
Towards synthesis of distributed
algorithms with SMT solvers

C. Delporte-Gallet, H. Fauconnier, Y. Jurski, F. Laroussinie and
Arnaud Sangnier

IRIF - Univ Paris Diderot

ANR DESCARTES 9th October 2019

1

Conception of distributed algorithms

Why is it difficult to conceive a distributed algorithm ?

1 For some distributed problems, there is no algorithm
• There does not exist a wait free algorithm for consensus

2 To solve this issue, one might consider new execution contexts
• For instance, wait free vs obstruction free
• Intuitions behind such contexts can be hard to get

3 The proofs of correctness can be tedious to achieve
• Due to the interleaving, many behavior to consider
• Invariants are not easy to express
• Automatic verification methods are hard to find

Challenges
• Provide tools and techniques to ease the conception of

distributed algorithms

Introduction 2

In this work

• Focus on algorithms working on shared memory (single writer;
multiple reader)

• No other mechanism than write and read to the memory
• Simple distributed problems: consensus and ε-agreement
• Propose a model for distributed algorithms and a specification

language for ;
• Classical correctness properties
• Selecting some specific executions

Investigate whether in some cases, distributed algorithm can be
built automatically

Introduction 3

Outline

1 Modeling distributed algorithms

2 Using LTL to reason on distributed algorithms

3 Synthesis

4 Experiments

Introduction 4

Outline

1 Modeling distributed algorithms

2 Using LTL to reason on distributed algorithms

3 Synthesis

4 Experiments

Modeling distributed algorithms 5

Process algorithms
• Each process has a local copy of the registers (its current view)
• Each process has a local memory state

• To behave differently with the same view according to its past
behavior

• A process can perform three actions:
1 Write a data value to its own register wr(d)
2 Read a shared register re(k)
3 Decide a value dec(o)

• The action is determined by the local state and the view

A process algorithm
P = (M, δ) over a set D of data and in an environment of n processes
• M set of local memory states
• δ : M ×Dn 7→ M × Act(D,n)

• δin : D 7→ M × Act(D,n) (determine the first action)

Modeling distributed algorithms 6

Distributed algorithms

A distributed algorithm
A = P1 ⊗ P2 ⊗ . . . ⊗ Pn where each Pi is a process algorithm over a
set D of data and in an environment of n processes.

About the semantics
• A configuration is the local state and the local view of each

process + the value of the shared registers
• A write changes the shared register and the local view of the

writer
• A read changes only the local view of the reader
• At the moment all interleavings are allowed
• When a process has decided, it cannot change its state nor its

view

Modeling distributed algorithms 7

Example

Consensus Algorithm for process i in {1,2}

Input : V: the input value of process i
1: while true do
2: r[i]:=V
3: tmp:=r[3-i]
4: if tmp=V or tmp = ⊥ then
5: Decide(V)
6: Exit()
7: else
8: V:=tmp
9: end if

10: end while

Modeling distributed algorithms 8

Example in our formalism

Process algorithm for process with id 1

◦

◦ ⊥ ,A

(wr(◦),A)

◦ • ,B

(re(2),B)

◦ ◦ ,B(dec(◦),B)

◦ ⊥ ,B(dec(◦),B)

◦ ◦ ,A
(re(2),B)

•

• ⊥ ,A

(wr(•),A)

• ◦ ,B

(re(2),B)

(wr(◦),A)

• • ,B (dec(•),B)

•⊥ ,B (dec(•),B)

• • ,A
(re(2),B)

(wr(•),A)

Modeling distributed algorithms 9

Example of execution

◦

◦ ⊥ ,A

(wr(◦),A)

◦ • ,B

(re(2),B)

◦ ◦ ,B(dec(◦),B)

◦ ⊥ ,B(dec(◦),B)

◦ ◦ ,A
(re(2),B)

•

• ⊥ ,A

(wr(•),A)

• ◦ ,B

(re(2),B)

(wr(◦),A)

• • ,B (dec(•),B)

•⊥ ,B (dec(•),B)

• • ,A
(re(2),B)

(wr(•),A)

• | ◦ | ⊥ ⊥ 7→ • ⊥ ,A | ◦ | • ⊥ 7→ • ⊥ ,A | ⊥ ◦ ,A | • ◦ 7→

• ⊥ ,A | • ◦ ,B | • ◦

Modeling distributed algorithms 10

Outline

1 Modeling distributed algorithms

2 Using LTL to reason on distributed algorithms

3 Synthesis

4 Experiments

Using LTL to reason on distributed algorithms 11

LTL and Kripke structures
• Linear time Temporal Logic used to specify executions
• It is interpreted over Kripke structures, i.e. graph where each

node is labelled with atomic propositions
• If an atomic proposition is present in a node, it is true in this node

Syntax
φ, ψ ::= p | ¬φ | φ∨ψ | Xφ | φUψ

• Interpreted over infinite paths of the structure
• Xφ→ the next state verifies φ
• φUψ → eventually ψ holds and in the meantime φ is true

Classical shortcuts:
• Fφ def

= >Uψ → eventually ψ holds

• Gφ def
= ¬F¬φ→ φ always holds

• GFφ→ φ holds infinitely often

Using LTL to reason on distributed algorithms 12

LTL and Kripke structures

{p,q}

{r} {p}

• A structure satisfies a formula φ iff all its paths satisfy φ
• Formulae satisfied by the system: GFp, Fr
• Formulae not satisfied by the system: Xr , Gp

Using LTL to reason on distributed algorithms 13

Specifying distributed algorithms

• The execution graph of the distributed algorithm A is our Kripke
structure KA with:
• A initial state which non deterministic goes to a combination of

possible initial value
• All the possible executions are considered

• Add the following atomic propositions:
• activei → process i is the last one to perform an action
• Di → process i has decided
• Ind

i → the initial value of process i is d
• Outdi → the output value of process i is d .

