Locality and Wait-free:
Coloring

A. Castaiieda, C. Delporte, H. Fauconnier, S. Rajsbaum,
M. Raynal

Motivations

* Red-Blue:
* log™ versus tasks

e local versus Wait-free

* ANR displexity
* wait-free and communication graphs?

e What could be local wait-free?

LOCAL and Graph coloring

* graphe G=(V,E)
* coloring V->C s.t.:V(a)zV(b) if (a,b)eC
* line: 2 colours, ring 3 colours (parity)

e Locality (LOCAL model)

* at each round processes exchange messages wit
the neighbours

e (d rounds : information from nodes at distance
d)

* coloring on ring and trees:

* O(log*n rounds) (and Q(log*n)) Cole-Vishkin

Wait-free

* asynchronous processes.
(Atomic) Shared Memory

* no wait: a process cannot wait for another

process

* any set of processes are able to terminate alone

* (any number of process crashes)

* Wait-Free computation:

* Tasks Input->Output

* Many results...

! (Y
! 1 Y
£ ' s
5 LI
- v ml
; ! 4)
~ - . -~
’ { v ' “
-~ ‘ ‘1 1 2 § S
S 2= %"\ - %
. - “ DS 3
PR , S 5 .‘ 1 O
1o
' . o \
) - Ay |J f/ . "
i b 5
- .
; . ~
K . — o \" . ; \\
) - / ~ ~o - N
J" -~ - .1' .‘\ Sy - \\"\
S J ", T N
o’ i N, S
- L
3) L
a - ;
—

Cole-Vishkin

* for paths, rings and trees

colouring in 3 colours in O(log*n)

» 2 phases:

* phase 1: reduce the number of
colours to 6 (time : log* n)

* phase 2: reduce the number of
colours from 6 to 3 (time 3)

* log*n

= 0 si n<l

= 1+ log*(log n)

X
(=0, 1]
(1, 2]
(2, 4]
(4, 16]
(16, 65536]
(65536, 265536

2
3
4
)

Algorithm

I Each node » conemrently execntes the following code:
2: Run Algorithm for log”™ n rounds “6 Color”™ Cale Vishkin Algorithm

B

Y PN IR Wy

[S G W'Y
-

Assume that initially the vertices are legally colored.
each label only has logn bits
The root assigns itself the label ().
Each other nodc v exccutes the following code (synchronously in parallel)
send ¢, Lo all children
repeat
receive ¢, from parent
interpret ¢, and ¢, as little-endian bit-strings: ¢(k),...,¢(1), e(0)
let 7 be the smallest index where ¢, and ¢, differ
the new lahel is i (as bitstring) followed by the bit ¢, (i) itself
send ¢, to all children
until ¢, € {0,....5} for all nodes w

A B
01101000 root 000
Vv u Vv u
01101110 00110011 01 1 00 1
w X y w X y
10101010 00100011 00001111 10 0 101 0 114

3: for £ =5,4,3 do
4: Perform subroutine Shift down
| 1: Root chooses a new (different) color [row {0,1,2}

2: Each other node v concurrently executes the tollowing code:
3: Recolor v with the color of parent

5. il ¢y = x then

o

choaose new color ¢, € {0, 1,2} using subroutine First Free

Give v the smallest admissible color {i.e., the smallest node color not used by
any neighbor}

ré end if
8: end for

root| 4 B root
A

D root| o c

Model...

* How to deal with « locality » in shared memory?

Communication graph:

Wait-free Model: shared memory
MWMR

Process 1 Process n

memory
MWMR registers Processes + communication layer

communication

SWMR

Process 1 Process i Process n

read PI‘OCGSS 2 ring

read read

complete pcess 3

rocess 1

|

reacd

Process 4

read

Model

separate communication layer / processes

Communication layer:

* graph - synchronous communication (round by round)

Processes are asynchronous (may start at any time
and be sleeping for any time) - communication by
the way the communication layer (synchronous)

global clock

At each round, nd, :

* receives messages from its
neighbours

* reads its buffer out;

 sends all that to its neighbours

« writes that in in;

4 D1 02 B - at each message is associated a
timestamp ts from a global clock
% wait-free algo %
g A A) Process pi is asynchronous
* reads in;
out; in out: in2 * writes out;
buffer | [buffer buffer| |buffer
If pi starts the algorithm
fsynchrgnous Xj v R at time ts, and p; starts
network E E at time ts’,
reliable link if d(pj,pi)<tS-tS’ then
. ndz pigets all messages

sent by p; from time ts’
to ts’-d(pj,p))

If pi starts at time t, after D units of time pi can have information from processes in the
graph at distance D

‘ start at the same time

‘ . start at the same time

011010 000
~O

—() 111000 001

4

O 101110 o010

€ 101010 100

6 colors...

