|m2|). Hence, by induction hypothesis,
this mix can be eliminated.

Subcase 2.2: Rl is a right-weakening and the introduced formula (on the
right) is inactive.

The mix can be removed as we did in Subcase 2.1.

Subcase 2.3: Rl is a right-weakening and the introduced formula (on the
right) is active.
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T
2
'-A

wkn, ; R2

TFAA  TFA

mix

DI b A, A

We can derive the same final sequent by the following derivation:

T 9
—  R2
TFA I'FA
D, T - Ag, A

This derivation has only one mix, which is the last rule, and it has rank
(A, 71| + |m2| + 1) while the initial mix has a rank equal to (|A], |m1|+ 1+
|me| + 1). Hence, by induction hypothesis, this mix can be eliminated.
Subcase 2.4: R2 is a right-weakening.

Analogous with Subcase 2.1.

Subcase 2.5: R2 is a left-weakening.

Analogous with Subcases 2.2,2.3.

Subcase 2.6: R1 is a left-contraction.

Analogous with Subcase 2.1: we can commute the mix rule and the left-
contraction.

Subcase 2.7: R1 is a right-contraction.

The mix can be reduced to a mix with smaller rank by the same kind of
transformation as in Subcase 2.3.

Subcase 2.8: R2 is a contraction.

Analogous with Subcases 2.6, 2.7.

CASE 3: R1 and R2 are introduction rules. One of the principal formulas
is inactive.

The common idea that allows to treat all the instances of this case is that it
is possible to commute the rule which introduces an inactive formula with
the mix rule: this is not surprising since these two rules do not “act” on any
common formula.

We distinguish subcases according to the rule which introduces an inactive
formula.
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Subcase 3.1: R1 is Ay.
Of course its principal formula is inactive (it is not on the side of the mix).
m
2
I''B,CHA

AV R2

I,BACFA T/'FA

mix

I, BANCFE Ay A
We can derive the same final sequent by the following derivation:
T 9

R2

IB,CFA I'F A

mix

[ B.CEALN

l

I,T'), BACHE Ay, A

This derivation has only one mix, which has rank (|A], |m1| + |m2| + 1) while
the initial mix has a rank equal to (JA],|m1| 4+ 1+ |m2| + 1). Hence, by in-
duction hypothesis, this mix can be eliminated.

Subcase 3.2: R2 is A,.

Of course its principal formula is inactive (it is not on the side of the mix).
The same kind of transformation as for Subcase 3.1 can be preformed i.e.
we can commute the mix and the A, rule. Here also the rank of the new
mix is strictly smaller, hence the conclusion.

Subcase 3.3: Rl is A, its principal formula is inactive.

Tl T2
o
I'B,ATFCA :
NAr R2
I'BAC,A ' A

mix

I,T - BAC,Ag, A



3.1. CUT ELIMINATION 49

The derivation can be transformed into

11 2 1,2 T

R2

TFB,ATFA  TFHOAN T'FA

mix mix

R2

LIy EBAsA DD, FCALA

r

T,T - BAC, Ay, A

This new derivation has two incomparable mix rules (i.e. one is not an
ancestor of the other). Their ranks are (|A|,|m1,1] + |m2|) (for the leftmost
one) and (|Al,|m12] + |m2|) (for the rightmost one). Since the ranks are
strictly smaller than (|A|,|m1,1| + |m1,2| + 72| + 1), by induction hypothesis,
these two mixes can be removed (independently one from each other). We
thus obtain a normal proof.

Subcase 3.4: R2 is Ay.

Similar to Subcase 3.3.

Subcase 3.5: Rl is V, or V,, its principal formula is inactive.

Dual to the Subcases 3.4, 3.2

Subcase 3.6: R2 is V, or V,, its principal formula is inactive.

Dual to the Subcases 3.1, 3.3

Subcase 3.7: R1 is —y.

The principal formula of — is inactive (it is not on the side of the mix).
Since rule —y is very similar to rule A,, we can use a transformation very
similar to the one used in Subcase 3.3.

1,1 71,2
T2
'-B,AT,CFA
— R2
B CkA AN

mix

I,I),B—Ck Ay A
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We can derive the same final sequent by the following derivation:

1,1 o 1,2 2

R2
I'BATFA  T,CFA T'FA

mix mix

[Ty B As A T, CFAsA

R2

l

I.I)),B—CkF Ay A

We end this subcase by the arguments already used in Subcase 3.3.
Subcase 3.8: R1 is —,.

Close to Subcase where R1 is V,, see above.

Subcase 3.9: R2 is —,.

Close to Subcase where R2 is V,, see above.

Subcase 3.10: R1is =y or R1 is =, or R2 is =y or R2 is —,.
Solved by the same kind of commutation.

Subcase 3.11: R1is V, or Rl is 3, or R2 is VY, or R2 is 3,.

Solved by the same kind of commutation.

Subcase 3.12: R1 is J,.

T
2

I,BFA

3, R2

I3z BFA T/FA

mix

I,IY, 3z B+ Ay, A

We assume that ¢ FV(T', A) , since this condition is part of the hypothesis
that the above tree of formulas is a derivation in LK. Let us choose a variable
y ¢ FV(I + A + T+ A’). For every proof m in LK, and every couple
of variables (v,v") we denote by w[v := v'] the tree of fomulas obtained
by applying to every formula (which is a label of this tree) the operation
[v:= '] (c.f. Definition 1.3.3). We claim that this tree is also a proof in LK.
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We can derive the same final sequent by the following derivation:

mil =y 2
R2
IBlz:=y|FA TVFA
LT Ble =y b A A

1,3y Blz :=y] - Ay, A

Note that the last application of rule, which is assumed to use rule 3;, does
meet the restriction that y ¢ FV(I'+ A +T"+ A’) (by choice of y) and that,
since

Jy Bz :==y] =, 3= B

the conclusion of this derivation (remember it is a multiset of a-equivalence
classes) is equal to

T,T,, 32 BF Ay, A

Subcase 3.13: R2is 3y or R1 is V- or R2 is V..

These subcases raises the same kind of difficulty as Subcase 3.12 (i.e. va-
lidity of the rules 3y, V, require that some variable does not appear in the
context) and is solved by the same kind of trick (applying a substitution to
a subproof).

CASE 4: R1 and R2 are introduction rules. Both principal formulas are
active.

We distingusih one subcase for each connector or quantifier. R1 introduces
the connector (resp. quantifier) on the right while R2 introduces the con-
nector (resp. quantifier) on the left.

Subcase 4.1: Rl is V, and R2 is V.

