ENSEIRB-MATMECA

Option second semestre, 2011/2012

Information Quantique

Corrigé de l'examen du 21 Mai 2012

Notation: la note finale est min(20,note-ex1+note-ex2).

Exercice 1 (/20 pts)

Circuits quantiques.

1- On cherche une matrice unitaire R telle que $R^2 = N\hat{O}T$,

Une méthode possible consiste à réduire $N\hat{O}T$ à une forme diagonale PDP^{-1} (P est la matrice de passage et D est une matrice diagonale) puis à choisir $R:=PD'P^{-1}$ où D' est une racine carrée de D (il y a 4 choix possibles pour D' car chaque valeur propre possède 2 racines carrées dans \mathbb{C}). Dans le cas de $N\hat{O}T$:

les valeurs propres sont 1, -1 (car, vue comme une application linéaire sur \mathbb{R}^2 , il s'agit de la symétrie par rapport à la première bissectrice) associées aux vecteurs propres (de norme 1 et orthogonaux) :

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Donc

$$P = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \ P = P^{-1}, \ D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

On peut choisir, par exemple

$$R := P \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} P^{-1} = \frac{1}{2} \begin{pmatrix} 1+i & 1-i \\ 1-i & 1+i \end{pmatrix}$$

2-

$$\widehat{\mathsf{TOF}} \ket{x_1, x_2, x_3} = \ket{x_1, x_2, x_3 \oplus x_1 x_2}$$

Donc

$$\begin{array}{lll} \mathsf{T\^{OF}}\left|x_{1},x_{2},x_{3}\right\rangle = & \left|x_{1},x_{2},x_{3}\right\rangle & \text{si } x_{1}x_{2} = 0 \\ = & \left|x_{1},x_{2}\right\rangle \otimes \mathsf{N\^{OT}}\left|x_{3}\right\rangle & \text{si } x_{1}x_{2} = 1 \end{array}$$

ce qui est la définition de $\Lambda^2(N\hat{O}T)$.

3- Le circuit T est un produit de 5 portes. Considérons la valeur du vecteur d'état après chaque porte (on commence par la valeur d'entrée puis on écrit les 5 valeurs successives obtenues) :

$$\begin{pmatrix}
0 \\
0 \\
z
\end{pmatrix} \qquad \begin{pmatrix}
0 \\
0 \\
z
\end{pmatrix} \qquad \begin{pmatrix}
1 \\
1 \\
1 \\
R^{-1}z
\end{pmatrix} \begin{pmatrix}
1 \\
0 \\
R^{-1}z
\end{pmatrix} \qquad \begin{pmatrix}
1 \\
0 \\
R^{-1}z
\end{pmatrix} \qquad \begin{pmatrix}
1 \\
0 \\
z
\end{pmatrix} \qquad \begin{pmatrix}
1 \\
0 \\
Rz
\end{pmatrix} \begin{pmatrix}
0 \\
1 \\
z
\end{pmatrix} \begin{pmatrix}
0 \\
1 \\
z
\end{pmatrix} \qquad \begin{pmatrix}
0 \\
1 \\
R^{2}z
\end{pmatrix} \qquad \begin{pmatrix}
1 \\
1 \\
R^{2}z
\end{pmatrix} \qquad \begin{pmatrix}
1 \\
1 \\
R^{2}z
\end{pmatrix}$$

On voit donc que ce circuit a l'effet suivant les vecteurs de la base canonique :

$$\begin{pmatrix} x_1 \\ x_2 \\ z \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ x_2 \\ z \end{pmatrix}$$

 $si x_1x_2 = 0,$

$$\begin{pmatrix} x_1 \\ x_2 \\ z \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ x_2 \\ R^2 z \end{pmatrix}$$

si $x_1x_2=1$, Il coïncide donc avec $\Lambda^2(\mathsf{N}\hat{\mathsf{O}}\mathsf{T})$ sur la base canonique, et par linéarité, il coïncide avec $\Lambda^2(\mathsf{N}\hat{\mathsf{O}}\mathsf{T})$ sur tout l'espace des états : il calcule l'opérateur de Toffoli.

4- Soit $U: \mathcal{B} \to \mathcal{B}$ une application linéaire unitaire. Alors U est diagonalisable (dans une base orthonormée) :

$$U = PDP^{-1}$$

avec P matrice unitaire. On peut donc appliquer le raisonnement de la question 1 : soit D' une matrice diagonale telle que $D'^2 = D$. Comme les éléments

de la diagonale de D' sont de module 1, la matrice D' est unitaire, et comme P, P^{-1} sont unitaires, la matrice

$$V := PD'P^{-1}$$

est une racine carrée unitaire de U.

