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Quantum information and computation 

•  Quantum information and computation  
–   How is information encoded in nature? 
–   What is nature’s computational power?  

•  Moore’s law: quantum phenomena will appear by 2020 

•  Rich Mathematical Theory 

–   Advances in Classical Computer Science  
–   Advances in Theoretical & Experimental Physics 
–   Advances in Information Theory 



Quantum information and computation 

The power of Quantum Computing 

•   Quantum algorithm for Factoring and Discrete 
 Logarithm [Shor 93] 

•   Unconditionally Secure Key Distribution 
 [Bennett-Brassard 84] 

•   Quantum computers unlikely to solve NP-complete 
 problems [Bernstein Bennett Brassard Vazirani 94] 



Outline 

1)   Introduction to the model 
•  Superdense Coding 
•  Teleportation 

2)   Basic algorithms 
•  Deutsch-Jozsa 
•  Ideas for Factoring 

3)  Cryptography 
•  Key Distribution 

4)  Communication Complexity 
•  Quantum fingerprints 
•  Exponential Separations 



Quantum States 

•  Quantum bit is a unit vector in a 2-dim. Hilbert space  

•  A quantum state on logn qubits is a unit vector in  

•  Inner product:  
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Measurements on Quantum States 

•  A measurement of    in an orthonormal basis     
 is a projection onto the basis vectors and 

  Pr[outcome is bi ] =  

•  Examples 
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Measurements on Quantum States 

•  A measurement of    in an orthonormal basis     
 is a projection onto the basis vectors and 

  Pr[outcome is bi ] =  

•  Examples 

•  Note that  



Measurements on Quantum States 

•  A measurement of    in an orthonormal basis     
 is a projection onto the basis vectors and 

  Pr[outcome is bi ] =  

•  IMPORTANT REMARK 

–  What is the final state after the measurement? 

–  The state changes to the basis state 

–  Hence, no more information in it about the ai‘s.  
–  If I repeat the measurement I always get the same basis 

vector. 



Unitary Evolution 

•  Unitary matrix: inner product/length preserving, linear 

•   NOT gate 

•  Phase Flip gate 
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Unitary Evolution cont. 

•  Hadamard Gate 

•  Control NOT gate 

•  Example   
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Superdense Coding 

•  Transmitting 2 bits with 1 qubit 
–  Alice and Bob share the above state 
–  Alice wants to transmit the bits b1b2 to Bob  

Alice 

Bob 

–  Let b1b2=10 
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Teleportation 

•  Teleporting a qubit with 2 bits 
–  Alice and Bob share the state 
–  Alice wants to transmit an unknown qubit to Bob  

                     b1  

Alice                    b2   

Bob Xb2 
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Outline 

1)   Introduction to the model 
•  Superdense Coding 
•  Teleportation 

2)   Basic algorithms 
•  Deutsch-Jozsa 
•  Ideas for Factoring 

3)  Cryptography 
•  Key Distribution 

4)  Communication Complexity 
•  Quantum fingerprints 
•  Exponential Separations 



Quantum Queries 

Let f: X -> Y  
Goal: Does f have a certain property? 
Classical Query: "What is the value of f(x)?" 

Example: Is f linear or far from linear? 
3 Queries u.a.r.: f(x),f(y),f(x+y). Check f(x)+f(y)=f(x+y) 

Quantum Query 

 But, quantum operations are linear! 
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Deutsch-Jozsa Algorithm 

Let f: {0,1}n -> {0,1}  
Goal: Is f identically zero or balanced? 
Classical Query: 

deterministic: 2n-1+1 
randomized: k queries, error probability 2-k  

Quantum 
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More Algorithms 

- Simon's problem 
Let f: {0,1}n -> {0,1}n  
Promise: f(x)=f(x+a) and f(x) ≠ f(y), y≠x+a (2-periodic) 
Goal: Find a 
Randomized: 2n/2 
Quantum: O(n), by finding each time a random y, st. y.a=0 

- Period Finding [Shor94] 
Let f: ZN -> C  
Promise: f is periodic 
Goal: Find period 
Quantum: Easy algorithm, based on Fourier Transform 

  Factoring = Period Finding ! 

- Seach an unordered list: O(√n) queries [Grover97] 



2)Algorithms: Open Problems 

•  Find New Algorithms 
–  Graph Isomorphism? 
–  Lattice Problems? 
–  Hidden Subgroup Problems? 
–  other... 

•  Exponential speedup (possibly) 
–  Factoring, Discrete Log, Pell's Equality,... 

•  Quadratic speedup (provably) 
–  Grover's Search, Quantum walk-based algorithms,... 