The active formula is A = BV C. A derivation 7 of this type has the
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following form:

T T 3

[-ABC  BUENCI'EA

T l

'-A,BvVC BvCTI'EA"
mix
[T F Ay A
This derivation can be transformed into
T o T3 1 2
: 1 3
Vi Vi
'-A,B,C TV, BVCFE A .1F|—A,BVC B, T A’ e : y
I‘,F’AI—B,C’,AA,A’ F,F;‘,BI—AA,A’ _ I'HA,BVC C,T'F A
2F,2F2I—C,2AA,2A’ F,I‘;‘,C}—AA,A’ '

3T, 3T, F 3A 4, 34/
C

tr*

DT F Ay, A

This new derivation contains five mixes. The mixes numbered 1,2,3 are (re-
spectively) the last rule of a sub-derivation using exactly one mix. Moreover
these mixes have a rank which is strictly less than the rank of the original
mix (the degree remains the same but the height is strictly smaller). By
induction hypothesis, the sub-derivation ending with the rule mixi can be
replaced by a normal derivation #;. We thus get a derivation 7’ equivalent
with 7:

N ~

T 2
3
I+ B,C, Ay, A T, T ,BI—AA,A’miX
20, 2T, F C,2A 4, 24 [T, CF Ay, A .

3T, 317, F 3A 4,34

tr*

T, Ay, A

The two mixes occurring in derivation 7’ have a degree (|B| or |C|) which is
strictly smaller than |A|, hence, using twice the induction hypothesis, these
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two mixes can be removed.

Subcase 4.2: R1 is A, and R2 is Ay.

This subcase reduces, by duality, to Subcase 4.1.

Subcase 4.3: R1 is —, and R2 is —.

This subcase is similar to Subcase 4.1.

Subcase 4.4: Rl is =, and R2 is —y.

The active formula is A = —=B. A derivation 7 of this type has the follwoing
form:

T T2

I,BFA I+ B, A

—r M

T'+A,-B -BI'FA

mix

T, T - Ay, A

This derivation can be transformed into

1 2 ™1 2

I -

T'FA,-B T'FB,A IBFA -B,T A

mix1 mix2

I,I Ay A, B B, T,T, Ay, A
m

ix3

9T, 2", b 2A 4, 27
C

tr*

DI b Ay, A

where mix1,mix2 have same degree but strictly smaller height than the orig-
inal mix. By induction hypothesis these two mixes can be eliminated. We
are then left with a derivation with one mix (inherited from mix3), which
has degree |B| < |A|. Hence, by induction hypothesis, this last mix can also
be eliminated.

Subcase 4.5: Rl is V. and R2 is V.

The active formula is A = —=B. A derivation 7 of this type has the following
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form:

U 2

'-A,B Blz :=t],T"+ A’
Yy 7

I'-AVx B Vr B,T" = A/

mix

T, Ay, A

This derivation can be transformed into

il =1 - " s
Vl : Vr
'k A,Blx:=t] YV B,T"+ A’ o 'FAVzB Blz:=t,I"F A -
[T FAx A Blo =1 Blz =], T, T Ay, A

mix3

o, 21", F 2A 4, 2

ctr*

T,T - Ay, A

where [z := t] is the derivation obtained by preserving the tree-structure
and the rules of m; and applying the substitution [z := ] to every formula.
We can finally eliminate mix1,mix2 by the arguments used in Subcase 4.4.
We are then left with a derivation with one mix (inherited from mix3),
which has degree |Blz := t]|. Since the size of a formula is its number of
connectives and quantifiers, |Blzx := t]| < |A|, and we can conclude using
the induction hypothesis.

Subcase 4.6: Rl is 3, and R2 is d,.

Dual to Subcase 4.5

3.2 LK is consistent

We develop now the consequences of the cut elimination theorem. A first
bunch of consequences is that some sequents cannot be derived in LK or in
LJ. In particular we shall see that |— or |— L are not derivable, a result
that is also called the “consistency of LK”. This kind of result was a major
concern of mathematical logics at the beginning of the 20th century.
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A second bunch of consequences (developed in next section) will consist in
seeing that “LJ is constructive” i.e. that when a statement of the form
Jx®(z,y) is derivable in LJ then a witness ¢ such that ®(¢,y) is derivable
can always be deduced form the given LJ-derivation.

Theorem 3.2.1 The sequent |— is neither derivable in LK nor in LJ.

Proof: Let us assume that |— is derivable in LK. Then there would exist
a normal derivation of |— . But there is no rule in LK\ {cut} that can have
this sequent as lower part. The same arguments apply on LJ. O

Theorem 3.2.2 Let A be some atomic formula.
1- — A is not derivable in LK
2- If A# L, neither A}— nor |— —A are derivable in LK.

Proof: 1- The formula A has no occurrence of connector or quantifier. Thus
every multiset of the form |— nA can be the lower part of a rule R # cut
only if R is a structural rule and the upper part is itself of the same form.
Hence none of these sequents is an axiom. Consequently there is no normal
proof of a sequent of the form }— nA.

2- Suppose that A # 1. Thus every multiset of the form nA}— m—A can
be the lower part of a rule R # cut only if R is a structural rule or the rule
-, and the upper part is itself of the same form. Since A # 1, none of these
multisets is an axiom. Consequently there is no normal proof of a sequent
of the form nA f— m~-A.

O

3.3 LJ is constructive

For sake of brevity, for every formal system F, we denote by I' | — A the
fact that I' f— A is derivable in F'.
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Theorem 3.3.1 Let A, B be formulas.

1- If — AV B then |— A or |—,B.
2- If }— 3z A then, there exists some term t such that |—  jA[x :=t].

Proof: 1- Suppose that |— AV B is derivable in LJ. By the cut elimination
theorem, it also has a normal derivation. The last rule of this derivation
must be a V! or V2 or a right-weakening. Since |— is not derivable the last
rule can only be a V! or V2 and the upper-part of this rule is either }— A
or |— B.

2- A similar argument applies here, based on the 3, rule. O

The above property of LJ can be named “constructivity” of LJ in the sense
that, every time one derives merely the existence of some object x , it is
possible, by elimination of the cuts in the derivation, to construct a witness
t of this existence assertion.

Theorem 3.3.2 Let A be an atomic formula, A # 1.
The sequent AV —A is not derivable in LJ.

