
Locality and Wait-free:
Coloring

A. Castañeda, C. Delporte, H. Fauconnier, S. Rajsbaum,
 M. Raynal

Motivations
• Red-Blue:

• log* versus tasks

• local versus Wait-free

• ANR displexity

• wait-free and communication graphs?

• What could be local wait-free?

LOCAL and Graph coloring
• graphe G=(V,E)

• coloring V->C s.t.:V(a)≠V(b) if (a,b)∈C

• line: 2 colours, ring 3 colours (parity)

• Locality (LOCAL model)

• at each round processes exchange messages with
the neighbours

• (d rounds : information from nodes at distance
d)

• coloring on ring and trees:

• O(log*n rounds) (and 𝝮(log*n)) Cole-Vishkin

Wait-free
• asynchronous processes.  

(Atomic) Shared Memory

• no wait: a process cannot wait for another
process

• any set of processes are able to terminate alone

• (any number of process crashes)

• Wait-Free computation:

• Tasks Input->Output

• Many results…

Cole-Vishkin
• for paths, rings and trees

colouring in 3 colours in O(log*n)

• 2 phases:

• phase 1: reduce the number of
colours to 6 (time : log* n)

• phase 2: reduce the number of
colours from 6 to 3 (time 3)

= 0 si n≤1 • log*n
= 1+ log*(log n)

Model…
• How to deal with « locality » in shared memory?

memory
MWMR registers

Process 1

read/write

read/write

Process n
…

…

MWMR
Wait-free Model: shared memory

Communication graph:

Processes + communication layer

communication
Process nProcess i

… …

read

read

read

Process 1

SWMR SWMR SWMR

SWMR

Process 1

SWMR

Process 2

SWMR

Process 4

SWMR

Process 3

SWMR

read

read

read

readcomplete

ring

Model
• separate communication layer / processes

• Communication layer:

• graph - synchronous communication (round by round)

• Processes are asynchronous (may start at any time
and be sleeping for any time) - communication by
the way the communication layer (synchronous)

• global clock

synchronous
network

out1
buffer

📡

💻 💻wait-free algo

p1 p2

☎ ☎reliable link
nd1 nd2

out2
buffer

in2
buffer

in1
buffer

p2p1

At each round, ndi :

• receives messages from its

neighbours

• reads its buffer outi

• sends all that to its neighbours

• writes that in ini

• at each message is associated a

timestamp ts from a global clock

Process pi is asynchronous

• reads ini

• writes outi

If pi starts the algorithm
at time ts, and pj starts
at time ts’,

if d(pj,pi)<ts-ts’ then

pi gets all messages
sent by pj from time ts’
to ts’-d(pj,pi)

If pi starts at time t, after D units of time pi can have information from processes in the
graph at distance D

Model

start at the same time

start at the same time

101010

101110

111000

011010

100

010

001

000

6 colors…

3 colors

Change the left-end

Change the right end

0

0
1

2

0

2

1

0

0

2
2

1

1

2 0

asynchronous

• only the first message is interesting

• communication only the starting message

• each process may simulate (alone) its part of the
algorithm with only these starting messages

• (a process may sleep for a while)

Conclusion

• log* for blue people 😉

• and for a tree?

• guess: impossible but…

• Wait-free on network?