Outline 

1)   Introduction to the model 
•  Superdense Coding 
•  Teleportation 

2)   Basic algorithms 
•  Deutsch-Jozsa 
•  Ideas for Unordered search and Factoring 

3)  Cryptography 
•  Key Distribution 

4)  Communication Complexity 
•  Quantum fingerprints 
•  Exponential Separations 



3) Cryptography 

•  Current cryptography based on computational 
assumptions (e.g. hardness of factoring) 

•  Many such problems become insecure against a 
quantum adversary 

•  Can we use quantum interaction to achieve 
unconditionally secure cryptography? 



Unconditional Key Distribution 

1.  Alice picks a secret key. 
 She encodes each bit in one 
 of two possible quantum ways 
 and sends it to Bob. 

       
 Remarks: - If Bob guesses correctly the encoding, then the  
   decoding is perfect. If not, Bob gets a random bit. 

           - Bob guesses correctly half the times. 

2. Bob guesses the encoding and    
   decodes each bit accordingly 



Unconditional Key Distribution 

1.  Alice picks a secret key. 
 She encodes each bit in one 
 of two possible quantum ways 
 and sends it to Bob. 

       
           3. Alice and Bob reveal publicly the encodings  
    and keep only the bits on which they agree. (~ half) 

Remarks: - If there is no Eve, then they agree on the value  
      of all these bits. 

    - If Eve has got information about the key, then with high 
     probability Alice and Bob will disagree on some bits. 

2. Bob guesses the encoding and    
   decodes each bit accordingly 



Unconditional Key Distribution 

1.  Alice picks a secret key. 
 She encodes each bit in one 
 of two possible quantum ways 
 and sends it to Bob. 

       
           3. Alice and Bob reveal publicly the encodings  
    and keep only the bits on which they agree. (~ half) 

      4. Alice and Bob reveal publicly the values of  
   half of the bits (1/4 of the initial).  
   - If they agree, they use the rest as the key (~ 1/4) 
   - If they disagree in many bits, they throw it away 

2. Bob guesses the encoding and    
   decodes each bit accordingly 



Unconditional Key Distribution 

1.   Pick a,b ∈{0,1}n  
    ( a: key | b : encoding) 
  Send each  

   
           3. Alice and Bob reveal publicly the encodings b,b’.  
   Keep the bits for which bi = b’i (~ half) 

      4. Alice and Bob reveal publicly the values of ai = a’i  
   for half of the bits for which bi = b’i 
   - If they agree, they use the rest as the key (~ 1/4) 
   - If they disagree in many bits, they throw it away 

2. Pick b’∈{0,1}n  
    If bi=0 measure in  
    If bi=1 measure in 
   Denote outcome ai       € 
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Unconditional Key Distribution 

Proof of Security (idea) 
–  Eve gets information, she  disturbs the state (Heisenberg) 

 Possible strategy: Eve picks encoding bE u.a.r and measures 
Alice's qubit. Let      be the result. She sends it to Bob. 

–  If bA ≠ bB, Bob does not check, so Eve is not detected cheating 
–  If bA = bB  and bE = bA, then           , so Eve is not detected 
–  If bA = bB  and bE ≠ bA, then 

     Alice     Eve : measure in         Bob: measure in  
      outcome      outcome 
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Unconditional Key Distribution 

Proof of Security (idea) 
–  Eve gets information, she  disturbs the state (Heisenberg) 

 Possible strategy: Eve picks encoding bE u.a.r and measures 
Alice's qubit. Let      be the result. She sends it to Bob. 

–  If bA ≠ bB, Bob does not check, so Eve is not detected cheating 
–  If bA = bB  and bE = bA, then           , so Eve is not detected 
–  If bA = bB  and bE ≠ bA and Alice and Bob check, then 

     Alice     Eve : measure in         Bob: measure in  
      outcome      outcome 

Overall, Pr[Eve is detected cheating]=1/16 
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Unconditional Key Distribution 

Proof of Security (continued) 

–  The optimal strategy of Eve is not much better than the 
one we described. (individual vs coherent attacks) 

–  The key is almost secure. We can distill a much 
stronger key by classical privacy amplification 

–  No assumptions on Eve’s computational power! 
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3) Cryptography: Open Problems 

•  Other Cryptographic Primitives 
–  Oblivious Transfer 
–  Coin Flipping 
–  Bit Commitment 

•  Practical Quantum Cryptography 

•  Commercial systems for QKD 

•  Classical cryptography secure against quantum 



Outline 

1)   Introduction to the model 
•  Superdense Coding 
•  Teleportation 

2)   Basic algorithms 
•  Deutsch-Jozsa 

3)  Cryptography 
•  Key Distribution 

4)  Communication Complexity 
•  Quantum fingerprints 
•  Exponential Separations 



4) Communication Complexity 

•  Examples:  Is x=y?,  Find an i such that xi ≠ yi 

•  Applications of Communication Complexity 
 VLSI design, Boolean circuits, Data structures, 
Automata, Formula size, Data streams, Secure Computation 

Input  x Input  y 

Goal: Output P(x,y)   
 (minimum communication) 



Quantum Communication Complexity 

•  Examples:  Is x=y?,  Find an i such that xi ≠ yi 

•  Applications of Communication Complexity 
 VLSI design, Boolean circuits, Data structures, 
Automata, Formula size, Data streams, Secure Computation 

Input  x Input  y 

Goal: Output P(x,y)   
 (minimum communication) 

Classical  
vs.  