• We have the following assumptions:
• Ind

i is only true in the second states (where the initial values are
chosen)

• Di ⇔
∨

d Outdi

Using LTL to reason on distributed algorithms 14

Classical properties
Reminder on consensus
• Each process is equipped with an initial value
• Agreement: The processes that decide must decide the same

value
• Validity: The decided value must be one of the initial ones

In our formalism
• Agreement:

Φc
agree

def
= G

∧
1≤i 6=j≤n

(
(Di ∧Dj) ⇒ (

∧
d

Outdi ⇔ Outdj)
)

• Validity:

Φc
valid

def
= X

∧
1≤i≤n

∧
d

((
F Outdi

)
⇒
(∨

1≤j≤n

Ind
j

))

Using LTL to reason on distributed algorithms 15

Specifying execution contexts
What are execution contexts
• They determine the authorized sequences of active processes
• An algorithm might not be correct for all the possible sequences

but for a subset of them
• For all the authorized sequences of active processes, any

process infinitely often active has to decide

Examples
• Wait-free: each process produces an output value after a finite

number of its own steps

Φwf
def
=

∧
1≤i≤n

(
(G F activei) ⇒ (F Di)

)
• Obstruction-free: every process that eventually executes in

isolation has to produce an output value

Φof
def
=

∧
1≤i≤n

((F G activei)⇒ (F Di))

Using LTL to reason on distributed algorithms 16

Outline

1 Modeling distributed algorithms

2 Using LTL to reason on distributed algorithms

3 Synthesis

4 Experiments

Synthesis 17

Verification vs Synthesis

Verification
• Given an algorithm A and a specification φ, check if KA satisfies
φ

• Can be achieved in PSPACE

• For instance, we can verify that our example algorithm satisfies
Φc

agree ∧ Φc
valid ∧ Φof, it is a correct obstruction free consensus

algorithm

Synthesis
• Only the specification is given
• The algorithm is not given but built automatically
• The algorithm is correct by construction
• Much harder problem

Synthesis 18

The synthesis problem

The synthesis problem
• Inputs: A number n of processes, a data set D, a set of memory

values M and a LTL formula Φ

• Output: Is there a n processes distributed algorithm over D
which uses memory M and satisfies φ ?

Remarks:
• If the answer is NO, we cannot conclude that there is no

algorithm in general, but that for the given bounds there is no
algorithm

• If the answer is YES, we would like to have the algorithm, i.e. the
method is constructive

Synthesis 19

Solving the synthesis problem

The synthesis problem is decidable and in the positive cases,
our method produces an algorithm

Main ingredients:
1 Build an ’universal’ Kripke structure KU which from any

configuration allows any possible action
2 Add specific atomic propositions to extract an algorithm from KU

• Consistent labelling to state the actions to be performed by a
process

• Atomic proposition Pi
(a,m) → the next action of process i is a and its

state changes to m
• Ensures that with the same local state and the same view, the

process performs the same action

3 Extract with an extra LTL formula Φout the paths corresponding to
the algorithm

4 Check whether KU satisfies Φout ⇒ Φ

Synthesis 20

Outline

1 Modeling distributed algorithms

2 Using LTL to reason on distributed algorithms

3 Synthesis

4 Experiments

Experiments 21

Methodology

• The goal was to check whether some SMT solver could handle
our method

• Our prototype does not handle general LTL formula but an ad
hoc encoding for some specific executive contexts (wait-free,
obstruction free, round-robin like)

• It produces an existentially quantified formula and gives it to the
SMT solver Z3

• If the SMT solver returns SAT, we can extract the algorithm
• We furthermore check with a classical model-checker that the

produced algorithm is correct
• Inputs of our prototype : number of processes, data range, size

of memory, type of execution context, value of ε for ε agreement

Experiments 22

Results

• We study two distributed problems: consensus and
ε-agreement

• We effectively face the state explosion problem and restrict
ourselves to two processes

• We had to help the solver with some heuristics to make it
converge

• Our implementation is really naive (and could be improve a lot)
• Found automatically algorithms in this case:

• Consensus: Obstruction free but as well more unusual contexts
like obstruction free+round-robin

• ε-agreement: Wait-free and different values of ε

Experiments 23

Example

◦

◦ ⊥ ,B

(wr(◦),B)

◦ ◦ ,A

(re,A)

◦ ⊥ ,A

(dec(◦),A) ◦ • ,A

◦ ◦ ,B

(re,A)

(dec(◦),B)
• ◦ ,A

(wr(◦),A) ◦ • ,B

(re,A)

• • ,B

(wr(•),B)

(re,A)

•

• ⊥ ,A

(wr(•),A)

• ⊥ ,B

(dec(•),B)

• ◦ ,B

(re,B)

• • ,A
(re,B)

(dec(•),A)

Algorithm for consensus supporting obstruction free and round-robin
contexts

Experiments 24

Conclusion

What have we done ?
• Propose a general framework to model algorithms and to specify

executive contexts
• Test how hard is in practice the synthesis problem when

bounding everything (size of algorithms and exchanged data)
• An important amount of implementation work is necessary to

make such a synthesis work for more than two processes
What’s next ?
• Big Challenge : Find decision procedure in the general case
• In general checking whether a distributed problem can be solved

by a wait-free algorithm is an undecidable problem
• Find distributed problems and executive contexts for which the

synthesis problem can be solved
• Find way to deal with dynamic changes of executive contexts

Experiments 25

	Introduction
	Modeling distributed algorithms
	Using LTL to reason on distributed algorithms
	Synthesis
	Experiments

