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Self-stabilization,

Correct behavior

Transient faults (finite and rare)
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General approach for tolerating transient faults
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Other Failure Patterns

Some results:

Process Crashes: FTSS [Beauquier and Kekkonen-Moneta, PODC'97]
Byzantine failures strict stabilization [Nesterenko and Arora, ICDCS'02]

Intermittent Faults intermittent lost, duplication, or reordering of
messages [Delaét and Tixeuil, JPDC, 2002]
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Intermittent Faults intermittent lost, duplication, or reordering of
messages [Delaét and Tixeuil, JPDC, 2002]
Even with an high failure rate, convergence is possible
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Other Failure Patterns

Some results:

Process Crashes: FTSS [Beauquier and Kekkonen-Moneta, PODC'97]
Byzantine failures strict stabilization [Nesterenko and Arora, ICDCS'02]

Intermittent Faults intermittent lost, duplication, or reordering of
messages [Delaét and Tixeuil, JPDC, 2002]
Even with an high failure rate, convergence is possible

However: static communication networks
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Self-stabilization in presence of Topological Changes

If topological are locally detected and infrequent, then a self-stabilizing
algorithm designed for arbitrary topologies is well-suited.

Moreover:

Superstabilization: quick convergence after few topological changes
from a legitimate configuration [Dolev and Herman,
Chicago Journal of Theoretical Computer Science, 1997]

Gradual Stabilization: a generalization of superstabilization [Altisen et
al., JPDC, 2019]

However: topological changes should be transient
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Self-stabilization in Highly Dynamic Systems

Few results

Negative result: Even if the network is always connected over the
time, silent self-stabilization is impossible!
[Braud-Santoni et al., IJNC, 2016]

Silence: converges within finite time to a configuration
from which the values of the communication registers
used by the algorithm remain fixed.
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Self-stabilization in Highly Dynamic Systems

Few results

Negative result: Even if the network is always connected over the
time, silent self-stabilization is impossible!
[Braud-Santoni et al., IJNC, 2016]

Silence: converges within finite time to a configuration
from which the values of the communication registers
used by the algorithm remain fixed.

Positive result: Self-stabilizing exploration of a highly dynamic ring by a
cohort of synchronous robots [Bournat et al., TCS, 2019]

Robot: visibility sensors, moving actuators, yet no
communication capabilities.

However, only one edge maybe missing at a time
(the network is always connected over the time)
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Challenge

m Self-stabilization in highly dynamic message-passing systems

m Dynamics modeled as Time-Varying Graphs (TVG)
[Casteigts et al., IJPEDS, 2012]
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Challenge

m Self-stabilization in highly dynamic message-passing systems

m Dynamics modeled as Time-Varying Graphs (TVG)
[Casteigts et al., IJPEDS, 2012]

We look for (non-silent) self-stabilizing algorithm for
general classes of TVGs

(e.g.. we do not enforce the network to be in a particular topology at a given time)
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Time-Varying Graphs (TVG)

TVG: G = (V,E,T,p)

B V is a set of n nodes

B E is a set of arcs

B 7 is an interval over N*

B p: ExT —{0,1} is the presence

function [5,6] U [8,9]
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Time-Varying Graphs (TVG)

TVG: G = (V,E,T,p)
B V is a set of n nodes
B E is a set of arcs

B 7 is an interval over N*

B p: ExT —{0,1} is the presence

function [5,6] U [8,9]

Snapshot of G at time t € T

G, = (V,{ec E:ple,t)=1})
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Time-Varying Graphs (TVG)

TVG: G = (V,E,T,p)

B V is a set of n nodes
. [5,6] U [8,9]
B E is a set of arcs

B 7 is an interval over N*

B p: ExT —{0,1} is the presence
function

Snapshot of G at time t € T
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Time-Varying Graphs (TVG)

TVG: G = (V,E,T,p)

B V is a set of n nodes
. [5,6] U [8,9]
B E is a set of arcs

B 7 is an interval over N*

B p: ExT —{0,1} is the presence
function

Snapshot of G at time t € T

Snapshot at 2: G,

G, = (V,{ec E:ple,t)=1})
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Time-Varying Graphs (TVG)

TVG: G = (V,E,T,p)

B V is a set of n nodes
. [5,6] U [8,9]
B E is a set of arcs

B 7 is an interval over N*

B p: ExT —{0,1} is the presence
function

Snapshot of G at time t € T

Snapshot at 3: G3

G, = (V,{ec E:ple,t)=1})