Proof: Suppose A # L and }— | JAV—-A. By Theorem 3.3.1 either |— A
or |—;—A. But Theorem 3.2.2 shows this is impossible. Hence {— AV
—A does not hold. O

Let us remark that, for every formula A, |— AV —-A:

AF AT
FAﬁA1
FAV-A

Hence the system LJ is strictly weaker than the system LK i.e.
{© € Li(SV) | =@} C{P € Li(SV) | I— P}

T

r

We would like to extend the constructivity statement for LJ (Theorem 3.3.1)
to axiomatic theories i.e. to sequents of the form

AX}—3Fz A

where AX is some set of formulas (meaningful examples will be sets of axioms
like the equality axioms, the monoid axioms, the group axioms, etc ...)
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It is clear that if some axiom is of the form Jx ®(z) this property will
fail. Therefore we define a notion of “Harrop formula” which captures the
intuitive idea that it does not assert the existence of some object (neither a
disjunction of assertions).

Definition 3.3.3 Let x be a new symbol of arity 0.

1- The set of contexts over the signature S and the set of variables V is
the subset of formulas over the signature S U {x} that contain exactly one
occurrence of the symbol .

2- Given a context C and a formula A € L£1(S,V) we denote by C(®P) the
word obtained by replacing the unique occurrence of the symbol x in C by
the word ®.

Note that the above defined C'(®) is identical with the C[* +— ®] introduced
by Definition 1.3.2 if we consider * as a variable; (but the symbol * cannot
be quantified neither in C nor in ®; this is why we prefer to consider * as a
constant and use a new notation).

Definition 3.3.4 A formula B is called a subformula of formula A iff there
exists a context C such that A= C(B).

Definition 3.3.5 1- We define inductively the set of strictly positive con-
texts (abreviated as spc) by:

- the symbol * is a spc

-if C is a spc and A is a formula, then

ANC,CAAAVC,CVA A CYzC

are spc.
2- A subformula B of the formula A is called strictly positive sub-formula
(abreviated as sps) iff there exists some spc C' such that

A=C(B).

Example 3.3.6 Let
P:=(A—=VeB)VIz (C—=D)AN(EVF)— (3 GANH)).
B,D,G, H are sps of P while A,C, E, F are not sps of P.
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Theorem 3.3.7 Let ' be a multiset of formulas where \V is not the principal
operator of any sps. Let E,F be two formulas. The sequent I't— E V F is
derivable in L) iff I' }— JE or I' |— | |F.

Proof: We proceed by induction over the size of a normal proof in LJ of
I'}— EV F. Let us distinguish several cases according to the last rule of
this derivation.

Case 1: axiom.

This case is impossible since V is not the principal operator of any formula
of I.

Case 2: 1,.

Impossible: the rhs of the sequent do not match.

Let us list the right-rules:

since the principal operator of the rhs is V, only two rules are possible:
right-weakening and V,.

Case 3: wkn,.

In this case the upper-part of the rule is I' |— . It follows that I' }— | |F' and
[,

Case 4: V,.

Hence the upper-part of the rule is I' }— E or I' }— F, which shows that one
of them is derivable in LJ.

Let us list the left-rules:

Case 5: V.

Impossible since it would imnply that some formula of I has a principal
operator equal to V.

Case 6: —y.

Impossible: the rhs of the sequents do not match: the one of the lower-part
of the rule is empty while the one of the sequent consists of one formula.
Case 7: wkny.

The proof has the form

I'HEVF

wkn;

I AFEVF

By induction hypothesis I" }— | ,E or I''}— | |F. Hence, by adding the
same formula A on the left (thanks to the left-weakening rule) I' }— | |F

or I'f—  JF.
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Case 8: contry.
Similar reasoning as in Case 7.
Case 9: Ay.

I A BFEVF

IAY;

I"ANBFEVF

By induction hypothesis I', A, B |— | |E or I, A, B }— | JF. Hence, by ap-
plying the rule Ay we obtain that: I' }— | ;E or I' }— | | F".
Case 10: V,.

F’,A[:L’::t]l—E\/Fv

l

I'.Vo AFr EVF

Let H be some sps of Az := t|. Then it has the form K[z := t] for some
sps K of A[x := t]. The formula K is also a sps of Vz A, hence of I'. By
assumption the principal operator of K is nor V. Hence the principal op-
erator of H is nor V. The multiset IV + A[z := ¢] fulfills the hypothesis
of the theorem and its proof is strictly smaller. By induction hypothesis
I, Alz :==t]}— | JE or I, A[x := t] |— | ,F'. Hence, by applying the rule ¥,
we obtain that: I' }— | | F or I' }— | | F.

Case 11: 4,.

Similar reasoning as in Case 10 (without the substitution [z := ¢]).

Case 12: —y.

I'tAT' BFEVF
%

l

A~ BFEVF

By induction hypothesis IV, B -y E or IV, B - F. Composing this deriva-
tion with the derivation of IV A, by using rule —,, we obtain a derivation
in LJ OfF/,A—>B|—LJ EOI‘P/,A—)BI—LJ F.
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(Note we treated 12 cases while there are 17 rules in LJ\ {cut}; this is due to

the fact that the five rules A, =, ., V-, 3, cannot have a lower-part equal
tol'—EVF). O

Theorem 3.3.8 Let I be a multiset of formulas where 3 is not the principal
operator of any sps. Let E be some formula. The sequent I' — 3z E is
derivable in L) iff, there exist a finite sequence of terms ty, ..., t, such that

' —E[z:=t]V...VE[x :=t]

Proof: We proceed by induction over the size of a normal proof in LJ of
I'}— 3z E. As for proving Theorem 3.3.7, we distinguish several cases ac-
cording to the last rule of this derivation.

Case 1 (axiom), Case 2(L,), Case 3(wkn,) are treated as in the previous
proof.

Case 4: The rule V,. is impossible here. Let us consider the rule 3, instead.
The upper-part of this rule has the form I' }— E[x := t]| for some term t.
Hence I' }— | jElx :=t].

Case 5: V.

IMAF-3z F F’,Bl—Elev

l

I AVBF 3z E

By induction hypothesis, there exist p,q € N and terms ¢; for 1 <7 <p+g¢q
such that

I A B[z :=t]V.. VE[z :=t,] and I, B}— | |E[x := tp1]V.. .VE[z := t)44].

Using p + ¢ times rule V, we obtain

pt+q pt+q
VA, \/ BElz==t] and I", B }— |} \/ E[z :=t,].
=1 =1
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Using now rule Vg, we obtain from the two above sequents

p+aq
I AV B}, \/ Elz :=t].
i=1
Case 6 (—), Case 7 (wkny), Case 8 (contry), Case 9(/\;), Case 10(V,),
Case 11(3;), Case 12(—) can be treated in the same way as for Theorem
3.3.7. O

Definition 3.3.9 A formula ® is called a Harrop formula iff, no sps of ®
has V' or 3 as principal operator (i.e. root symbol).