- 5- On peut construire un circuit C_U sur le modèle du circuit T, mais en remplaçant la porte R par la porte V: voir la figure 1.
- 6- Désignons par \mathcal{G}_0 l'ensemble des portes élémentaires $\{c\hat{\mathsf{NOT}}\}\cup\{\Lambda^1(W),W\in$

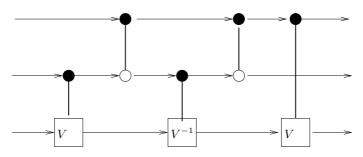


FIGURE 1 – Le circuit C_U

U(2)}.

Afin de résoudre cette question par récurrence sur k, étendons la définition de $\Lambda^k(U)$ au cas où U est un opérateur unitaire sur \mathcal{B}^ℓ (où ℓ est un entier strictement positif) : pour tous $x_1, \ldots, x_k \in \mathcal{B}, y \in \mathcal{B}^{\otimes \ell}$:

$$\Lambda^{k}(U) | x_{1}, \dots, x_{k}, y \rangle = |x_{1}, \dots, x_{k}\rangle \otimes |y\rangle \quad \text{si } x_{1}x_{2} \cdots x_{k} = 0$$
$$= |x_{1}, \dots, x_{k}\rangle \otimes U | y \rangle \quad \text{si } x_{1}x_{2} \cdots x_{k} = 1$$

Montrons maintenant, par récurrence sur k, la propriété :

 $\forall U \in \mathsf{U}, \Lambda^k(U)$ est calculable par un circuit C_k , de taille $\leq 5^{k-1}$ sur \mathcal{G}_0 .

Si k = 1, $\Lambda^1(U)$ est une porte de \mathcal{G}_0 .

Si k = 2, $\Lambda^2(U)$ est calculable par le circuit C_U fourni à la question 5, qui n'utilise que des portes de \mathcal{G}_0 et qui est de longueur 5.

Soit $k \geq 3$. La matrice U admet une racine carrée unitaire V (question 4) et $V' := \Lambda^{k-2}(V)$ est une racine carrée de $U' := \Lambda^{k-2}(U)$.

On peut appliquer la construction de la question 5, à l'opérateur $\Lambda^2(U')$: le circuit T, dans lequel on remplace R par V', calcule $\Lambda^k(U)$ (notons-le T[V'/R]). Par hypothèse de récurrence, $\Lambda^1(V') = \Lambda^{k-1}(V)$ est calculable

par un circuit C_{k-1} de longueur $\leq 5^{k-2}$ sur \mathcal{G}_0 . En remplaçant, dans le circuit T[V'/R], chaque porte $\Lambda^1(V')$ par le circuit C_{k-1} , on obtient un circuit C_k , de longueur $\leq 5^{k-1}$ sur \mathcal{G}_0 , qui calcule $\Lambda^k(U)$.

Une analyse plus fine de la longueur de C_k donne :

$$|C_1| = 1$$
, $|C_{k+1}| = 3|C_k| + 2$

d'où $|C_k| = 2 \cdot 3^{k-1} - 1$.

Exercice 2(/29 pts) Algorithme de Grover

1- Notons

$$|y_{-}\rangle := \frac{|0\rangle - |1\rangle}{\sqrt{2}}, \ |y_{+}\rangle := \frac{|0\rangle + |1\rangle}{\sqrt{2}}.$$

On vérifie que

$$\langle y_s | y_t \rangle = \delta_{s,t} \text{ pour } s, t \in \{+, -\},$$

et on sait que

$$\langle x|x'\rangle = \delta_{x,x'}$$
 pour $x, x' \in \{0, 1\}$.

Considérons la famille des 2^{n+1} vecteurs :

$$(|x\rangle |y_s\rangle)_{x\in\mathbb{B}^n, s\in\{+,-\}} \tag{1}$$

Le produit scalaire de deux d'entre eux vérifie :

$$\langle y_s | \langle x | x' \rangle | y_t \rangle = \langle x | x' \rangle \langle y_s | y_t \rangle = \delta_{x,x'} \delta_{s,t}$$

Donc cette famille est orthonormée.

