(& IRISA 6.0

Contention-Related Crash Failures

Anais Durand®, Michel Raynal™', and Gadi Taubenfeld?

* IRISA, Université de Rennes, France
T Polytechnic University, Hong Kong
¥ Interdisciplinary Center, Herzliya, Israel

October 1%, 2018

Contention-Related Crash Failures @

Computational Model

Asynchronous deterministic system
n processes pi, .- ., Pn

Atomic read/write registers
Process crashes

Participation required

Contention-Related Crash Failures @

Contention-Related Crash Failures [Taubenfeld, 18]

m Contention = # processes that accessed a shared register

m)\ = predefined contention threshold

m 2 kinds of crash failures:
» \-constrained crash failures:
A-constrained crashes

/l \ No)\—constrfined crashes
K —K 3

A

contention

» “any-time” crash failures:

X X I X x contention
A

Contention-Related Crash Failures @

Contention-Related vs. Any-Time Crash Failures

m Consensus:
» [Fischer et al., 85]: Impossible with one any-time crash failure.

» [Taubenfeld, 18]: Algorithm that tolerates one (n — 1)-constrained
crash failure for n > 1.

B k-Set Agreement, 1 < k < n:
» [Borowsky, Gafni, 93]: Impossible with k any-time crash failures.

» [Taubenfeld, 18]: Algorithm that tolerates ¢ + k — 2 (n — £)-constrained
crash failures for £ > 1 and n > 2¢ + k — 2.

Contention-Related Crash Failures @

Motivation

Consider a problem P that can be solved with t any-time crash failures.

Given)\, can P be solved with both
t; A\-constrained
and
t; any-time
crash failures, with t; + t> > t? O

We consider here: k-set agreement (for k > 2) and renaming

Contention-Related Crash Failures @

k-Set Agreement

Contention-Related Crash Failures @

k-Set Agreement [Chaudhuri,90]

m One-shot object

m Operation propose(v): propose value v and return a decided value

m Properties:

» Validity: decided value = proposed value
» Agreement: < k decided values
» Termination: every correct process decides

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Properties

B)\=n—k
mk>2
mBk=m+f m>0f>1

total # of faults t=2m+f—-1=k+m-1
A-constrained crashes 2m
any-time crashes f—1

[Borowsky, Gafni, 93]: Impossible with k any-time crash failures.

Contention-Related Crash Failures @

k-Set Agreement: Parameters

Parameters f and m allow the user to tune the proportion of each type

of crash failures.

(max #any-time (= k-1)

0 k-1
—_ } > m
1 k t=k-1
+ > 1
0 5] k-1
t ? t > m
1 5] k t=2[%]+|35] -1
+ @ > f
0 k-1
+ o— m
1 k t=2k—2
—@ —> f

f\ max #\-constrained (= 2k-2)

Contention-Related Crash Failures @

k-Set Agreement: Shared Registers (1/2)

m DEC: atomic register, initially L

m PARTI1...n]: snapshot object, initially [down, ..., down]

» Atomic (linearizable) operations write() and snapshot()

» = array of single-writer multi-reader atomic register
PARTIL...n] such that:

® p; invokes write(v) = writes v into PARTi]

® p; invokes snapshot() = obtains the value of the array
PARTI1...n] as if it read simultaneously and
instantaneously all its entries

Contention-Related Crash Failures

k-Set Agreement: Shared Registers (2/2)

m MUTEX]1]: one-shot deadlock-free f-mutex

m MUTEX]2]: one-shot deadlock-free m-mutex

» Operations acquire() and release() (invoked at most
once)

» Properties:

® Mutual exclusion: < m processes simultaneously in critical
section

® Deadlock-freedom: if < m processes crashes, then > 1
process invoking acquire() terminates its invocation

Contention-Related Crash Failures

k-Set Agreement Algorithm (1/2)

operation propose(in;) is

(1) PART.Write(up); % signal participation

Contention-Related Crash Failures @

k-Set Agreement Algorithm (1/2)

operation propose(in;) is

(1) PART.Write(up); % signal participation
(2) repeat

(3) part; := PART .snapshot(); % wait for n — t

(4) count; := |{x such that parti[x] = up}|; % participants

(5) until count; > n— t end repeat;

Contention-Related Crash Failures

k-Set Agreement Algorithm (1/2)

operation propose(in;) is

(1) PART.Write(up); % signal participation

(2) repeat

(3) part; := PART .snapshot(); % wait for n — t

(4) count; := |{x such that part;[x] = up}|; % participants

(5) until count; > n— t end repeat;

