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Conception of distributed algorithms

Why is it difficult to conceive a distributed algorithm ?

1 For some distributed problems, there is no algorithm
• There does not exist a wait free algorithm for consensus

2 To solve this issue, one might consider new execution contexts
• For instance, wait free vs obstruction free
• Intuitions behind such contexts can be hard to get

3 The proofs of correctness can be tedious to achieve
• Due to the interleaving, many behavior to consider
• Invariants are not easy to express
• Automatic verification methods are hard to find

Challenges
• Provide tools and techniques to ease the conception of

distributed algorithms
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In this work

• Focus on algorithms working on shared memory (single writer;
multiple reader)

• No other mechanism than write and read to the memory
• Simple distributed problems: consensus and ε-agreement
• Propose a model for distributed algorithms and a specification

language for ;
• Classical correctness properties
• Selecting some specific executions

Investigate whether in some cases, distributed algorithm can be
built automatically
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Process algorithms
• Each process has a local copy of the registers (its current view)
• Each process has a local memory state

• To behave differently with the same view according to its past
behavior

• A process can perform three actions:
1 Write a data value to its own register wr(d)
2 Read a shared register re(k)
3 Decide a value dec(o)

• The action is determined by the local state and the view

A process algorithm
P = (M, δ) over a set D of data and in an environment of n processes
• M set of local memory states
• δ : M ×Dn 7→ M × Act(D,n)

• δin : D 7→ M × Act(D,n) (determine the first action)

Modeling distributed algorithms 6



Distributed algorithms

A distributed algorithm
A = P1 ⊗ P2 ⊗ . . . ⊗ Pn where each Pi is a process algorithm over a
set D of data and in an environment of n processes.

About the semantics
• A configuration is the local state and the local view of each

process + the value of the shared registers
• A write changes the shared register and the local view of the

writer
• A read changes only the local view of the reader
• At the moment all interleavings are allowed
• When a process has decided, it cannot change its state nor its

view

Modeling distributed algorithms 7



Example

Consensus Algorithm for process i in {1,2}

Input : V: the input value of process i
1: while true do
2: r[i]:=V
3: tmp:=r[3-i]
4: if tmp=V or tmp = ⊥ then
5: Decide(V)
6: Exit()
7: else
8: V:=tmp
9: end if

10: end while
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Example in our formalism

Process algorithm for process with id 1

◦

◦ ⊥ ,A

(wr(◦),A)

◦ • ,B

(re(2),B)

◦ ◦ ,B(dec(◦),B)

◦ ⊥ ,B(dec(◦),B)

◦ ◦ ,A
(re(2),B)

•

• ⊥ ,A

(wr(•),A)

• ◦ ,B

(re(2),B)

(wr(◦),A)

• • ,B (dec(•),B)

•⊥ ,B (dec(•),B)

• • ,A
(re(2),B)

(wr(•),A)
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Example of execution

◦

◦ ⊥ ,A

(wr(◦),A)

◦ • ,B

(re(2),B)

◦ ◦ ,B(dec(◦),B)

◦ ⊥ ,B(dec(◦),B)

◦ ◦ ,A
(re(2),B)

•

• ⊥ ,A

(wr(•),A)

• ◦ ,B

(re(2),B)

(wr(◦),A)

• • ,B (dec(•),B)

•⊥ ,B (dec(•),B)

• • ,A
(re(2),B)

(wr(•),A)

• | ◦ | ⊥ ⊥ 7→ • ⊥ ,A | ◦ | • ⊥ 7→ • ⊥ ,A | ⊥ ◦ ,A | • ◦ 7→

• ⊥ ,A | • ◦ ,B | • ◦
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LTL and Kripke structures
• Linear time Temporal Logic used to specify executions
• It is interpreted over Kripke structures, i.e. graph where each

node is labelled with atomic propositions
• If an atomic proposition is present in a node, it is true in this node

Syntax
φ, ψ ::= p | ¬φ | φ∨ψ | Xφ | φUψ

• Interpreted over infinite paths of the structure
• Xφ→ the next state verifies φ
• φUψ → eventually ψ holds and in the meantime φ is true

Classical shortcuts:
• Fφ def

= >Uψ → eventually ψ holds

• Gφ def
= ¬F¬φ→ φ always holds

• GFφ→ φ holds infinitely often
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LTL and Kripke structures

{p,q}

{r} {p}

• A structure satisfies a formula φ iff all its paths satisfy φ
• Formulae satisfied by the system: GFp, Fr
• Formulae not satisfied by the system: Xr , Gp

Using LTL to reason on distributed algorithms 13



Specifying distributed algorithms

• The execution graph of the distributed algorithm A is our Kripke
structure KA with:
• A initial state which non deterministic goes to a combination of

possible initial value
• All the possible executions are considered

• Add the following atomic propositions:
• activei → process i is the last one to perform an action
• Di → process i has decided
• Ind

i → the initial value of process i is d
• Outdi → the output value of process i is d .