$$\langle \alpha | \alpha \rangle = \left(\frac{1}{\sqrt{N - M}} \right)^2 \sum_{f(x) = 0} \langle y_- | \langle x | x \rangle | y_- \rangle$$

$$= \left(\frac{1}{N - M} \right) \sum_{f(x) = 0} 1$$

$$= \left(\frac{1}{N - M} \right) (N - M)$$

$$= 1$$

Un calcul similaire montre que $\langle \beta | \beta \rangle = 1$. Les ensembles de vecteurs $\{|x\rangle \, \frac{|0\rangle - |1\rangle}{\sqrt{2}} \mid f(x) = 0\}$ et $\{|x\rangle \, \frac{|0\rangle - |1\rangle}{\sqrt{2}} \mid f(x) = 1\}$ sont des parties disjointes de la famille orthogonale (1). Donc les sous-espaces engendrés par ces ensembles sont orthogonaux. Comme $|\alpha\rangle$ appartient au premier sous-espace et $|\beta\rangle$ au second, $\langle\alpha|\beta\rangle = 0$.

2- Les coefficients

$$c_{\alpha} := \sqrt{\frac{N-M}{N}}, c_{\beta} := \sqrt{\frac{M}{N}}$$

satisfont

$$|\psi\rangle = c_{\alpha} |\alpha\rangle + c_{\beta} |\beta\rangle$$

3-

$$\cos(\theta') = \frac{c_{\alpha}}{c_{\alpha}^2 + c_{\beta}^2} = \sqrt{\frac{N - M}{N}}, \quad \sin(\theta') = \frac{c_{\beta}}{c_{\alpha}^2 + c_{\beta}^2} = \sqrt{\frac{M}{N}}.$$

Comme $\cos(\theta') \geq 0$, $\theta' := Arcsin\sqrt{\frac{M}{N}}$ est une mesure de l'angle $(|\alpha\rangle, |\psi\rangle)$. 4- On vérifie que, pour tout $x \in \mathbb{B}^n$,

$$O|x\rangle |y_{-}\rangle = (-1)^{f(x)} |x\rangle |y_{-}\rangle$$

Il découle que :

$$O |\alpha\rangle = |\alpha\rangle, \ O |\beta\rangle = -|\beta\rangle,$$

et par linéarité:

$$O |\psi\rangle = c_{\alpha} |\alpha\rangle - c_{\beta} |\beta\rangle$$
.

5- La famille des 2^{n+1} vecteurs :

$$(|x\rangle |b\rangle)_{x\in\mathbb{B}^n,b\in\{0,1\}} \tag{2}$$

est aussi une famille orthonormée de $\mathcal{B}^{\otimes (n+1)}$. Comme elle est de cardinal 2^{n+1} qui est la dimension de $\mathcal{B}^{\otimes (n+1)}$. c'est une base orthonormée. La définition de S_0 montre que :

- sur le sous-espace P_0 engendré par $|0^n\rangle |0\rangle, |0^n\rangle |1\rangle, S_0$ vaut l'identité,
- sur le sous-espace Q_0 engendré par $|x\rangle |0\rangle, |x\rangle |1\rangle$ (pour $x \in \mathbb{B}^n \setminus \{0^n\}, S_0$ vaut l'opposée de l'identité.

Comme (2) est une base orthonormée, en fait $Q_0 = P_0^{\perp}$.

Donc S_0 coincide bien avec la symétrie orthogonale par rapport à P_0 .

6- Si S est une symétrie par rapport au sous-espace I et parallèlement au sous-espace D alors, pour tout isomorphisme $F: \mathcal{B}^{\otimes (n+1)} \to \mathcal{B}^{\otimes (n+1)}$ l'application $F \circ S \circ F^{-1}$ est la symétrie par rapport au sous-espace FI et parallèlement au sous-espace FD. En prenant $S = S_0$ et $F = H^{\otimes n} \otimes \operatorname{Id}$ on obtient donc que : S_{Ψ} est la symétrie par rapport au sous-espace $H^{\otimes n} \otimes \operatorname{Id} P_0$ et parallèlement au sous-espace $H^{\otimes n} \otimes \operatorname{Id} (P_0)^{\perp}$.

La transformation $H^{\otimes n} \otimes \operatorname{Id}$ envoie $|0\rangle$ sur ψ et $|1\rangle$ sur ψ' . L'espace des vecteurs invariants de S_{Ψ} est donc le plan (complexe) engendré par les vecteurs $|\psi\rangle$, $|\psi'\rangle$.

