


• Global view of the paper On the Weakest Failure Detector For * Crash failures and failure detectors **Read/Write-Based Mutual Exclusion** * Mutual exclusion Technical content Carole DELPORTE^{\dagger}, Hugues FAUCONNIER^{\dagger} * Basic read/write computing model Michel RAYNAL*, \star The failure detector QP \star QP-based mutual exclusion \star *QP* is the weakest FD for mutual exclusion [†]IRIF, Université Paris 7 Diderot, Paris, France *IRISA, Université de Rennes, France Conclusion ^oDept of Computing, Hong Kong Polytechnic Univ 🟲 | R | S A © Weakest FD for read/write-based mutual exclusion 1 © Weakest FD for read/write-based mutual exclusion 2 Global view Computability issue Mutual exclusion in the presence of process crashes • Not "Which information on failures allows us to solve Global view mutual exclusion despite process crash failures?" • But "Which is the weakest information on failures needed to solve read/write mutex despite process crash failures?" 🚬 I R I S A © Weakest FD for read/write-based mutual exclusion 3 © Weakest FD for read/write-based mutual exclusion 4

Most famous example: The case of Consensus (1)	Example: The case of Consensus (2)
 Each process proposes a value and all processes (that do not crash) have to agree on the same value which has to be one of the proposed values Impossible to solve in the presence of asynchrony and even a single process crash Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of distributed consensus with one faulty process <i>Journal of the ACM</i>, 32(2):374-382 (1985) Loui M. and Abu-Amara H., Memory requirements for agreement among unreliable asynchronous processes. <i>Advances in Computing Research</i>, 4:163-183, JAI Press (1987) 	 The weakest information on failures to solve consensus is the failure detector denoted Ω * Each process p_i is equipped with a read-only local variable <i>leader_i</i> * There is a finite time after which all processes that do not crash have the same id in <i>leader_i</i>, and this id is the one of a non-crashed process Chandra T., Hadzilacos V. and Toueg S. The weakest failure detector for solving consensus. <i>Journal of the ACM</i>, 43(4):685-722 (1996) Fernández A., Jiménez E., Raynal M., and Trédan G., A timing assumption and two <i>t</i>-resilient protocols for implementing an eventual leader service in asynchronous shared-memory systems. <i>Algorithmica</i>, 56(4):550-576 (2010)
C Weakest FD for read/write-based mutual exclusion 5 A few failure detectors	C Weakest FD for read/write-based mutual exclusion 6
Crash-prone modelAtomic registerConsensusStarvation-free mutexShared memorygiven for free Ω (1) Γ^1 (2)msg-passing with $t < n/2$ \exists algorithms Ω (1) T (Trusting) (3)msg-passing with $t < n$ Quorums Σ (4) $\Sigma + \Omega$ (4) $T + \Sigma$ (5)(1)Chandra T., Hadzilacos V. and Toueg S. The weakest failure detector for	Technical content
 (2) Bhatt V., Christman N., Jayanti P., Extracting quorum failure detectors. (2) Proc. 28th ACM Symposium on Principles of Distributed Computing (PODC'09), ACM Press, pp. 73-82 (2009) 	 Model * Communication: atomic read/write registers * Crash-prone asynchronous processes
(3) Delporte-Gallet C., Fauconnier H., Guerraoui R., and Kouznetsov P., Mutual exclusion in asynchronous systems with failure detectors. <i>Journal od Parallel and Distributed Computing</i> , 65:492-505 (2005)	• Result
	\star The failure detector QP

The failure detector <i>QP</i> : properties (2)	QP with respect to P and $\diamond P$
If p_i is correct: • $j \in \mathcal{F}(\tau) \Rightarrow (\exists \tau' \geq \tau: j \notin trusted_i(\tau'))$ Eventually, no faulty process $\in trusted_i$ • $j \in \mathcal{C} \Rightarrow (\exists \tau: j \in trusted_i(\tau))$ Eventually, every correct process $\in trusted_i$	 The perfect failure detector P provides each process p_i with a set suspected_i such that no process belongs to suspected_i before it crashes and eventually every process that crashes belongs forever to suspected_i ◇P is "eventually P" <: order relation the Computability power of FDs ◇P < QP < P
© Weakest FD for read/write-based mutual exclusion 13	© Weakest FD for read/write-based mutual exclusion Communication and notations
Crash-tolerant read/write-based mutual exclusion from <i>QP</i>	Read/write register model • Communication: MWMR atomic registers • Notations * Capital letters: shared objects * Small letters: local variables
IRISA © Weakest FD for read/write-based mutual exclusion 15	* Small letters: local variables

Conclusion	 Notion of a failure detector weakest information on failures to solve an otherw impossible problem <i>QP</i> is the weakest FD to solve both deadlock-free a starvation-free mutual exclusion in read/write-bas system prone to any number of process crashes In practice, we can use <i>P</i> because * <i>QP</i> is very close to <i>P</i> (perfect failure detector) * <i>P</i> is realistic
C Weakest FD for read/write-based mutual exclusion 25	C Weakest FD for read/write-based mutual exclusion