Example 3.3.10 let us consider the formulas
® = [Fz P(z)] A [Vy (QY) = P(S(y)))], ¥ :=~2.

Let C := [«] AN [Vy (Q(Y) — P(S(y)))] and B := 3x P(z). one can check
that:

® = C(B) and C is a strictly positive context and B has an 3 as principal
operator. Hence ® is not a Harrop formula.

The formula VU has only one spcC such that W = C{¥') for some ¥': C := x.
But the subformula occuring in this context is =P the principal operator of
which is —. Hence U is a Harrop formula. (See figure 3.1).

Theorem 3.3.11 Let I' be a multiset of Harrop formulas. For every for-
mulas A, B and variable x

1- if I'f— JAV B then T' }— | ;A or I |— | |B.

2-if I' }— | ;3 A then, there exists some term t, such that I' }|— | jAlx :=t].

Proof: Direct consequence of Theorem 3.3.7 and Theorem 3.3.8. O

Theorem 3.3.12 Let I', A be multisets of formulas. If T'}— (A (resp.
I'l— | JA), then there exists some derivation of this sequent in LK (resp.
LJ) which uses only formulas of the form Alxy :=t1,...,x, :=t,] where A
18 a sub-formula of I'; A and the t;’s are terms.
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O-&®
JOA
©

-
O-G®
O

SN
-G

Figure 3.1: The formulas ¢, V.

This is a straightforward consequence of the fact that all the rules of LK\
{cut} (resp. LJ\ {cut}) have upper-parts which consist of instances of
subformulas of their lower-part. Hence every normal derivation (either in
LK or in LJ) has the announced property and by Theorem 3.1.2 such a
normal derivation exists.

Let us denote by LKP (resp. LJP) the classical sequent calculus (resp. the
intuitionnistic sequent calculus) restricted to a signature where all the predi-
cate symbols have arity 0. They are called the classical propositional sequent
calculus ( resp. the intuitionnistic propositional sequent calculus).

Corollary 3.3.13 1- A propositional sequent I' }— A is derivable in LK iff
it 1s derivable in LKP.

2- A propositional sequent T'F— A is derivable in L) iff it is derivable in
LJP.

3- The derivability in LKP (resp. LIP) is decidable.
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Proof: Points 1,2 follow immediatly from the subformula property stated
in Theorem 3.3.12.

Let I' — A be some propositional sequent where all the multiplicities are
equal to 1. We know that, if I" |— | (A, then there is a derivation of this
sequent which is normal. We also have noticed that all the formulas in
the sequents of this proof must be subformulas of I'; A (no instanciation
is possible here since the formulas do not contain terms). Moreover, one
can transform the derivation in such a way that, in every rhs (resp. lhs)
of sequent, the multiplicity of a formula is 1 or 2 and there is no repetition
of sequent along any branch. The set of such derivations, with only formu-
las which are subformulas of T' }— A, with multiplicities < 2 and without
repetition on the branches is finite and one can exhaustively enumerate its
elements. One can thus test whether one of them terminates in I |— A.
The same argument applies to LJ. O
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Chapter 4

Semantics

We explicit here what is the meaning of a formal statement i.e a formula
or a sequent. Of course we assume that the reader has already an intuitive
understanding of the connectives and the quantifiers i.e. our ambition is not
to teach him the language of mathematics. Our real ambition is to modelize
the activity of proving mathematical theorems and to use this modelization
for getting some information about what can be expected (and not expected)
from mathematical reasoning. For reaching this general aim, we also want
to use mathematics as a major modelization tool. Therefore:

1- our theory will be of a mathematical nature: we shall use, namely, set
theory.

2- the phenomena that we are modelizing are mathematical proofs and also,
“mathematical truth”.

This kind of theory is named metamathematics: this means it studies math-
ematics from the outside. Moreover it turns out that our oustside point of
view is, itself, mathematical.

This explains why we assume that we (and the reader) are understanding
classic basic set theory. We already used it for defining and studying formu-
las (which are words), sequents, proofs (which are trees labelled by sequents)
in Chapters 1-2-3. We keep using it for defining the meaning of formulas
(which is a map from formulas into the set {true, false}, etc ...) Once these
definitions are clearly established, we can consider, within set theory, ques-
tions about formal systems, for example the crucial question of “what is the

65
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relationship between provability and truth”.

4.1 Classical structures

Given a signature

S = <R17R27"'7Rn;f17f27"'7fm>

with the arities
(11,72, .o, Tn3 a1, G2, - ., Q)

a structure over S is a t-uple
A= (A RY RS RS S )

where A is a non-empty set, for every i € [1,n], RZA is a map from A" into
the set of booleans {0,1} and, for every j € [1,m)], fJA is a map from A%
into A. We define a new (infinite) signature

S.A = <R17R27"' 7Rn;f17f27"' 7fm7(a)aeA>

i.e. S4 is the signature obtained from S by adding all symbols a for all the
elements a of A. Every new function symbol a has arity 0, i.e. is a constant
symbol. We denote by £1(A) (resp. T (A)) the set of formulas (resp. terms)
over this new signature S4.

Definition 4.1.1 We call valuation over the structure A every (total) map
v:T(A)UL(A) — AU{0,1}

fulfilling all the following clauses:

0-ift € T(A) thenv(t) e A

if o € L1(A) then v(t) € {0,1}

1-ifac A, v(a)=a

2-ift1, ... ta, € T(A) then v(fi(t1, ... ta;)) = [0 (t1), . ., v(ta;))
3-v(Ll)=0

4-ift1, ..t € T(A) then v(Ri(th, ..., tr,)) = RAw(t1), ..., v(t,))
5-if o, € L1(A) then v(o A) = min{v(p),v(¢)}

6- v(p V1) = max{v(p), ()}
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- v(p = ¥) = v(p) +v(¥)}
8- v(=p) = v(p)

9- v(Vvp) = min{r(p[v < al),a € A}
v(Jvp) = max{v(p[v < al),a € A}

A formula ¢ is said closed if FV(p) = 0 i.e. it has no free variable. One
can check, by structural induction, that the value of v(¢) depends on the
values of v(v) for v € FV(p) only. Hence the boolean value v(y) of a closed
formula ¢ is independant of the specific valuation v. We then write

AE ¢

to express the fact that v(p) = 1. This can be rephrased as ” ¢ is true in the
structure A”. In order to extend this notion of ”truth”to arbitray formulas,
we define the universal closure of a formula ¢ as follows:

Let {z1,22,..., 2} be the set FV(p). Then

Cl(p) :=Vz1 Vzo ...Vzrp.

