Bordeaux 1 university
Master ESSV, 2011/2012

LOGICS

TD 3: Cut elimination

Exercice 3.1 Harrop

1- Let us consider the theories (i.e. sets of formulas) : EG, $\mathrm{P}_{0}, \mathrm{PA}, \mathrm{MO}, \mathrm{GR}$. Which ones are Harrop theories? What (interesting) conclusions can we draw from this?
Exercice 3.2 PA versus P_{0}
1 - Let us denote by P_{0}^{\prime} (resp. PA^{\prime}) the set of formulas of P_{0} (resp. PA) the axiom A2 excepted. Is PA^{\prime} a Harrop theory?
2- Give a derivation, within LK, of $\mathrm{PA}^{\prime} \vdash A 2$.
3 - Can you give a derivation within LJ of $\mathrm{PA}^{\prime} \vdash A 2$? does there exist a term t, and a proof within LK of $\mathrm{PA}^{\prime} \vdash \quad x=0 \vee x=S(t)$?
Exercice 3.3 A non-standard model for P_{0}^{\prime}.
Let $\mathcal{M}={ }_{\text {déf. }}\left\langle\mathcal{N}, 0_{\mathcal{N}}, \mathrm{S}_{\mathcal{N}},+_{\mathcal{N}}, x_{\mathcal{N}}\right\rangle$ the following \ll arithmetical \gg structure :

$$
\begin{aligned}
\mathcal{N} & =\text { déf. }(\mathbb{N} \times\{\bullet\}) \cup(\mathbb{N} \times\{\circ\}) \text { where } \bullet \neq \circ \\
0_{\mathcal{N}} & =\text { déf. }\langle 0, \bullet\rangle \\
\mathrm{S}_{\mathcal{N}}\langle p, \alpha\rangle & { }_{\text {déf. }}\langle\mathrm{S} p, \alpha\rangle \text { where } \alpha \in\{\bullet, \circ\} \\
\langle p, \alpha\rangle+_{\mathcal{N}}\langle q, \beta\rangle & =\text { déf. }\langle p+q, \alpha\rangle \text { where } \alpha, \beta \in\{\bullet, \circ\} \\
\langle p, \alpha\rangle \times_{\mathcal{N}}\langle q, \beta\rangle & \text { déf. }\langle p \times q, \beta\rangle \text { where } \alpha, \beta \in\{\bullet, \circ\}
\end{aligned}
$$

The domain of \mathcal{N} consists of two copies of \mathbb{N}, the $<$ black \gg integers $\langle p, \bullet\rangle$ and the $<$ white \gg integers $\langle p, \circ\rangle$. The zero constant is interpreted by the black zero $\langle 0, \bullet\rangle$; the opérations successor, addition and multiplication are interpreted in such a way that :

- the successor keeps the color of its argument,
- the addition takes the la color of its first argument,
- the multiplication takes the color of its second argument.

1. Show that \mathcal{M} is a model for P_{0}^{\prime}. is it a model for P_{0} ?
2. Show that none of the following properties is a logical consequence of P_{0}^{\prime} :

$$
\begin{align*}
& \forall x(0+x=x) \tag{1}\\
& \forall x, y(x+y=y+x) \tag{2}\\
& \forall x, y, z(x+y=x+z \rightarrow y=z) \tag{3}\\
& \forall x(x \times \mathrm{S} 0=x) \tag{4}\\
& \forall x, y(x \times y=y \times x) \tag{5}
\end{align*}
$$

Exercice 3.4 Heyting arithmetics

Let Φ be some first-order formula over the signature of arithmetics.
1- Show that, if $\mathrm{P}_{0}^{\prime} \vdash \forall x \Phi$ is derivable within LJ, then $\mathrm{P}_{0}^{\prime} \vdash \Phi$ is derivable withinLJ.
2- does the property shown in question 1 remain true if we take PA as left-part of the sequent?
or if we still take the same sequent but consider the formal system LK?
3- Show that, if $\mathrm{P}_{0}^{\prime} \longmapsto \forall x, \exists y \Phi(x, y)$ is derivable within LJ, then, there exists some terme t, such that $\mathrm{P}_{0}^{\prime} \vdash \Phi(x, t)$ is derivable within LJ.
4- Does the property of question 3 hold true if we take, as left-hand side of the sequent, PA ? or if we still take the same sequent but consider the formal system LK?
5- Assume that $\mathrm{PA}^{\prime} \vdash \forall x, \exists y \Phi(x, y)$ is derivable within LJ, by " only one recurrence" i.e.