Comme la transformation $H^{\otimes n} \otimes \operatorname{Id}$ est unitaire, la direction de la symétrie est aussi $(H^{\otimes n} \otimes \operatorname{Id} P_0)^{\perp}$, i.e. S_{ψ} est la symétrie *orthogonale* par rapport au plan (complexe) engendré par les vecteurs $|\psi\rangle$, $|\psi'\rangle$.

7- On a vu à la question 4 que

$$O |\alpha\rangle = |\alpha\rangle, \quad O |\beta\rangle = -|\beta\rangle,$$
 (3)

Donc O laisse le plan P globalement invariant.

$$S_{\psi} | \psi \rangle = | \psi \rangle$$

Soit $|\psi''\rangle := \cos(\theta' + \pi/2) |\alpha\rangle + \sin(\theta' + \pi/2) |\beta\rangle$. Comme l'angle $(|\psi\rangle, |\psi''\rangle)$ a pour mesure $\pi/2$, $|\psi''\rangle \perp |\psi\rangle$. Par ailleurs $|\psi''\rangle \perp |\psi'\rangle$, car $|\psi''\rangle$ appartient au sous-espace vectoriel (complexe) engendré par $\{|x\rangle|y_-\rangle \mid x\in\mathbb{B}^n\}$ alors que $|\psi'\rangle$ appartient au sous-espace vectoriel (complexe) engendré par $\{|x\rangle|y_+\rangle \mid x\in\mathbb{B}^n\}$. On en conclut que $|\psi''\rangle \in P_0^\perp$, ce qui entraine que

$$S_{\psi} |\psi\rangle = -|\psi\rangle, \quad S_{\psi} |\psi''\rangle = -|\psi''\rangle.$$
 (4)

Comme $|\psi\rangle$, $|\psi''\rangle$ est une base de P (sur \mathbb{R}), S_{ψ} laisse le plan P globalement invariant.

8- Les équations (3) montrent que \tilde{O} est une symétrie orthogonale par rapport à $|\alpha\rangle$. Les équations (4) montrent que $\tilde{S_{\psi}}$ est une symétrie orthogonale par rapport à $|\psi\rangle$. Donc $\tilde{S_{\psi}}\tilde{O}$ est la rotation de P d'angle double de l'angle entre les axes des symétries i.e. $\theta = 2\theta'$.

9.1- Notons par $(|u\rangle, |v\rangle)$ l'angle orienté entre 2 vecteurs et $\mu((|u\rangle, |v\rangle)) \in$

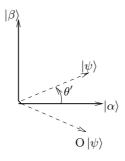


FIGURE 2 – Le plan P

 $\mathbb{R}/2\pi\mathbb{Z}$ sa mesure.

$$\begin{array}{rcl} \gamma & = & \mu((|\eta\rangle\,\hat{,}|\beta\rangle)) \\ & = & \mu((|\alpha\rangle\,\hat{,}|\beta\rangle) - (|\alpha\rangle\,\hat{,}|\eta\rangle)) \\ & = & \frac{\pi}{2} - (2k+1)\theta'. \end{array}$$

Or on a choisi k tel que

$$(2k+1)\theta' \le \frac{\pi}{2} < (2k+3)\theta'$$

Donc

$$\frac{\pi}{2} - (2k+1)\theta' < 2\theta'$$

donc

$$\gamma < 2\theta'$$
.

9.2 La sesqui-linéarité du produit scalaire justifie le calcul suivant :

$$|| |\eta\rangle - |\beta\rangle ||^2 = || |\eta\rangle ||^2 + || |\beta\rangle ||^2 - 2 \langle \beta | \eta \rangle$$
$$= 1 + 1 - 2 \cos(\gamma)$$
$$= 2(1 - \cos(\gamma))$$
$$= 4 \sin^2(\gamma/2).$$

9.3 En utilisant Q9.2 puis Q3 puis l'hypothèse de l'étape 3, cas 1 :

$$\| |\eta\rangle - |\beta\rangle \|^2 = 4\sin^2(\gamma/2) \le 4\sin^2(\theta') = 4\frac{M}{N} \le 4s.$$