(In fact a total ordering over the set V is required for making this notion
well-defined; note, however, that all the formulas obtained by varying the
ordering of the first k quantifiers, have the same value for every valuation

V).

Definition 4.1.2 Given a structure A , a formula ¢ € L1(S) and subset
I'VA C Ly(S) we define:

LAE o iff A= Clp)

2- &= o iff, for every structure A over the signature S, A= ¢

3-T |= ¢ iff , for every structure A over the signature S, if , [for every
bET, Al ¢ then [AE ).

4- T |= A iff ,for every structure A over the signature S, if , [for every
e, A= 1] then, [there exists some formula ¢ € A such that A= ¢]).

Example 4.1.3 Develop the example of the 4-squares theorem in various
structures.
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Notation: given a subset I' C £;(S) and a formula ¢ € £1(S), the notation

F}—NKSD

means that there exists a finite subset I'y C I" such that the judgment I' }— ¢
is provable within the system NK (and likewise for the notation I' }— | ¢).

Theorem 4.1.4 (accuracy) LetT' C L4(S),p € L1(S). Then

Iy & I'kE ¢

This theorem is known as the accuracy theorem for NK. We know from
chapter 2 that the same statement about LK is equivalent.

The fact that
F—wke = T'E o

is called the soundness theorem; it asserts that everything derivable is also
true. This is not surprising and also not difficult to establish by inspecting
every rule of NK (or LK) and checking that it preserves truth.

The fact that

F'—ny <= T'E o

is called the completeness theorem;it asserts that a statement which is true in
every structure, must have a derivation in NK (or LK). This is much more
interesting and indeed not easy to prove! This theorem was first proved
by K. Gédel in [G6d30] (for a different, but equivalent, formal system; the
equivalence is proved in [Gen35b, 417-431}).

A possible way to prove it consists in establishing first that, if a set I' is
(syntactically ) coherent i.e. that there is no proof of L from the set of
hypotheses I', then there exists a structure A such that A = T'. The proof
of this metatheorem is based on Zorn lemma (or, equivalently, the axiom
of choice). In a second step, if we assume I' |= ¢ and that I' U {—¢} is
syntactically coherent, then by the above model property, there would exist
a structure A in which A= T'U {—¢}, which is impossible by assumption.
Hence I' U {—¢} |— kL, which leads to I' }— k¢ (by the rule Lciassic)-
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4.2 Kripke structures

Our aim here is to define a notion of structure and a notion of validity in
such a structure, in such a way that a formula is provable in NJ (or LJ)
iff it is valid. Note that, for somebody thinking in an intuitionistic way, it
is already the case that truth is preserved by the rules of NJ but not by
those of NK. But we write this course from a classical point of view: our
metatheory is classical set theory and we would like to understand neverthe-
less intuitionistic reasoning, in a semantic fashion. This aim will be reached
through the notion of Kripke structure that will play for intuitionistic proofs
(i.e in NJ or LJ) the role that (classical) structures play for classical proofs
(i.e in NK or LK).

Order 0 Kripke structures We treat first the restricted case of proposi-
tional logics. We call a signature propositional when it posesses no function
symbol and only predicate symbols of arity 0.

Definition 4.2.1 A propositional Kripke structure for the (propositional)
signature R = (Ry, Ra, ..., Ry) is a triple

K:= (K7§7 H_O)

such that, (K, <) is a (partially) ordered set and |}— , C Kx{R1, Ra,..., Ry}
s a binary relation fulfilling:

Vk, L€ KYRER, (k< and k|— R)= ({|}—,R).

The elements of K are called the nodes of the Kripke structure.

Definition 4.2.2 The binary relation |}— is the smallest binary relation
which is included in K x Lo(R) , which contains |— , and which fulfills the
four clauses: for every k € K

KRl k|l— AAB iff (k|l— A and k ||— B)

KR2 k|}— AV B iff (k|}|— A ork|}— B)

KR3 k |l— A — B iff (for every k' >k, if k' ||— A then k' |l— B)

KR4 k |}— L s false.
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The connector — is considered here as an abreviation:
A=A 1.

The expression “k |[}— R”reads as “k forces R”. The restricted relation
|l—  is the initial forcing relation while |}— (which is defined, inductively,
above), is the forcing relation.

Remark 4.2.3

kll— -4 & k|—A— 1
& VK> k(K |— A=K |— 1)
o VK >k K[ A

kll— A4 & k|—(A—1)— 1
VK > k(K |— (A — L) = K [|— 1)
VE > k(K |— (A — 1))

VK >k, (VK" > K, (K" | A))
VK >k, 3K > KK [ A

te 0

Note that we use, in our proofs (i.e. meta-arguments), the usual properties
of negation in classical logics. This is no more contradictory than writing,
in french, a grammar for the english language. This is a convenient way of
defining intuitionistic semantics for readers who think in a classical way (as
well would the above grammar fill the needs of a native french reader).

When Card(K) =1, the map v : Lo(R) — {0, 1} defined by
v(R)=1%< k| R.
is a valuation (in the classical sense of Definition 4.1.1). Hence we cannot

hope some new notion of semantics getting out of Kripke structures with
one node. Let us give an example with three nodes.
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or [
1 2

Figure 4.1: Kripke structure for example 4.2.4.
Example 4.2.4 Let us consider a propositional signature with one propo-
sitional symbol P. We define a Kripke structure by:
K:={0,1,2}, 0<1,0<2; |}—,={(1,P)}
Using the inductuve definition of the forcing relation we get successively:
Ll P, 2= P, 2| P

(Note that, for a mazimal node k, the formulas that are forced at k are
exactly the classical consequences of the set {p | k |F— q¢}).

0|f===P, 0|f—-P
0|f— PV -—P

On figure 4.1 we represent the nodes by dark disks and the edges of the
Hasse-diagram of the order by arrows. The names of the nodes are given
below each node and the initial forcing is given by the letters on the sides
of the nodes.

Example 4.2.5 Let us consider a propositional signature with one propo-
sitional symbol P. We define a Kripke structure by:

K :=1{0,1,2,3,4}
The ordering is the transitive closure of the set

{(0,1),(0,4),(1,2), (1,3), (4,3)}
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([
1 /
0

Figure 4.2: Kripke structure for example 4.2.5.

and
=0 :={(3,P)}

(see figure 4.2). Using the inductive definition of the forcing relation we get
successively:

3 |— P hence 0|}— —P
2 |— =P hence 0|f— ——P
4 |}— —=Pand 4|}— P, hence O|f}— (——P — P)

It follows that
O|f— (=P)V (—=P)V (——P — P)

Lemma 4.2.6 For every formula ¢ € Lo(R) and every nodes k, k' € K,

(k <k and k|}— o) = K |F—¢.