O ©
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Time-Varying Graphs (TVG)

TVG: G = (V,E,T,p)

B V is a set of n nodes
. [5,6] U [8,9]
B E is a set of arcs

B 7 is an interval over N*

B p: ExT —{0,1} is the presence
function

Snapshot of G at time t € T

Snapshot at 4: G,

G, = (V,{ec E:ple,t)=1})

OO
©
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Time-Varying Graphs (TVG)

TVG: G = (V,E,T,p)

B V is a set of n nodes

[5,6]U[8,9]

B E is a set of arcs
B 7 is an interval over N*

B p: ExT —{0,1} is the presence
function

Snapshot of G at time t € T

Snapshot at 5: Gj

G, = (V,{ec E:ple,t)=1})
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Time-Varying Graphs (TVG)

TVG: G = (V,E,T,p)
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[5,6]U[8,9]

B E is a set of arcs
B 7 is an interval over N*

B p: ExT —{0,1} is the presence
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Time-Varying Graphs (TVG)

TVG: G = (V,E,T,p)

B V is a set of n nodes

[5,6]U[8,9]

B E is a set of arcs
B 7 is an interval over N*

B p: ExT —{0,1} is the presence
function

Snapshot of G at time t € T

Snapshot at 7: G

G, = (V,{ec E:ple,t)=1})
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Time-Varying Graphs (TVG)

TVG: G = (V,E,T,p)

B V is a set of n nodes

[5,6]U[8,9]

B E is a set of arcs
B 7 is an interval over N*

B p: ExT —{0,1} is the presence
function

Snapshot of G at time t € T

Snapshot at 8: Gg

G, = (V,{ec E:ple,t)=1})

Self-stabilizing Systems in Spite of High Dynamics @



Time-Varying Graphs (TVG)

TVG: G = (V,E,T,p)

B V is a set of n nodes

[5,6]U[8,9]

B E is a set of arcs
B 7 is an interval over N*

B p: ExT —{0,1} is the presence
function

Snapshot of G at time t € T

Snapshot at 9: G

G, = (V,{ec E:ple,t)=1})
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Time-Varying Graphs (TVG)

TVG: G = (V,E,T,p)

B V is a set of n nodes

B E is a set of arcs [5,6] U[8,9]

B 7 is an interval over N*

B p: ExT —{0,1} is the presence
function

Snapshot of G at time t € T

Gf - (V,{e €E: p(e,t) - 1})
Temporal Subgraph of G for
[t.t']|CT:

Gieen = (V. E [t ], ')

where p’ is p restricted to [t, t'].
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Journey:
J = (e1,t1), (€2, t2), - - -, (e, tk)
such that Vi € {1,..., k}

me=(p,g)cE
[ ] p(e,-,t,-):l
Bi<k=gi=prNti<tin

Temporal length: t, — t; +1
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Journey:
J = (e1,t1), (€2, t2), - - -, (e, tk)
such that Vi € {1,..., k}

me=(p,g)cE
[ ] p(e,-,t,-):l
Bi<k=gi=prNti<tin

[5,6] U [8,9]

Temporal length: t, — t; +1
Example:

((a,b),1),((b, ), 4),((c,d),5) is
journey of length 5 from a to d
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Journey:

\7 - (617 t1)7 (6’2, t2)a ey (ek7 tk)
such that Vi € {1,... k}

me=(p,q)cE
[ ] p(e;,t,-):l
mi<k=gi=p1Nti<tin

[5,6] U [8,9]

Snapshot at time 1: G;

Temporal length: t, — t; +1 0

Example:

((2,5),1), (b, c),4). ((c. d),5) is a O (9

journey of length 5 from a to d
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me=(p,q)cE
[ ] p(e;,t,-):l
mi<k=gi=p1Nti<tin

[5,6] U [8,9]
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Example:

((2,5),1), (b, c),4). ((c. d),5) is a () (9

journey of length 5 from a to d
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such that Vi € {1,... k}

me=(p,q)cE
[ ] p(e;,t,-):l
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[5,6] U [8,9]

Snapshot at time 3: G

Temporal length: t, — t; +1 0

Example:

((2,5),1), (b, c),4). ((c. d),5) is a () (9

journey of length 5 from a to d
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Journey

