
On the Weakest Failure Detector For

Read/Write-Based Mutual Exclusion

Carole DELPORTE†, Hugues FAUCONNIER†

Michel RAYNAL⋆,⋄

†IRIF, Université Paris 7 Diderot, Paris, France

⋆IRISA, Université de Rennes, France

⋄Dept of Computing, Hong Kong Polytechnic Univ

c© Weakest FD for read/write-based mutual exclusion 1

Summary

• Global view of the paper

⋆ Crash failures and failure detectors
⋆ Mutual exclusion

• Technical content

⋆ Basic read/write computing model

⋆ The failure detector QP

⋆ QP-based mutual exclusion

⋆ QP is the weakest FD for mutual exclusion

• Conclusion

c© Weakest FD for read/write-based mutual exclusion 2

Global view

c© Weakest FD for read/write-based mutual exclusion 3

Global view

Computability issue

Mutual exclusion in the presence of process crashes

• Not “Which information on failures allows us to solve

mutual exclusion despite process crash failures?”

• But “Which is the weakest information on failures

needed to solve read/write mutex despite process

crash failures?”

c© Weakest FD for read/write-based mutual exclusion 4



Most famous example: The case of Consensus (1)

• Each process proposes a value and all processes (that
do not crash) have to agree on the same value which
has to be one of the proposed values

• Impossible to solve in the presence of asynchrony and
even a single process crash

Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of distributed con-
sensus with one faulty process Journal of the ACM, 32(2):374-382 (1985)

Loui M. and Abu-Amara H., Memory requirements for agreement among
unreliable asynchronous processes. Advances in Computing Research, 4:163-
183, JAI Press (1987)

c© Weakest FD for read/write-based mutual exclusion 5

Example: The case of Consensus (2)

• The weakest information on failures to solve consen-
sus is the failure detector denoted Ω

⋆ Each process pi is equipped with a read-only local
variable leaderi

⋆ There is a finite time after which all processes that
do not crash have the same id in leaderi, and this
id is the one of a non-crashed process

Chandra T., Hadzilacos V. and Toueg S. The weakest failure detector for
solving consensus. Journal of the ACM, 43(4):685-722 (1996)

Fernández A., Jiménez E., Raynal M., and Trédan G., A timing assump-
tion and two t-resilient protocols for implementing an eventual leader ser-
vice in asynchronous shared-memory systems. Algorithmica, 56(4):550-576
(2010)

c© Weakest FD for read/write-based mutual exclusion 6

A few failure detectors

Crash-prone model Atomic register Consensus Starvation-free mutex

Shared memory given for free Ω (1) Γ1 (2)
msg-passing with t < n/2 ∃ algorithms Ω (1) T (Trusting) (3)
msg-passing with t < n Quorums Σ (4) Σ + Ω (4) T + Σ (5)

(1) Chandra T., Hadzilacos V. and Toueg S. The weakest failure detector for
solving consensus. Journal of the ACM, 43(4):685-722 (1996)

(2) Bhatt V., Christman N., Jayanti P., Extracting quorum failure detectors.
Proc. 28th ACM Symposium on Principles of Distributed Computing (PODC’09),
ACM Press, pp. 73-82 (2009)

(3) Delporte-Gallet C., Fauconnier H., Guerraoui R., and Kouznetsov P., Mutual
exclusion in asynchronous systems with failure detectors. Journal od Parallel and
Distributed Computing, 65:492-505 (2005)

(4) Delporte-Gallet C., Fauconnier H. and Guerraoui R., Tight failure detection
bounds on atomic object implementations. Journal of the ACM, 57(4), Article
22, 32 pages (2010)