This can be proved by structural induction.

Definition 4.2.7
1- A formula ¢ € Lo(R) is valid at node k, in the Kripke structure K iff

k¢
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2- K |l ¢ means that Vk € K,k |}— ¢

Given a set T' C Ly(R),

3- T'|}— ¢ means that, VK,Vk € K,[(VY € I,k |}— ) = k |}— ¢]
4- |F— ¢ means that, VIC,Vk € K,k |}— ¢

Note that |— ¢ has the same meaning as () ||— ¢ (as expected). One reads
this expressions as “p is Kripke-valid”.

Theorem 4.2.8 (accuracy of NJ, propositional fragment) LetT' C Ly(R),p €
Lo(R). Then
F=ne & Tl—e

It is easy to check that every rule of NJ has the property that, if its upper
sequents are Kripke-valid, then its lower sequent is also Kripke-valid. Hence
it is clear that I' }— ;¢ = T |}— ¢. The converse is not easy: it is called
the Kripke-completeness of NJ.

Order 1 Kripke structures We treat now the general case of order 1 i.e.
define a notion of Kripke structure and a notion of forcing, that make sense
for all first order formulas over any first-order signature.

Definition 4.2.9 Let S = (Ry1, Ry, ..., Ry; f1,..., fm) be a signature with
arities (r1,72,..., n;a1,02,...,0y) and C' a set of constants (this last set
C' can be infinite, just as it is the case for classical structures). A Kripke
structure over §,C' is a 4-tuple

K= (K, <, {(D(k), (fir)i<icm, (ck)eco) | k € K}, [F=)

such that:

(K, <) is a (partially) ordered set

Vk e K,D(k) #0

Vk e K, fjr: D(k)% — D(k), ¢, € D(k)
Vk,l e K,k <{= D(k) C D)

Ve le K.k</{=c.=c¢
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Vk,0 € KVj e [l,m],k <l= fix C fis
=0 C{(k,¢) | k€ K,p closed atomic formula with constants in D(k)}
Vil e KN, (k <l and kl|}— o) = ({|}— R).

The forcing relation |f—, is extended to non-atomic formulas by the fol-
lowing definition.

Definition 4.2.10 The binary relation |}— is the smallest binary relation
which is included in K x L1(S,C) , which contains |}— , and which fulfills
the six clauses: for every k € K

KR1 k|[lF—AABiff (k|f—A and k ||— B)

KR2 k|l—AVBiff (k|l—A ork|}— B)

KR3 k |F— A — B iff (for every k' > k, if k' ||— A then k' |}— B)

KR4 k |}— L is false

KR5 k |[}— Vv A iff (for every k' >k, for every d € D(K'), k' |}— Alv :=d])
KR6 k |[— Fv A iff (there exists some d € D(k),k ||— Alv :=d])

Lemma 4.2.11 For every k,{ € K and every formula ¢ € L1(SUC U {d |
de D(k)})

(k<K and k|}—¢) = K |F— .

This can be proved by structural induction.

) ® D(1)={ab} R Q@

D(0) = {a} Q(a)

Figure 4.3: Kripke structure for example 4.2.12.
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Example 4.2.12 Let us consider a signature with one propositional symbol
R and a one-place predicate symbol Q (and no function symbol nor constant
symbol). We define a Kripke structure by:

K:={0,1}, 0<1;D(0) = {a}, D(1) :={a,b} [} :={(0,Q(a)), (1, k), (1,Q(a))}

Using the inductive definition of the forcing relation we get successively:
0|F— Q(a) hence 0|F— RV Q(a)

1|}— Q(a) hence 1|}— RV Q(a)
1|l— R hence 1| RV Q(b)

It follows that

0lf=vz (RVQ(x)) (4.1)

0f— R, 1§ Q). 0lf—vr Q)

It follows that

Ol)— RVVzr Q(x) (4.2)
(meta)-assertions (4.1)(4.2) show that

O[f= vz (RVQ(x))] = [RVVz Qz)]

Example 4.2.13 Let us consider a signature with one one-place predicate
symbol R (and no function symbol nor constant symbol). We define a Kripke
structure by:
K = {/{?n’TLEN}, ko<ki1 <...<ky<kp1<...,

D(kg) :={0},... D(ky) :=[0,n], |}—¢:={(kn,R(m))|0<m <n-—1}

Let us examine whether :
ko |F— ——Vz(R(x) V ~R(x))? (4.3)

Using the inductive definition of the forcing relation as well as the rules of
classical logics (in our meta-proof) we get:
(4.3) < Vkk|f— Ve(R(z)V -R(zx))
& Vk, 3K > kK | Va(R(z) V ~R(z))
& Yk, 3K >k VE' >k vde DE"), kK" ||—V(R(d) vV -R(d))
(4.4)
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@ {0,1,2,3,4} R(0) R(1) R(2) R(3)
® i {0,1,2,3} R(0) R(T) R(2)

. {0,1,2} R(0) R(1)

T {0,1} R(0)

¥ {0}

Figure 4.4: Kripke structure for example 4.2.13.

But ki ||— R(i+ 1) and k; |}|— —R(i + 1), hence
Vi, k|fJ— R(i+ 1)V -R(i+1)
which shows that property (4.4) is false. We conclude that

ko |f— —=Va(R(z) V ~R(z)).

Theorem 4.2.14 (accuracy of NJ) Let T' C £1(S),¢ € L1(S). Then

= & Tll—e.

Here again the implication

= = Tll—e.

just asserts that every provable statement (in an intuitionistic sense) is
“true“ (in the sense of Kripke interpretations). It is called the Kripke-
soundness property of NJ. The proof consists in checking that every rule of
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NJ preserves Kripke-truth.
The implication
r ;_ NJSD < T H_ ©,

is the Kripke-completeness property: it asserts that a sequent which is
Kripke-valid is also provable within NJ.
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Chapter 5

Some decidable theories

Let us call theory a set of formulas (over a given signature) which is closed
under logical deduction i.e. every application of a rule from LK (or NK) leads
to a formula that already belongs to the theory (up to some translation when
the judgments of the system are not merely formulas). Of particular interest
are the following kinds of theory:

1- Axiomatic theories: i.e. given a set I' of formulas, the set

{®| T =}
2- Theories of structures: i.e. given a particular structure M over the
signature S, the set

{® | M E= @},
In both cases we would like to know if there is some algorithm allowing to
decide whether a formula belongs (or not) to the theory. When such an
algorithm exists, we say that the theory is decidable.
We show here that some structures with domain the set of natural integers,
have decidable first-order theory.