$$
\mathrm{P}_{0}^{\prime} \vdash_{\mathrm{LJ}} \exists y \Phi(0, y) ; \quad \mathrm{P}_{0}^{\prime} \vdash_{\mathrm{LJ}}(\exists y \Phi(x, y)) \rightarrow(\exists y \Phi(S(x), y))
$$

5.1- Check that, under these assumptions, there does exist in LJ a derivation of $\mathrm{PA}^{\prime} \vdash \forall x, \exists y \Phi(x, y)$. For every $n \in \mathbb{N}$, we denote by \underline{n} the term $S(S(\ldots(S(0)) \ldots))$ which represents the integer n within the language of Peano arithmetics.
5.2- Show that, for every integer $n \in \mathbb{N}$, there edists a term t_{n} such that $\mathrm{P}_{0}^{\prime} \vdash_{\mathrm{LJ}} \Phi\left(\underline{n}, t_{n}\right)$.
5.3- Give an algorithm that computes the function $n \mapsto t_{n}$ and which relies on the cut elimination algorithm.

Let us now admit that the property shown in exercice 4, question 5 , is still valid for every formula of the form $\forall x, \exists y \Phi(x, y)$ (whether the derivation uses one reccurence or more).
Exercice 3.5 Recursive functions
We are thinking about the possibility of a converse of the above-admitted statement. Let us make the assumption(ASSUMP) for every computable, total, function $f: \mathbb{N} \rightarrow \mathbb{N}$, there exists a formula $\Phi(x, y)$ such that
(P1) PA $\vdash \forall x, \exists_{1} y \Phi(x, y)$ is derivable within LJ
where $\exists_{1} x \quad F(x)$ abbreviates $\exists x \quad F(x) \wedge(\forall y, z \quad F(y) \wedge F(z) \rightarrow y=z)$
(P2) for every integers $n, m, \mathbb{N} \models \Phi(\underline{n}, \underline{m})$ if and only if $f(n)=m$.
1- Can we deduce from this assumption an effective enumeration of all computable, total, functions?
2- Find a diagonal argument showing that ASSUMP is false.
Let us admit the theorem [Matiyasevich, 1971] : a subset $M \subseteq \mathbb{N}$ is recursively enumerable iff, there exists an integer $q \in \mathbb{N}$ and a polynomial $P \in \mathbb{Z}\left[X, Y_{1}, \ldots, Y_{q}\right]$ such that, for every $x \in \mathbb{N}$,

$$
x \in M \Leftrightarrow \exists \vec{y} \in \mathbb{N}^{q}, P(x, \vec{y})=0 .
$$

Exercice 3.6 PA is undecidable
Let q be some natural integer and P be a polynomial in $\mathbb{Z}\left[X, Y_{1}, \ldots, Y_{q}\right]$.
1- Show that, if $\mathbb{N} \models \exists \vec{y} P(\underline{n}, \vec{y})=0$.
then, there exists some natural integers vector \vec{m} such that PA $-{ }_{\text {LK }} P(\underline{n}, \underline{\vec{m}})=0$.
2- Show that, if PA ${ }_{\text {LK }} \exists \vec{y} P(\underline{n}, \vec{y})=0$, then $\mathbb{N} \models \exists \vec{y} P(\underline{n}, \vec{y})=0$.
3- Show that there exists a polynomial P such that the problem
Instance : $n \in \mathbb{N}$; Question : does there exist a vector $\vec{m} \in \mathbb{N}^{q}$ such that $P(n, \vec{m})=0$?
is undecidable.
4- Show that the following problem is undecidable too :
Instance : a formula Φ; Question : PA ${ }_{\mathrm{LK}} \Phi$?