(5) Bhatt V. and Jayanti P., On the existence of weakest failure detectors for mu-
tual exclusion and k-exclusion. 23rd Int’l Symposium on Distributed Computing
(DISC’09), Springer LNCS 5805, pp. 325-339 (2009)

c© Weakest FD for read/write-based mutual exclusion 7

Technical content

• Model

⋆ Communication: atomic read/write registers

⋆ Crash-prone asynchronous processes

• Result

⋆ The failure detector QP

⋆ Crash-tolerant mutual exclusion from QP

⋆ Optimality of QP

c© Weakest FD for read/write-based mutual exclusion 8



Computing entities

• n asynchronous sequential processes p1, ..., pn

• Asynchrony = each process proceeds at its own
speed, which can be arbitrary and remains always un-
known to the other processes

• Any number of processes may crash (premature halt)

• Terminology: given a run

a process that crashes is faulty, otherwise it is correct

• F(τ): set of processes crashed at time τ

• C: set of process that do not crash

c© Weakest FD for read/write-based mutual exclusion 9

The failure detector QP

c© Weakest FD for read/write-based mutual exclusion 10

The failure detector QP: automaton

• Three sets: trustedi, crashedi, and initi

• Initially: trustedi = crashedi = ∅, initi = {1, ...n}

initi crashedi

trustedi

c© Weakest FD for read/write-based mutual exclusion 11

The failure detector QP: properties (1)

• ∀ i, ∀ τ : trustedi(τ) ∩ crashedi(τ) = ∅

A process cannot be trusted and crashed at the same
time

• ∀ i: j ∈ trustedi(τ) ⇒
(

∀ τ ′ ≥ τ : j ∈ trustedi(τ
′) ∪ crashedi(τ

′)
)

∧
(

∀ k ∈ C : ∃τ ′: j ∈ trustedk(τ
′) ∪ crashedk(τ

′)
)

A trusted process has to be eventually observed by
all correct processes

• j ∈ crashedi(τ) ⇒ j ∈ F(τ)

crashedi contains only crashed processes

• j ∈ crashedi(τ) ⇒
(

∀ τ ′ ≥ τ : j ∈ crashedi(τ
′)

)

Crashes are stable

c© Weakest FD for read/write-based mutual exclusion 12



The failure detector QP: properties (2)

If pi is correct:

• j ∈ F(τ) ⇒
(

∃τ ′ ≥ τ : j 6∈ trustedi(τ
′)

)

Eventually, no faulty process ∈ trustedi

• j ∈ C ⇒
(

∃τ : j ∈ trustedi(τ)
)

Eventually, every correct process ∈ trustedi

c© Weakest FD for read/write-based mutual exclusion 13

QP with respect to P and ✸P

• The perfect failure detector P provides each process
pi with a set suspectedi such that

⋆ no process belongs to suspectedi before it crashes,
and

⋆ eventually every process that crashes belongs for-
ever to suspectedi

• ✸P is “eventually P”

• ≺: order relation the Computability power of FDs

• ✸P ≺ QP ≺ P

c© Weakest FD for read/write-based mutual exclusion 14

Crash-tolerant read/write-based

mutual exclusion

from QP

c© Weakest FD for read/write-based mutual exclusion 15

Communication and notations

Read/write register model

• Communication: MWMR atomic registers

• Notations

⋆ Capital letters: shared objects

⋆ Small letters: local variables

c© Weakest FD for read/write-based mutual exclusion 16



Crash-tolerant deadlock-free mutual exclusion

• Operations entry() and exit()

• Properties:

⋆ Mutual exclusion: No two processes are simulta-
neously in their critical section

⋆ Deadlock-freedom: If a correct process pi has a
pending entry() operation and no process is in the
critical section, eventually some process pj (possi-

bly pj 6= pi) returns from its entry() operation

⋆ Wait-free exit: If a correct process invokes exit(),
it returns from its invocation

• If a process crashes while it is in the critical section,
it implicitly releases of the critical section

c© Weakest FD for read/write-based mutual exclusion 17

Crash-tolerant mutex algorithm (1)

