
02/10/2017

1

Relationships between
communication models based

on registers
for fault-tolerant distributed computing on

networks

Colette Johnen, Lisa Higham
Univ. Bordeaux, CNRS, LaBRI, UMR 5800

Univ. Calgary, Canada

1

Semantics of a register

[Lamport 86]

DESCARTES –oct 17 2

Single-Writer Register (SR)- def

• A register is a memory cell on which two types of
operations are possible READ and WRITE

• On a Single-Writer register, only one process can do the
WRITE operation

• On a register R, READ and WRITE operation are not

atomic, they take some time

A READ operation on a register R may overlap several
WRITE operations on R

3 DESCARTES –oct 17

Single-Writer register - semantic

• On R, a READ operation that does not overlap any WRITE
operation returns the most recent preceding written value
(v1) in R

WRITE value v1 READ returns v1

time

4 DESCARTES –oct 17

• On R, a READ operation that does overlap a WRITE
operation may return any value

Safe register [Lamport 86]

WRITE v2

time

WRITE v1 WRITE v3

READ returns v1, v2, v3, or v4

5 DESCARTES –oct 17

• On R, a READ operation that does overlap a WRITE
operation returns the most recent preceding written value
or any value written during overlapping WRITE operations

Regular and Atomic register
[Lamport 86]

WRITE v2

time

READ returns v1, v2, or v3

WRITE v1 WRITE v3

6

READ returns v1 or v2

DESCARTES –oct 17

02/10/2017

2

Atomic register [Lamport 86]

• On R, if a READ operation returns the value written during
the overlapping WRITE operation then any subsequence
READ cannot return the most recent preceding written

value (v1)

WRITE value v2

time

READ returns v2

v1

READ returns v2

7

READ returns v1

DESCARTES –oct 17

Property of atomic registers

• A sequence of operations on an atomic register is
linearizable [Herlihy, Wing 90]

Each operation appears to happen instantaneously at
some point during its execution

WRITE v1

time

READ returns v1

WRITE v2

WRITE WRITE READ

8 DESCARTES –oct 17

Regular register

• A sequence of operations on an regular register may not
linearizable

WRITE value v2

READ returns v2

READ returns v1

READ READ

9 DESCARTES –oct 17

Communication Model on networks

10 DESCARTES –oct 17

Distributed computing on networks

A processor can only
communicate with its
neighbors

Ex: p can only communicate
with q and t

Topology G

t

p

s

q

11 DESCARTES –oct 17

Communication modelS based on
Single-Writer registers

• a single register per
process : multi-reader
register

[MN98], [AS99], [H00],
[NA02]

• a register is associated
to a link : single-reader
register

[DIM93], [Dolev 02]

Topology G

t

p

q

12 DESCARTES –oct 17

02/10/2017

3

a single register per process :
state network model

t

p

q

Rp

Rt

A processor p has a single
atomic single-writer multi-
reader register Rp

Rp is readable by p’s
neighbors : q and t

Rp is writable by p

State(G)

Rq

13 DESCARTES –oct 17

Communication model for network:
link network model

Rpt Rtp Rqp Rpq

A processor p has several
atomic single-writer
single-reader registers
(one per neighbor)

Rpt is readable by t

Rpt is writable by p Link(G)

t

p

q

14 DESCARTES –oct 17

Communication models based
on registers on network G

Semantic

location

 Atomic Regular Safe

 State

multi-reader

atomic-state(G)

[MN98], [AS99], [H00],

[NA02]

regular-

state(G)

safe-

state(G)

Link

singler-

reader

atomic-link(G)

Read-Write atomicity

model

[DIM93], [Dolev 02]

regular-

link(G)

safe-

link(G)

15 DESCARTES –oct 17

Distributed System

S = (G : Graph, MC : Communication Model, A : Algo)

Computation of S is the set of computations of A on MC(G)

Goal : to implement every algorithm A for MC1(G) on

MC2(G)

16 DESCARTES –oct 17

Transformation  : MC1(G)  MC2(G)

Let R be a register of MC1(G) writable by p and readable by q

Transformation  is two programs
(READ(R)) returns a value

(WRITE(R,v))

These two programs are a series of valid READ and WRITE

operations on registers of MC2(G)

(WRITE(R,v)) invocation by p contains only READ and

WRITE operations on registers respectively readable or

writable by p
(READ(R)) invocation by q contains only READ and

WRITE operations on registers respectively readable or

writable bq

 17 DESCARTES –oct 17

Simple Transformation State  Link

On p,

(STATE-WRITE(Rp,v)) :

for every q in neighborhood of p do
 LINK-WRITE(Rpq, v)

(STATE-READ(Rq))

v  LINK-READ(Rqp)

return v

p

t q

Rpt Rtp Rqn
Rpq

Link(G)

P

t q

Rp
Rt

State(G)

Rq

18 DESCARTES –oct 17

02/10/2017

4

Transformation  : MC1(G)  MC2(G)

Transformation  is two programs
(READ(R)) returns a value

(WRITE(R,v))

 These two programs are a series of valid READ and

WRITE operations on registers of MC2(G)

• Let A be an algorithm on MC1(G)

 (A) : READ(R) and WRITE(R, v) operation invocations in A

are respectively replaced by two program executions
(READ(R)) and (WRITE(R, v))

(A) is an algorithm on MC2(G)

19 DESCARTES –oct 17

 be a transformation of MC1(G) to MC2(G)

 S1=(G, MC1, A) → S2=(G, MC2, (A))

(A) : READ(R) and WRITE(R, v) operation invocations in A are

respectively replaced by two program executions (READ(R))

and (WRITE(R, v))