Journey:

\7 - (617 t1)7 (6’2, t2)a ey (ek7 tk)
such that Vi € {1,... k}

me=(p,q)cE
[ ] p(e;,t,-):l
mi<k=gi=p1Nti<tin

[5,6] U [8,9]

Snapshot at time 4: G,

Temporal length: t, — t; +1 0

Example:

((2,5),1), (b, c),4). ((c. d),5) is a () (9

journey of length 5 from a to d
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Journey:

\7 - (617 t1)7 (6’2, t2)a ey (ek7 tk)
such that Vi € {1,... k}

me=(p,q)cE
[ ] p(e;,t,-):l
mi<k=gi=p1Nti<tin

[5,6] U [8,9]

Snapshot at time 5: Gs

Temporal length: t, — t; +1 @

Example:

((a,b),1),((b, ). 4),((c.d),5) is a @7@

journey of length 5 from a to d
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Journey:

\7 - (617 t1)7 (6’2, t2)a ey (ek7 tk)
such that Vi € {1,... k}

me=(p,q)cE
[ ] p(e;,t,-):l
mi<k=gi=p1Nti<tin

[5,6] U [8,9]

Snapshot at time 6: Gg

Temporal length: t, — t; +1 @

Example:

((a,b),1),((b,c),4),((c,d),5) is a

journey of length 5 from a to d

Self-stabilizing Systems in Spite of High Dynamics @



Journey:

\7 - (617 t1)7 (6’2, t2)a ey (ek7 tk)
such that Vi € {1,... k}

me=(p,q)cE
[ ] p(e;,t,-):l
mi<k=gi=p1Nti<tin

[5,6] U [8,9]

Snapshot at time 7: G

Temporal length: t, — t; +1 @

Example:

((2,5),1), (b, c),4). ((c. d),5) is a ) (o)
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Journey:

\7 - (617 t1)7 (6’2, t2)a ey (ek7 tk)
such that Vi € {1,... k}

me=(p,q)cE
[ ] p(e;,t,-):l
mi<k=gi=p1Nti<tin

[5,6] U [8,9]

Snapshot at time 8: Gg

Temporal length: t, — t; +1 @

Example:

((a,b),1),((b,c),4),((c,d),5) is a

journey of length 5 from a to d
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Journey:

\7 - (617 t1)7 (6’2, t2)a ey (ek7 tk)
such that Vi € {1,... k}

me=(p,q)cE
[ ] p(e;,t,-):l
mi<k=gi=p1Nti<tin

[5,6] U [8,9]

Snapshot at time 9: Gg

Temporal length: t, — t; +1 @

Example:

((a,b),1),((b,c),4),((c,d),5) is a

journey of length 5 from a to d
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Considered Classes of TVGs

We only consider infinite TVG: G = (V,E, T, p): T is right-open.

Class 7CB(A) with A € IN* (Bounded Temporal Diameter): At any
point in time, every node can reach all the others through
a journey of temporal length at most A, i.e., the

temporal diameter is bounded by A, [Gémez-Calzado et
al., Euro-Par’'15]

Class TC2(A) with A € N* (Quasi Bounded Temporal Diameter):
Every node can always eventually reach each other node
through a journey of temporal length at most A. [New]|

Class TC™ (Recurrent Temporal Connectivity): At any point in time,
every node can reach all the others through a journey,
[Casteigts et al., IJPEDS, 2012]
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Considered Classes of TVGs

We only consider infinite TVG: G = (V,E, T, p): T is right-open.

Class 7CB(A) with A € IN* (Bounded Temporal Diameter): At any
point in time, every node can reach all the others through
a journey of temporal length at most A, i.e., the

temporal diameter is bounded by A, [Gémez-Calzado et
al., Euro-Par’'15]

Class TC2(A) with A € N* (Quasi Bounded Temporal Diameter):
Every node can always eventually reach each other node
through a journey of temporal length at most A. [New]|

Class TC™ (Recurrent Temporal Connectivity): At any point in time,
every node can reach all the others through a journey,
[Casteigts et al., IJPEDS, 2012]

TCB(A) C TCe(A) C TCR
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Computational Model: Synchronous Rounds (1/2)

[Charron-Bost and Moran, STACS'18 / Barjon et al., CJ, 2019]

We model the dynamic network topology by a TVG G = (V,E, T, p),
where T is right-open, i.e., G is infinite.