5.1 Integers with addition

Let us consider the structure
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i.e. the set of natural integers endowed with the equality predicate and
the addition. The first-order theory of this structure is nowadays called
Presburger arithmetics since its decidability was proved by M. Presburger
in 1929. Several methods can be used to this aim.

Method 1:The original method used by Presburger consisted in producing
a set of axioms I' which is recursively enumerable and such that a formula
® is valid in M if and only if I' }— | (@ . In other words Presburger found
a complete r.e. aziomatisation of the first-order theory of (N;=;+). The
decision procedure is the following: given a closed formula ®, enumerate all
the proofs of sequents of the form IV }— A for finite subsets I of I'. This
enumeration must either reach a sequent of the form

I k@

and in this case we conclude that M |= @ , or reach a sequent of the form

I ®

and in this case we conclude that M £ ®.

Method 2: A second method, used for example by [Cooper, 1972|, con-
sists in finding a quantifier elimination procedure i.e. an algorithm which,
given a formula of the form JxF(x,%), produces a formula G(%) which is
semantically equivalent with 3z F(x, %) over A i.e.

(Ny=;+) = [BaF(z,9)] < G(Y)

Method 3: A third method, which originates in Biichi’s works ([Biic60])
and was finally completely established in [Bru85], consists in reducing the
statement

Ny=;+) = @

to a statement of the form

L(A) =0

for some finite automaton A. The core of the algorithm is the construction
of the automaton A from the formula .

We detail in this chapter the method 3. In the course of the prooof, we
shall realize that this method indeed decides an extended structure (based
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on N, see (5.1)) and also allows a characterisation of the properties which
are definable by some first-order formula in terms of finite automata.

Let us fix some integer k > 2 that will serves us as base for expressing
integers by words. We note

> =1{0,1,...,k—1}

the alphabet of digits in base k. Let

v:Y, —»N
the map defined by
-1
w) =) wlj] - K
=0

v(
where ¢ = |w| and w = w[¢ — 1] --- w[0]. More generally
v (S —N"
is defined by

w=(Wy,...,wn) = (V(wy),...,v(wy))

Example 5.1.1

0 0 1 0
k=2m=3w=1] 1 0 1 0
0 1 0 1
1(0010) 2
v(w)= | r(1010) | = | 10
v(0101) 5

For sake of saving space we shall rather note the vectors (whether in (X}")*
or in N™) as line-vectors. Here we can note:

w = (0010,1010,0101), v(w) = (#(0010),»(1010),»(0101)) = (2,10,5).

Let us introduce an additional binary predicate Vj defined by:

Vi(z,y) =1 & [y = max{k® | k®dividesz} Az > 1]V [y =1 Az =0]
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Example 5.1.2

Va(5,1) =1, V5(10,2) =1, V5(0,1) =1, V5(24,8) =1, V5(24,16) =0, Va(24,4) = 0.

We focus now on the extended structure

(N; =, Vi; +) (5.1)

Definition 5.1.3 Let ® € L1(=,Vi,+),m > 0 and & = (x1,x9,...,Tp) €
V™ such that i < j = x; # x; (i.e. the m variables are m distinct symbols).
Then

Moz i= {(n1, - ) € N [ (Ns =, Vis 4) = B, ..., n)}

In words: Mg 3 is the set of models of the formula @ i.e. the set of vectors of
values that, when substituted to the vector of variables Z, make the formula
true in the structure (N;=, V4;+). We used the abreviation ®(ni,...,ny,)
for @[y /a1, ... /T

Let us remark that:

- if z; is not a free variable of ®, then the value of n; has no influence on
the fact that 7 € Mg z

- some variable v might occur freely in ® but not belong to the set {z1, ..., 2, };
one can check that, in this case, the set Mg z is equal to My, ¢

- when m = 0, either the formula is valid and Mg z = {0} or the formula is
not valid and Mg z = 0. 1

Definition 5.1.4 Let M C N™,
1- The subset M is called k-recognizble iff v=1(M) is a recognizable subset
of (S

2- The subset M is called k-definable iff there exists some formula

® € Li(=, Vi, +) such that M = Mg

mly---yxm) .

lyes, this is somewhat disturbing, but it is not a typo, just a technical detail
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Theorem 5.1.5 Let M C N . If M 1is k-definable then M is k-recognizable.

Proof: We remark first that every formula ® can be transformed into an
equivalent formula where the atomic subformulas have one of the two forms:

1 = I9,
where 1, xo are distinct variables, or
r1+xo =23

where x1, xo, x3 are three distinct variables.

We show, by induction over the size (i.e. number of operators) of ®, that,
for every vector & of distinct variables, the set v~ (Mg z) is recognized by
some finite automaton Ag z. The automata that we manipulate here are
deterministic, complete and read from right-to-left.

Augmentation of the vector: ¥ = (2, y1,...,Ym)

Let Ag 7 be a f.a. such that

L(A) = v (Mg 3).
Let h : (E;”'H)* — (X")* the monoid-homomorphism defined by
(W, W1, .oy Wyy) > (W, ..y Wiy)
i.e. the projection onto the m last components. We claim that

v (Mo (50,5 = h™ (v (Mg g)).

It is known that the operation h~! (for an homomorphism h) preserves
recognizability.
Atomic formula: equality: ¢ : x; = xo.
If one of the variables x1,z2 does not occur in &, then Mg z = 0.
If ¥ = (x1,x2), then
Mg z = E*,

where E = {(d1,d2) € X2 | dy = dp} This set is clearly rational, hence
recognizable.

If 7 is some vector of length m > 2 of distinct variables, where 1, z9 both
occur, then by the above case Mg (5, 1,) is recognizable and by closure by
augmentation of the vector, Mg 7 is recognizable too.
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(L)

Figure 5.1: The addition automaton.