(A) is an algorithm on MC2(G)

 The transformation  is a compiler iff S2=(G, MC2, (A)) is a

syntactically and semantically valid transformation of

S1 = (G, MC1, A)

Compiler  : MC1(G)  MC2(G)

20 DESCARTES –oct 17

Nov 2008 21

Wait-free implementation of binary regular
SWSR register by a binary safe SWSR

register [Lamport 86]

(REG-WRITE(R,new))

 if old ≠ new then

 SAFE-WRITE(Rs,new))

 old  new;

 fi

(REG-READ(R))

 SAFE-READ(Rs)

Writer
Reader Rs

old

21 DESCARTES –oct 17

Fault tolerance : Wait-Freedom

Wait-free operation: a processor can complete the operation
in a finite number of steps, regardless of the actions of
other processors

(i.e. a READ and a WRITE operation is done in finite number

of steps)

A wait-free operation is tolerant of processor crashes

a compiler is wait-free if it preserves the wait-freedom
property

22 DESCARTES –oct 17

Fault-tolerance : Self-Stabilization

• Self-stabilization system automatically convergence to a

legitimate configuration from any arbitrary configuration.

From a legitimate configuration, the system behaves

correctly (i.e. semantic of READ and WRITE operations is

provided).

A self-stabilizing system is tolerant of transient failures that
corrupt the processor state.

a compiler is self-stabilizing if it preserves the self-stabilizing
property

23 DESCARTES –oct 17

All reads of the following execution return 1:
[(regular-write(R,0), regular-read(R)]*

Writer
Reader Rs=1

old=0

Lamport construction is not self-stabilizing

Wait-free implementation of binary regular
SWSR register by a binary safe SWSR

register [Lamport 86]

24 DESCARTES –oct 17

02/10/2017

5

Nov 2008 25

Self-stabilizing, Wait-free implementation of
SWSR regular binary register by a
 dual-reader safe binary register

[Hoepman, Papatriantafilou, Tsigas 02]

Writer Reader Rs

(REG-WRITE(R,new))

if SAFE-READ(Rs)≠ new
 then

 SAFE-WRITE(Rs,new))

fi

(REG-READ(R))

 SAFE-READ(Rs)

25 DESCARTES –oct 17

Simple Transformation State  Link

On p,

(STATE-WRITE(Rp,v)) :

for every q in neighborhood of p do
 LINK-WRITE(Rpq, v)

(STATE-READ(Rq))

v  LINK-READ(Rqp)

return v

p

t q

Rpt Rtp Rqn
Rpq

Link(G)

P

t q

Rp
Rt

State(G)

Rq

26

(ATOMIC-STATE-WRITE(Rp, v2))

ATOMIC-LINK-WRITE(Rpq) ATOMIC-LINK-WRITE(Rpt)

DESCARTES –oct 17

Linearization of an execution of
 simple transformation on atomic registers ?

time

v1
p

q

Operations on Rp

WRITE(Rpq, v2) WRITE(Rpt,v2)

(ATOMIC-STATE-WRITE(Rp, v2))
v2

t

R
v1

R
v1

R
v2

R

v1

R
v2

R = (ATOMIC-STATE-READ(Rp))

v2

R

27

NO

DESCARTES –oct 17

time

v1

p

q

t

R
v1

R
v1

R
v2

R
v1

R = (ATOMIC-STATE-READ(Rp))

v2

R

28

Wait-Free compiler Atomic-State(G) 
Atomic-Link(G) ?

R
v1

R
v1

W

(ATOMIC-STATE-WRITE(Rp, v2)) v2

W W W W

R
v2

R
v2

R
v2

NO

Rp

DESCARTES –oct 17

Higham, Johnen 07

Higham,
Johnen 06

Lamport

1986

Lamport

1986

Wait-free compilers

State

multi-
reader

Atomic Regular

Link

Single
reader

Safe

29 DESCARTES –oct 17

State

Multi-
reader

Atomic Regular

Link

Single
reader

Safe

Self-stabilizing compilers

L. Higham, C.
Johnen 06

C. Johnen, L. Higham 07

30 DESCARTES –oct 17

02/10/2017

6

Self-Stabilizing compiler Atomic-State(G)
 Atomic-Link(G) [IPDPS06]

Drawbacks/Features of Self-Stabilizing compiler from Atomic-
State(G) to Atomic-Link(G) [IPDPS06] :

• (ATOMIC-STATE-WRITE(Rp)) is not wait-free : during an
execution of (ATOMIC-STATE-WRITE(Rp)) any p’s
neighbor, q, has to do the operation ATOMIC-LINK-
READ(Rpq) two times

• Each process performs infinitely often ATOMIC-STATE-
READ operations

• (ATOMIC-STATE-READ(Rp)))) is not wait-free

• Each process performs two ATOMIC-STATE-WRITE
operations

31 DESCARTES –oct 17

Self-Stabilizing compiler Atomic-State(G)
 Regular-State(G)

Drawbacks/Features of compiler from Atomic-State(G) of
Regular-State(G) :

• (ATOMIC-STATE-WRITE(Rp)) is wait-free

• (ATOMIC-STATE-READ(Rp)) is not wait-free in case there
is an overlay (ATOMIC-STATE-WRITE (Rp))

• Each process p performs one (ATOMIC-STATE-WRITE
(Rp)) operation

32 DESCARTES –oct 17

Lamport 86

« Conjecture »

Wait-free and Self-stabilizing compilers

State

multi-
reader

Atomic Regular

Link

Single
reader

Safe

Johnen, Higham 09

Simple
transformation

33 DESCARTES –oct 17