Let o7 = minT the first instant
The neighborhood of node p at Round i is

N(p) ={qeV:p((p,q),or +i—1)=1}
(i.e., neighbors of p in the snapshot G, ;1)

N(p)" is unknown by all nodes
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Computational Model: Synchronous Rounds (2/2)

[Charron-Bost and Moran, STACS'18 / Barjon et al., CJ, 2019]

Execution in G: infinite sequence of configurations 7,71, ... such that

m 7y is arbitrary
m Vi > 0, ~; is obtained from ~;_1 as follows:
Every node p sends a message consisting of all or a part of its local state

in yi-1,
p receives all messages sent by nodes in N'(p)’, and
p computes its state in «;.

Vi>0,
B 7;_1 is the configuration at the beginning of Round i

m ~; is the configuration at the end of Round i
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Self-stabilization in an Highly Dynamic Context

Adaptation of the definition in the book [Self-Stabilization, Dolev, 2000]

An algorithm A is self-stabilizing for the specification SP on the TVG

class C if
there exists a non-empty subset of configurations L, called the set of
legitimate configurations, such that:

for every G € C, for every configuration ~y, every execution of A in G
starting from ~ contains a legitimate configuration 7/ € £
(Convergence), and

for every G € C, for every t > or, for every legitimate configuration

v € L, for every execution e in G, . starting from v, SP(e) holds
(Correctness).
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Self-stabilization in Classes T7CP(A), TC9(A), and TC*

These three classes are recurring in the sense that

VG € C,Vt > or, g[t,+oo) eC

In this case, the definition can be simplified as follows

An algorithm A is self-stabilizing for the specification SP on the recurring

TVG class C if
there exists a non-empty subset of legitimate configurations £ such that:

for every G € C, for every configuration =y, every execution of A in G starting
from + contains a legitimate configuration v’ € £ (Convergence), and

for every G € C, for every legitimate configuration v € L, for every
execution e in G starting from 7, SP(e) holds (Correctness).
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Self-stabilizing Algorithms for Highly Dynamic Systems

(1/3)

Case-Study: Leader Election

In Classes:

Class TCP(A) with A € IN*: Bounded Temporal Diameter
Class TC2(A) with A € IN*: Quasi Bounded Temporal Diameter

Class TC®: Recurrent Temporal Connectivity
TCB(A) € TCY(A) C TCR
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Self-stabilizing Algorithms for Highly Dynamic Systems

(2/3)

Case-Study: Leader Election

In Class TCB(A) with A € IN* (Bounded Temporal Diameter)

m A known
m Stabilization Time: at most 3A rounds

® Memory Requirement: O(log(n + A)) bits per node
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Self-stabilizing Algorithms for Highly Dynamic Systems

(3/3)

Case-Study: Leader Election

Class TC9(A) with A € IN* (Quasi Bounded Temporal Diameter)

® A and n known
m Memory Requirement: O(n(log(n+ A))) bits per node

Class TC™(Recurrent Temporal Connectivity)
m n known

m Memory Requirement: infinite
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Self-stabilizing Algorithms for Highly Dynamic Systems

(3/3)

Case-Study: Leader Election

Class TC9(A) with A € IN* (Quasi Bounded Temporal Diameter)

® A and n known
m Memory Requirement: O(n(log(n+ A))) bits per node

Class TC™(Recurrent Temporal Connectivity)
m n known

m Memory Requirement: infinite

Stabilization time unboundable in those two classes, but ...
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Speculation

Speculation [Kotla et al., ACM Trans. Comput. Syst., 2009]:
B the system satisfies its requirements for all executions,

B but also exhibits significantly better performances in a subset of more
probable executions.
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Speculation

Speculation [Kotla et al., ACM Trans. Comput. Syst., 2009]:
B the system satisfies its requirements for all executions,

B but also exhibits significantly better performances in a subset of more
probable executions.

Idea: worst possible scenarios are often rare in practice.
A speculative algorithm self-adapts its performances w.r.t. the

“quality” of the environment, i.e., the more favorable the environment
is, the better the complexity of the algorithm should be.
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Speculation

Speculation [Kotla et al., ACM Trans. Comput. Syst., 2009]:
B the system satisfies its requirements for all executions,

B but also exhibits significantly better performances in a subset of more
probable executions.

Idea: worst possible scenarios are often rare in practice.