Atomic formula: addition: @ : z + 29 = 23,7 = (21,22, 3)
For sake of simplicity, let us show this for k = 2. The set Mg 3 is recognized
(from right-to-left) by the f.a. of figure 5.1. The principle of this automaton
is that it computes the sum, bit by bit, from right-to-left (as we nowadays
learn to do at elementary school) and memorizes the carry in its state.
Atomic formula: valuation: ® : Vi (z1,22),Z = (21, x2)
For sake of simplicity, let us show this for £ = 2. The set Mg 3 is recognized
(from right-to-left) by the f.a. of figure 5.2.
Disjunction: ® =V VvV 0O
Let & be some vector of distinct variables. By induction hypothesis My z, Mg z
are both recognizable. But Mg z = My 3 U Mg z, hence is recognizable too.
Conjunction: ® =V A O
It is known that the set of recognizable languages is closed under inter-
section. Since Mg z = My 3 N Mg z, we can conclude from the induction
hypothesis that Mg z is recognizable.
Negation: ¢ = U
We remark that

Moy z = (37")"\ My z

Since recognizable sets are closed under complement, M_y 3 is recognizable.
Existential quantifier: ® = Jxo ¥, 7 = (z1,...,Tpn)
One can check that

Mz, v,z = (0F,) "h(My z)

where h : (E;C”'H)* — (37")* is the projection onto the m last components,
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Figure 5.2: The valuation automaton.

O,y is the letter of ¥} having only null components and the exponent —1
designates a left-residual. Since the set of rational subsets of a free monoid
is closed under direct homomorphism and left-residuals, we deduce from the
induction hypothesis that M3, v 7 is rational, hence recognizable.
Universal quantifier: ® = Vag ¥, 7 = (21,...,Zm)
Let us remark that

Vg U H —3zo -0

hence
Mo vz = M-3z —w z-

By induction hypothesis My z is recognizable. Applying then the arguments
used for negation, for the existential quantifier, and for negation, we obtain
that My, v z is recognizable.
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O

Note that, at each step of this proof by induction, one can convert our closure
arguments into effective constructions of some finite automaton, from the
f.a. that are provided by the induction hypothesis. Thus it can be turned
into an algorithm constructing the automaton Ag z form the formula ¢ and
the vector .

Let us go back to our initial problem which was to find a decision proce-
dure for the problem (slightly generalised by considering the structure (5.1)):

Instance: a first-order formula ® over the signature (=, Vi;+)
Question: is this formula valid in the structure (N; =, Vj;+) ?

The following algorithm solves this problem:

- compute some f.a. A recognizing the language Mg g

- test whether L(Mg ) = {0} ?

- if yes then @ is valid, otherwise, ® is not valid.

We shall now delineate more precisely the links between definability and
recognizability.

Theorem 5.1.6 (Biichi-Bruyere, 1985) Let M C N™. The subset M is
k-definable if and only if it is k-recognizable.

We already know that every definable subset is k-recognizable. In order to
prove the converse, our general strategy will consist in expressing computa-
tions of a given f.a. by formulas. To this aim we introduce new predicates
and function symbols and show that they are expressible in £q(=, Vj, +).
We define a predicate Py (x) by:

Py(z) :=3de e N,z = k°.

We define a predicate €; 1 (*, *), for every j € [0,k — 1] by: €;1(x,y) = 1 if
and only if

Py(y) and 3by, ... by € [0,k—1],3e € [0,4], x = bok+. . +jk+. . .+bok®, y = k°.

In words:€; ;(x,y) means that j is a digit of the expression of = in base k
and y is the “corresponding” power of k.
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Example 5.1.7 For x = 20, one of its expressions in base k = 2 is w =
0010100. We can check, by reading the word w from right to left, that

6072(20, 1), 6072(20, 2), 6172(20, 4), 6072(20, 8), 6172(20, 16), 6072(20, 32), 6072(20, 64).

We can also see that, for every e > 5, €0 2(20,2°) holds.

We define a predicate A (*) by:

Ae(x) = max{y | Py(y) and y <z} ifx>1
A (0) := 1

)\k(.%'l, e ,xm) = max{)\k(ml), e ,)\k(mm)}

Example 5.1.8

A2(3) = 2, X2(20) = 16, A2(82) = 64, X2(20,3,82) = 64.

Lemma 5.1.9 The predicates Py,€; and the function A, are expressible
by formulas in L1(=, Vi, +).
Proof: Using the abbreviations:

r<y:dzz+y==z

<y : x<yYyAxT=y

< s

m
y=max{z1,...,zm} : (\z; <y A (\y=2))
j=1

1

J

we can express the new predicates or function as follows:

Py(x) Vie(z, x)
y=M(2) : [2=0Ay=1V[(P(y) Ny <2)AVz (P(2) Nz <) =2 <y)]
y = (D) y = max(Ag(x1), ..., A (Tm)
)

Py N[Fz3t (x=z+j-y+t)A(z<y)AN((Vu Vi(t,u) =y <u) Vi=0)]
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O

We are now ready for a proof of Theorem 5.1.6.

Let M C N™ be some recognizable subset. Let A := (X7",Q, g0, Q",T)be
a f.a. recognizing (from right-to-left) the language v~1(M). We assumer A
is deterministic and complete. We note Q = {qo,q1,...,¢p}. We construct
a first-order formula ® over the signature (=, Vi, Py, (€jk)o<j<i—1; +: Ak)s
with m free variables x1, xo, ..., x,, expressing the fact that the computa-
tion of A over u(Z) is successful. [We designate by p(Z) the unique element
of v~1(Z) which begins by a letter with at least one non-null component].
Note that if £ = |u(Z)| then M\ (Z) = 271

A scheme of the computation

The automaton enters successively the states ¢(0),¢(1),...q(7)...q(¢) dur-
ing its computation C over p(Z). We introduce numbers yp, . . ., yp such that,
y; is coding for the positions of states ¢; in C:

J4
yj = bijh
1=0

where b, ; = 1 < (i) = ¢;. The formula ® should express the following
properties:

Jyo Jy1... Jyp

(these integers are coding the sequence ¢(0),q(1),...q(3)...q(¢))
such that:

P1 : Vie[0,4,3Y € 0,p],q(i) = g
P2 : q(0)=gqo A q0) €QT
P3 : Vie [0,6_1]7v] € [O,qu(i)ZQj—)q(i+1):T(Qj7M(f)[i])

Every property Pa (for « € [1,3]) is expressed by a formula @, as follows:
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Oy Yy [Pe(y) Ay <k - (D) =
p
I\ e A N\ o)V onlyy)]
Jj=0 0<5<j'<p
0 —
Dy €1k, 2) A\ Enrly; k- (@)
;EQT
O3 Yy N [Pe) Ay < M@ A €ri(y), v) A €akl(E )]
aEEZL
0<j<p
— [elyk(yT(qﬁa% k - y)]
where €, by, )k (T1, T2, ., Tm), y) means Ay c.c,, €p. k(Te,y). Finally

we define the formula ® by:

P :=TyoTyr ... Jyp P1(T,Y) N DT, Y) N P3(T,Y).

End of the proof of Theorem 5.1.6.

5.2 Integers with product
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