Quantum 



Encoding Information with Quantum states 

•  We can encode a string        with logn qubits. 

•  Holevo’s bound 
–  We cannot compress information by using qubits. 
 We need n qubits to transmit n classical bits. 

•  Quantum communication can still be useful since in 
many communication problems the information that 
needs to be transmitted is small.  (e.g. Equality) 



Equality in Simultaneous Messages 

  Referee 
   Is x=y?  

Randomized algorithm  (Complexity   ) 

Alice and Bob use an error correcting code C with 
constant distance and size O(n). 

They each send     bits of their strings C(x),C(y) 

Referee outputs Yes if C(x)i = C(y)i 

Input  x Input  y 



Equality in Simultaneous Messages 

Quantum algorithm :  (Complexity O(log n)) [BCWdW01] 

•  Alice and Bob use an error correcting code C with    
constant distance. 

•  They send the states     

    

•  Referee measures the state  

 in the symmetric and alternating subspace of 

•  If x=y,  then the states are equal. 
•  If x≠y, then the states are almost orthogonal. 



Exponential Separations 

•  Two-way communication 
–  [BCW98]: exponential separation for zero error. 
–  [Raz99]: exponential separation for bounded error. 
–  [Gav07, RK11]:  between q. One-way and rand. Two-way 

•  One-way communication 
–  [BJK04]: exponential separation for a relation 
–  [GKKRdW07]: exponential separation for a partial 

function 

•  Simultaneous Messages 
–  [BCWdW01]: equality via fingerprints 
–  [BJK04]: exponential separation for a relation 



Input:  x {0,1}2n 

Output: 

Input: a matching M on [2n]   

eg. {(1,5),(2,6),(3,7),(4,8)} 
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Theorem  

•  There exists a one-way quantum protocol with compl. O(logn)   
•  Any randomized one-way protocol has complexity Ω(√n) %

The Hidden Matching Problem 



Quantum algorithm for HM4 

Let           be Bob’s matching. 

•  Alice sends the state 

•  Bob measures in the basis  

     and outputs ((1,3),0) if he measures  
          ((1,3),1)        " 
     ((2,4),0)        " 
     ((2,4),1)       " 
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Quantum algorithm for HM4 

•  Alice sends the state 

•  Bob measures in the basis  

•    

•  Bob can compute the XOR of a pair of the 
matching with probability 1. 
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4) Communication Complexity 
Open Problems 

•  Quantum communication complexity of total 
functions 

•  Power of entanglement in communication 
complexity 

•  Communication Complexity with super-quantum 
resources. 



Conclusions 

Quantum Information can be very powerful 

–  Algorithms 
•  Factoring, Unordered Search 
•  Quantum Walks, etc 

–  Communication Complexity 
•  Many exponential separations 
•  Total Functions 

–  Cryptography 
•  Unconditional Key Distribution 
•  Impossibility of Bit Commitment, OT  

–  Interactions with Complexity Theory & Physics 
•  Ronald's talk 



        Further Conclusions 

•  Quantum Information and Computation  

–  Computational power of nature 

–  Quantum Mechanics as an theory of information 

–  Advances in classical Computer Science 

–  Practical Quantum Cryptography 

–  Advances in Experimental Physics 

Why is Quantum 
Computation 
important? 



Simon's Algorithm 

Let f: {0,1}n -> {0,1}n  
Promise: f(x)=f(x+a) and f(x) ≠ f(y), y≠x+a (2-periodic) 
Goal: Find a 
Randomized: 2n/2 
Quantum: O(n), by finding each time a random y, st. y.a=0 

amplitude of  

Hence, we only measure y, s.t. a.y=0 
Repeat O(n) times to get n linear independent y's. 
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Period Finding Algorithm 

Let f:ZN -> C  
Let f: ZN -> C  
Promise: f is periodic 
Goal: Find period 

Tool: Quantum Fourier Transform:  

If gcd(k,r)=1, then gcd(kN/r,N)=N/r  

REMARK: Factoring reduces classically to period finding!!! 
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