10- Notons λ_x (resp. μ_x) la valeur propre de vecteur propre $|x\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}}$ (resp. $|x\rangle\,\frac{|0\rangle+|1\rangle}{\sqrt{2}}).$ 10.1 Décomposons le vecteur $|\eta\rangle$ sur les sous-espaces propres de $\mathcal M$:

$$|\eta\rangle = \sum_{f(x)=0} \rho_x \cdot |x\rangle \, \frac{|0\rangle - |1\rangle}{\sqrt{2}} + \sum_{f(x)=1} \rho_x \cdot |x\rangle \, \frac{|0\rangle - |1\rangle}{\sqrt{2}} + \sum_{x \in \mathbb{B}^n} 0 \cdot |x\rangle \, \frac{|0\rangle + |1\rangle}{\sqrt{2}},$$

$$\sum_{f(x)=0} \rho_x \cdot |x\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}} = \cos(\pi/2 - \gamma) |\alpha\rangle, \quad \sum_{f(x)=1} \rho_x \cdot |x\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}} = \sin(\pi/2 - \gamma) |\beta\rangle.$$

Le postulat de la mesure, en mécanique quantique entraîne que :

$$\Pr(\bigcup_{f(x)=0} \{\mathcal{M} = \lambda_x\}) = \sum_{f(x)=0} \rho_x^2, \ \Pr(\bigcup_{f(x)=1} \{\mathcal{M} = \lambda_x\}) = \sum_{f(x)=1} \rho_x^2, \ \Pr(\bigcup_{x \in \mathbb{B}^n} \{\mathcal{M} = \mu_x\}) = 0.$$

Donc

$$\Pr(\bigcup_{f(x)=0} \{\mathcal{M} = \lambda_x\}) = \sum_{f(x)=0} \rho_x^2$$

$$= \|\cos(\pi/2 - \gamma) |\alpha\rangle\|^2$$

$$= \sin^2(\gamma)$$

$$\leq 4\sin^2(\gamma/2)$$

$$\leq 4\frac{M}{N}$$

$$< 4s$$

et comme $\Pr(\bigcup_{x \in \mathbb{B}^n} \{\mathcal{M} = \mu_x\}) = 0$, la probabilité de l'événement comlémentaire des deux événements ci-dessus est $\geq (1 - 4s)$:

$$\Pr(\bigcup_{f(x)=1} \{ \mathcal{M} = \lambda_x \}) \ge (1 - 4s).$$

10.2 Si on répète r fois l'algorithme, la probabilité d'échouer (i.e. de ne pas obtenir une valeur x telle que f(x) = 1) est :

$$p_r \le (4s)^r$$

donc la probabilité de réussite est

$$1 - p_r \ge 1 - (4s)^r$$

Cette probabilité est supérieure ou égale à $1 - \frac{1}{1000}$ si $(4s)^r \leq \frac{1}{1000}$; donc il suffit que

$$r \ge -3\frac{\ln(10)}{\ln(4s)}$$

pour s=1/100 on obtient $r=-3\frac{\ln(10)}{\ln(4\cdot 10^{-2})}.$

11- Par un raisonnement analogue à celui de la question 10.2 on obtient :

$$r \ge -3 \frac{\ln(10)}{\ln(1-s)}$$

12-12.1 On suit le même raisonnement quà la question 10, en remplaçant le vecteur $|\eta\rangle$ par le vecteur $|\psi\rangle$.

$$|\psi\rangle = \sum_{f(x)=0} \frac{1}{\sqrt{N}} \cdot |x\rangle \, \frac{|0\rangle - |1\rangle}{\sqrt{2}} + \sum_{f(x)=1} \frac{1}{\sqrt{N}} \cdot |x\rangle \, \frac{|0\rangle - |1\rangle}{\sqrt{2}} + \sum_{x \in \mathbb{B}^n} 0 \cdot |x\rangle \, \frac{|0\rangle + |1\rangle}{\sqrt{2}}.$$

Donc

$$\Pr\left(\bigcup_{f(x)=0} \{\mathcal{M} = \lambda_x\}\right) = \sum_{f(x)=0} \frac{1}{N}$$
$$= \frac{N-M}{N}$$
$$\leq 1-s.$$

12.2 Si on répète r fois l'algorithme, la probabilité d'échouer (i.e. de ne pas obtenir une valeur x telle que f(x) = 1 est :

$$p_r \le (1-s)^r$$

On obtient une probabilité de réussite supérieure ou égale à $1-\frac{1}{1000}$ lorsque $(1-s)^r \le \frac{1}{1000}$; donc il suffit que

$$r \ge -3 \frac{\ln(10)}{\ln(1-s)}$$

pour s=1/100 on obtient $r=-3\frac{\ln(10)}{\ln(1-10^{-2})}$. Remarque finale : Aussi bien dans le cas 1, que dans le cas 2, le nombre de rétitions de l'algorithme est constant. L'algorithme complet a donc la même complexité que la version de base de l'algorithme de Grover i.e. $O(\sqrt{N})$.