(6) if count; < n— k then % split processes into groups
(7) group; := 2; % ~~ MUTEX[2] (m-mutex)
(8) else

(9) group;j :=1; % ~~ MUTEX[1] (Fmutex)
(10) end if

Contention-Related Crash Failures @

k-Set Agreement Algorithm (1/2)

operation propose(in;) is

(1) PART.Write(up); % signal participation

(2) repeat

(3) part; := PART .snapshot(); % wait for n — t

(4) count; := |{x such that part;[x] = up}|; % participants

(5) until count; > n— t end repeat;

(6) if count; < n— k then % split processes into groups
(7) group; := 2; % ~~ MUTEX[2] (m-mutex)
(8) else

(9) group; :=1; % ~~ MUTEX[1] (Fmutex)
(10) end if

(11) launch in // the threads T7 and Ty;

Contention-Related Crash Failures @

k-Set Agreement Algorithm (2/2)

thread T; is % wait for a decided value
(1) loop forever

) if DEC # | then

3) return(DEC);

(4) end if;

(5) end loop;

Contention-Related Crash Failures @

k-Set Agreement Algorithm (2/2)

thread T; is % wait for a decided value
(1) loop forever

2) if DEC # 1 then

3) return(DEC);

(4) end if;

(5) end loop;

thread 75 is % decide a value if enters its CS
(6) if group; =1V m > 0 then

@) MUTEX [group;].acquire();

(8) if DEC = 1 then

(9) DEC := in;;

(10) end if

(11) MUTEX [group].release();

(12) return(DEC);

(13) end if;

Contention-Related Crash Failures @

k-Set Agreement Algorithm: Validity & Agreement

thread T7 is

(1) loop forever

2) if DEC # 1 then

®) return(DEC); B Decided value = DEC
(4) end if;

(5) end loop;

thread T> is

(6) if groupi =1V m > 0 then

@) MUTEX [group;].acquire();
(8) if DEC = 1 then

(9) DEC := in;;

(10) end if

(11) MUTEX [group;].release();
(12) return(DEC);

(13) end if;

Contention-Related Crash Failures m

k-Set Agreement Algorithm: Validity & Agreement

thread T7 is

(1) loop forever

2) if DEC # 1 then

®) return(DEC); B Decided value = DEC
(4) end if;

) end loop; B DEC assigned to proposed
thread Ty is values in; in CS

(6) if groupi =1V m > 0 then

@) MUTEX [group;].acquire();

(8) if DEC = 1 then

9) DEC := in;;

(10) end if

(11) MUTEX [group;].release();

(12) return(DEC);

(13) end if;

Contention-Related Crash Failures m

k-Set Agreement Algorithm

thread T7 is

(1) loop forever

2) if DEC # 1 then
®3) return(DEC);
(4) end if;

(5) end loop;

thread T> is

(6) if group; =1V m > 0 then

@) MUTEX [group;].acquire();
(8) if DEC = 1 then

(9) DEC := in;;

(10) end if

(11) MUTEX [group;].release();
(12)

(13)

=

12 return(DEC);

13) end if;

- Validity & Agreement

H Decided value = DEC

B DEC assigned to proposed

values in; in CS

MUTEX[1] ~

f # values

<
MUTEX][2] ~» < m # values

= < f + m = k decided values

Contention-Related Crash Failures

k-Set Agreement Algorithm: Termination

(1) PART .write(up);

(2) repeat

(3) part; := PART .snapshot();

(4) count; := |{x such that part;[x] = up}|;
(5) until count; > n— t end repeat;

B < t crashes + participation required
~ eventually count; > n — t at every correct process p;

Contention-Related Crash Failures m

k-Set Agreement Algorithm: Termination

if count; < n— k then
group; := 2;

(6)

(7)

(8) else
(9) group; :=1;
(10) end if

B < t crashes + participation required
~ eventually count; > n— t at every correct process p;

B group; =1 = count; >n—k =\

~» no A-constrained crashes among participants of group 1
~» < f — 1 crashes in f-mutex MUTEX[1]

Contention-Related Crash Failures m

k-Set Agreement Algorithm: Termination

B < t crashes + participation required
~~ eventually count; > n — t at every correct process p;

B group; =1 = count; >n—k =\
~» no A-constrained crashes among participants of group 1
~» < f — 1 crashes in f-mutex MUTEX[1]

If > 1 correct process € group 1 ~» > 1 of them decides
otherwise (some maths) ~» < m — 1 crashes in m-mutex MUTEX]|2]
& > 1 correct process in group 2 ~» > 1 of them decides