• Very simple adaptation of Lamport’s bakery mutual
exclusion algorithm

Lamport L., A new solution of Dijkstra’s concurrent programming problem.
Communications of the ACM, 17(8):453-455, (1974)

Taubenfeld G., Synchronization algorithms and concurrent programming.
Pearson Education/Prentice Hall, 423 pages, ISBN 0-131-97259-6 (2006)

Raynal M., Concurrent programming: algorithms, principles, and founda-
tions. Springer, 515 pages, ISBN 978-3-642-32027-9 (2013)

• Satisfies starvation-freedom

c© Weakest FD for read/write-based mutual exclusion 18

Crash-tolerant mutex algorithm (2)

init:∀j ∈ {1, . . . , n} : FLAG[j] ∈ {down, up}, init down;
∀j ∈ {1, . . . , n} : LABEL[j] ∈ N, init 0.

operation entry() is

wait (i ∈ trustedi);

FLAG[i]← up;
LABEL[i]← max(LABEL[1], . . . ,LABEL[n]) + 1;
FLAG[i]← down;
for all k 6= i do

wait
(

(FLAG[k] = down) ∨ k ∈ crashedi
)

;

wait
(

(LABEL[k] = 0) ∨ (LABEL[i], i) < (LABEL[k], k)

∨ k ∈ crashedi
)

;

end for.

operation exit() is LABEL[i]← 0.

c© Weakest FD for read/write-based mutual exclusion 19

Optimality of QP

weakest FD for

read/write-based mutual exclusion

c© Weakest FD for read/write-based mutual exclusion 20



What does mean “weakest FD for mutex”?

Notion of an extraction algorithm

Extraction algorithm

QP failure detector

Any crash-prone mutex algorithm A

c© Weakest FD for read/write-based mutual exclusion 21

Extraction algorithm E

• Extract means that, at any time, the algorithm E
outputs the sets trustedi and crashedi at every process
pi, and these sets satisfy the properties defining the
failure detector QP

• Extraction algorithm E: uses a set of n mutex (locks)
objects MUTEX [1..n], one associated with each pk

• MT [k] is used to detect the crash of pk

• Boolean shared STARTED[1..n] init [false, ..., false]

• STARTED[i] is used to capture the progress of pi

• Outputs of the FD (which is built):

⋆ trustedi init ∅

⋆ crashedi init ∅

c© Weakest FD for read/write-based mutual exclusion 22

Extraction algorithm E at process pi

run in parallel the tasks t1, . . . , tn defined as follows:
task ti is

MUTEX [i].entry();
STARTED[i]← true;
trustedi← trustedi ∪ {i};
wait(false); % wait forever
MUTEX [i].exit().

task tk, 1 ≤ k ≤ n ∧ k 6= i, is
wait(STARTED[k]);
trustedi ← trustedi ∪{k};
MUTEX [k].entry(); no-op; MUTEX [k].exit();
〈trustedi, crashedi〉 ← 〈trustedi \{k}, crashedi ∪{k}〉.

c© Weakest FD for read/write-based mutual exclusion 23

Optimality theorems

• Algorithm E extracts a failure detector QP from any
algorithm solving deadlock-free mutual exclusion in
any read/write n-process system where any number
of processes may crash

• QP is the weakest failure detector for both deadlock-
free and starvation-free mutual exclusion in read/write
systems where any number of processes may crash

• Ω ≺ ✸P ≺ QP ≺ P

c© Weakest FD for read/write-based mutual exclusion 24



Conclusion

c© Weakest FD for read/write-based mutual exclusion 25

• Notion of a failure detector
weakest information on failures to solve an otherwise
impossible problem

• QP is the weakest FD to solve both deadlock-free and
starvation-free mutual exclusion in read/write-based
system prone to any number of process crashes

• In practice, we can use P because

⋆ QP is very close to P (perfect failure detector)

⋆ P is realistic

c© Weakest FD for read/write-based mutual exclusion 26