=5 | Part 1 |: reduction from n colors to 6 colors =====
(01)when » = st;, st; +1,...,(st; — 1) + log™ n do

(02)begin synchronous round

(03) send coOLOR(0, st;, color;) to next; and pred;;

(04) receive msg-pred; from pred;;

(05) if (msg_pred; — COLOR(0, sl;, col))

(06) then x= first position (starting right at () where color, and col differ;

(07)
(08)
(09) else
(10)
(11) end if;

color; + bit string encoding the binary value of x followed at

its right by b, (lirst bit of color; where color; and col diller)

p; has no predecessor (it is an end process of its unit segment) it
considers fict_pred; as its predecessor and executes lines 06-08

(12)end synchronous round;

% Here color; € {0.1,---,5}

3 colors

——————————————————| Part 2 | reduction from 6 to 3 colors =——————
(13)when r = (st; — 1)+ log"n+1,(st; — 1)+ log"™n+2,(st; — 1) +log" n+ 3 do
(11)begin synchronous round
(15) send coLoRr(0, st;, color;) to pred; and neat;;
(16) color_set < ()
(17) if cor.or(0, st;, color_p) received from pred;
then color_set < color_set U color_p end if;
(18) if cOLOR(O0, st;, color_n) received from next;
then color_set <+ color_set U color_n end if;
(19) let kber — (st; — 1 +log*n)+2;: % k€ {3,4,5} %
(20) if (color; = k) then color; + any color from {0, 1,2} \ color_set end if
(21)end synchronous round;

Change the left-end

== | Part 3 |: color; can be changed only if p; is the left end of its unit-segment
2)when r = (st; — 1) + log* n+ 1 do

3)begin synchronous round

4) send COLOR(1, color;) to pred; and next,;

)

6)

for each j € {1,2,3} do
if (COLOR(7, color) received from pred; in a round < r)
then color;|[j, pred;| + color end if;
(27) if (COL.OR(J, color) rcecived from next; in a round < r)
then color;[j, next;| + color end if
(28) end for;
(29) if (st; > st;|pred;|) then % p; has not priority
(30) casc (st; = st;j[next;]) then

color; <— a color in {0, 1,2} \ {color;[2, pred;]. color; |1, next,|}
(31) (st; > sl;[next;]) then

color; < a color in {0, 1,2} \ {color; (2, pred;], color; |2, next;]}
(32) (st;, < st,|next;]) then color; <— a color in {0, 1,2} \ {color,|2, pred,|}

(33) end case
(34) end if
(35)end synchronous round;

Change the right end

|

— | Part 4 |: ecolor; can be changed only if p; is the right end of its unit-segment
36)when r = (sl; — 1) +log™n+ 5 do

37)begin synchronous round

38) send COLOR(2, color;) to pred; and next;;

(\ J9) same statements as in lines 25-28;

(40) if (st; > st;[next;]) then % p; has not priority

(41) case (st; = st;[pred;]) then
color; «— a color in {0, 1,2} \ {color;|2, pred,|, color;[3, neat,|}
(42) (st; > st;|pred,]) then
color; +— a color in {0,1,2}\ {wlou 3, pred,|, color;|3, next, |}
(13) (st; < st;|pred;|) then color; + a color in {0 1,2} \ {color; |3, next;]}
(11) end case

(45) end if

(16)end synchronous round;

—— Additional round to inform the neighbors thal will start, later

(47)when r = (st; — 1) + log* n -+ 6 do send COLOR(3, color;) to pred; and neat;;
(48)return(color;).

asynchronous

only the first message is interesting
communication only the starting message

each process may simulate (alone) its part of the
algorithm with only these starting messages

(a process may sleep for a while)

Conclusion

* log* for blue people &

e and for a tree?

* guess: impossible but...

e Wait-free on network?