Contention-Related Crash Failures m

Renaming

Contention-Related Crash Failures @

Renaming [Attiya et al.,

Definition

Initial name: id;
New name space: {1... M}
Operation rename(id;): return a new name

Properties:

» Validity: new name € {1... M}
» Agreement: no 2 same new names
» Termination: invokation of rename() by a correct process terminates

Contention-Related Crash Failures @

Renaming Algorithm: Properties

mM=n+f
E)A\=n—-t-1
mt=m+f, m>0f>0

total # of faults t=m+f
A-constrained crashes m
any-time crashes f

[Herlihy, Shavit, 93]: Impossible with f + 1 any-time crash failures.

Contention-Related Crash Failures m

Renaming Algorithm: Parameters

Parameters f and m allow the user to tune the proportion of each type
of crash failures and the size of the new name space.

(max #any-time (= t)

0 t
—_ — m
0 t M=n-+t
- f
0 [5] t
@ > m
0 13 t M=n+ 3]
L 4 > f
0 t
o> m
0 t M=n
—@ —> f

f\ max #\-constrained (= t)
Contention-Related Crash Failures @

Renaming Algorithm: Shared Registers

m PARTI1...n]: snapshot object, initially [down, ..., down]

m RENAMING¢: (n+ f)-renaming object that:
» tolerates < f any-time crash failures
» does not require participation

e.g. [Attiya, Welch, 04]

Contention-Related Crash Failures @

Renaming Algorithm

operation rename(id;) is

(1) PART .write(up); % signal participation
(2) repeat

(3) part; := PART .snapshot(); % wait for n —t

(4) count; := |{x such that partj[x] = up}|; % participants

(5) until count; > n— t end repeat;

Contention-Related Crash Failures @

Renaming Algorithm

operation rename(id;) is

(1) PART .write(up); % signal participation
(2) repeat

3) part; := PART .snapshot(); % wait for n — t

(4) count; := |{x such that partj[x] = up}|; % participants

(5) until count; > n— t end repeat;

(6) newName; := RENAMING ¢.rename(id;); % get new name

(7) return(newlName;);

Contention-Related Crash Failures @

Renaming Algorithm: Proof

(1) PART .write(up);

(2) repeat

(3) part; := PART .snapshot();

(4) count; := |{x such that part;[x] = up}|;
(5) until count; > n— t end repeat;

B < t crashes + participation required
~~ eventually count; > n — t at every correct process p;

Contention-Related Crash Failures @

Renaming Algorithm: Proof

(1) PART .write(up);

(2) repeat

(3) part; := PART .snapshot();

(4) count; := |{x such that part;[x] = up}
(5) until count; > n—t end repeat;

B < t crashes + participation required
~~ eventually count; > n — t at every correct process p;

B n—t>)\~ no A-constrained crashes in RENAMING ¢
~ < f crashes in RENAMING ¢

Contention-Related Crash Failures @

Renaming Algorithm: Proof

(1) PART .write(up);

(2) repeat

(3) part; := PART .snapshot();
(4)

(5)

count; := |{x such that part;[x] = up}
until count; > n — t end repeat;

B < t crashes + participation required
~~ eventually count; > n — t at every correct process p;

B n—t>)\~ no A-constrained crashes in RENAMING ¢
~ < f crashes in RENAMING ¢

participation not required for RENAMING ¢ + properties of
RENAMING ¢
~ validity, agreement, & termination

Contention-Related Crash Failures @

Conclusion

m Notion of contention-related crash failures

m Allows to circumvent impossibility results

m Future work:

» Tight bounds?
» General algorithm for k-set agreement, k > 1.

Contention-Related Crash Failures @

Soied Sodds |
@éom,.' 5 o
£ 0

Cgc Thank you for your attention!

é Do you have any question? &

é&% ?%@%

Generalization to One-Shot Concurrent Objects

Transform OB = one-shot object tolerating < X any-time crashes,
participation not required

total # of faults t=m+f

EAN=n—-t-1
mt=m+f m>00<Ff<X

A-constrained crashes

any-time crashes f<X
operation op(in;) is
(1) PART .write(up);
(2) repeat
(3) part; :== PART .snapshot();
(4) count; := |{x such that part;[x] = up}|;
(5) until count; > n — t end repeat;

(6) res; := OB.op(in;);
(7) return(res;);

Contention-Related Crash Failures @

	k-Set Agreement
	Renaming
	Appendix