• We have the following assumptions:
• Ind

i is only true in the second states (where the initial values are
chosen)

• Di ⇔
∨

d Outdi
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Classical properties
Reminder on consensus
• Each process is equipped with an initial value
• Agreement: The processes that decide must decide the same

value
• Validity: The decided value must be one of the initial ones

In our formalism
• Agreement:

Φc
agree

def
= G

∧
1≤i 6=j≤n

(
(Di ∧Dj ) ⇒ (

∧
d

Outdi ⇔ Outdj )
)

• Validity:

Φc
valid

def
= X

∧
1≤i≤n

∧
d

((
F Outdi

)
⇒
( ∨

1≤j≤n

Ind
j

))
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Specifying execution contexts
What are execution contexts
• They determine the authorized sequences of active processes
• An algorithm might not be correct for all the possible sequences

but for a subset of them
• For all the authorized sequences of active processes, any

process infinitely often active has to decide

Examples
• Wait-free: each process produces an output value after a finite

number of its own steps

Φwf
def
=

∧
1≤i≤n

(
(G F activei ) ⇒ (F Di )

)
• Obstruction-free: every process that eventually executes in

isolation has to produce an output value

Φof
def
=

∧
1≤i≤n

((F G activei )⇒ (F Di ))
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Verification vs Synthesis

Verification
• Given an algorithm A and a specification φ, check if KA satisfies
φ

• Can be achieved in PSPACE

• For instance, we can verify that our example algorithm satisfies
Φc

agree ∧ Φc
valid ∧ Φof, it is a correct obstruction free consensus

algorithm

Synthesis
• Only the specification is given
• The algorithm is not given but built automatically
• The algorithm is correct by construction
• Much harder problem
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The synthesis problem

The synthesis problem
• Inputs: A number n of processes, a data set D, a set of memory

values M and a LTL formula Φ

• Output: Is there a n processes distributed algorithm over D
which uses memory M and satisfies φ ?

Remarks:
• If the answer is NO, we cannot conclude that there is no

algorithm in general, but that for the given bounds there is no
algorithm

• If the answer is YES, we would like to have the algorithm, i.e. the
method is constructive
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Solving the synthesis problem

The synthesis problem is decidable and in the positive cases,
our method produces an algorithm

Main ingredients:
1 Build an ’universal’ Kripke structure KU which from any

configuration allows any possible action
2 Add specific atomic propositions to extract an algorithm from KU

• Consistent labelling to state the actions to be performed by a
process

• Atomic proposition Pi
(a,m) → the next action of process i is a and its

state changes to m
• Ensures that with the same local state and the same view, the

process performs the same action

3 Extract with an extra LTL formula Φout the paths corresponding to
the algorithm

4 Check whether KU satisfies Φout ⇒ Φ
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Methodology

• The goal was to check whether some SMT solver could handle
our method

• Our prototype does not handle general LTL formula but an ad
hoc encoding for some specific executive contexts (wait-free,
obstruction free, round-robin like)

• It produces an existentially quantified formula and gives it to the
SMT solver Z3

• If the SMT solver returns SAT, we can extract the algorithm
• We furthermore check with a classical model-checker that the

produced algorithm is correct
• Inputs of our prototype : number of processes, data range, size

of memory, type of execution context, value of ε for ε agreement
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Results

• We study two distributed problems: consensus and
ε-agreement

• We effectively face the state explosion problem and restrict
ourselves to two processes

• We had to help the solver with some heuristics to make it
converge

• Our implementation is really naive (and could be improve a lot)
• Found automatically algorithms in this case:

• Consensus: Obstruction free but as well more unusual contexts
like obstruction free+round-robin

• ε-agreement: Wait-free and different values of ε
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Example

◦

◦ ⊥ ,B

(wr(◦),B)

◦ ◦ ,A

(re,A)

◦ ⊥ ,A

(dec(◦),A) ◦ • ,A

◦ ◦ ,B

(re,A)

(dec(◦),B)
• ◦ ,A

(wr(◦),A) ◦ • ,B

(re,A)

• • ,B

(wr(•),B)

(re,A)

•

• ⊥ ,A

(wr(•),A)

• ⊥ ,B

(dec(•),B)

• ◦ ,B

(re,B)

• • ,A
(re,B)

(dec(•),A)

Algorithm for consensus supporting obstruction free and round-robin
contexts
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Conclusion

What have we done ?
• Propose a general framework to model algorithms and to specify

executive contexts
• Test how hard is in practice the synthesis problem when

bounding everything (size of algorithms and exchanged data)
• An important amount of implementation work is necessary to

make such a synthesis work for more than two processes
What’s next ?
• Big Challenge : Find decision procedure in the general case
• In general checking whether a distributed problem can be solved

by a wait-free algorithm is an undecidable problem
• Find distributed problems and executive contexts for which the

synthesis problem can be solved
• Find way to deal with dynamic changes of executive contexts
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