A speculative algorithm self-adapts its performances w.r.t. the
“quality” of the environment, i.e., the more favorable the environment
is, the better the complexity of the algorithm should be.

In Self-Stabilizing (Static) Systems: a self-stabilizing mutual

exclusion algorithm whose stabilization time is significantly better when
the execution is synchronous. [Dubois and Guerraoui, PODC'13]
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Speculative Self-stabilizing Algorithms for Highly Dynamic

Systems

Our solutions

Class 7C2(A) with A € IN* (Quasi Bounded Temporal Diameter)

m A and n known
m Memory Requirement: O(n(log(n+ A))) bits per node

m Speculation: stabilization time in 7C?(A) C TC2(A) is at most
2A rounds

Class TC™(Recurrent Temporal Connectivity)
® n known
m Memory Requirement: infinite

m Speculation: stabilization time in 7C?(A) C TC® is at most A + 1
rounds
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Overview of our solutions

Nodes are identified: Vp € V, id(p) is unique identifier of p
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Overview of our solutions

Nodes are identified: Vp € V, id(p) is unique identifier of p

Let IDSET be the definition domain of the identifiers
(n.b., usually [IDSET| > n)
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Overview of our solutions

Nodes are identified: Vp € V, id(p) is unique identifier of p

Let IDSET be the definition domain of the identifiers
(n.b., usually [IDSET| > n)

Vv € IDSET,
m visareal IDif dp € V, id(p) = v,
m v is a fake ID otherwise
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Overview of our solutions

Nodes are identified: Vp € V, id(p) is unique identifier of p

Let IDSET be the definition domain of the identifiers
(n.b., usually [IDSET| > n)

Vv € IDSET,
m visareal IDif dp € V, id(p) = v,
m v is a fake ID otherwise

Every node p computes the identifier of the leader in /id(p)
Initially, the value of lid(p) may be a fake ID
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Overview of our solutions

Nodes are identified: Vp € V, id(p) is unique identifier of p

Let IDSET be the definition domain of the identifiers
(n.b., usually [IDSET| > n)

Vv € IDSET,
m visareal IDif dp € V, id(p) = v,
m v is a fake ID otherwise

Every node p computes the identifier of the leader in /id(p)
Initially, the value of lid(p) may be a fake ID

Strategy:
First, eliminate all fake IDs, and then
Compute in all output variables the minimum real 1D, noted id(¢).
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Self-stabilization in 7C®(A) with A € IN* (1/3)

Bounded Temporal Diameter, A known

Variables: lid(p) € IDSET and t(p) € {0, ...,2A}
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Self-stabilization in 7C®(A) with A € IN* (1/3)

Bounded Temporal Diameter, A known

Variables: lid(p) € IDSET and t(p) € {0, ...,2A}

For each node p, at each round:

p sends (/id(p), t(p))
If p receives some messages, then
» Let (x,ty) the smallest received pair (lexicographic order)
> if (x,t) < (lid(p), t(p)), then (lid(p), t(p)) := (x, tx)
t(p) + +
if lid(p) > id(p) vV t > 2A, then (lid(p), t(p)) := (id(p),0) (Reset)
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Self-stabilization in 7C®(A) with A € IN* (2/3)

Bounded Temporal Diameter, A known

Legitimate Configurations:

Vpe V. lid(p) =id({) Nt(p) <AAp={=t(p)=0

Self-stabilizing Systems in Spite of High Dynamics @



Self-stabilization in 7C®(A) with A € IN* (2/3)

Bounded Temporal Diameter, A known

Legitimate Configurations:

Vpe V. lid(p) =id({) Nt(p) <AAp={=t(p)=0

Correctness:

m No fake ID = id(¢) is the minimum value of IDSET in the network.

So, lid(¢) = id(¢) and t(¢) = O forever
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Self-stabilization in 7C®(A) with A € IN* (2/3)

Bounded Temporal Diameter, A known

Legitimate Configurations:

Vpe V. lid(p) =id({) Nt(p) <AAp={=t(p)=0

Correctness:

m No fake ID = id(¢) is the minimum value of IDSET in the network.
So, lid(¢) = id(¢) and t(¢) = O forever

m Bounded temporal diameter = no reset

So, Vp € V, lid(p) = id(¢) forever
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Self-stabilization in 7C®(A) with A € IN* (3/3)

Bounded Temporal Diameter, A known

Convergence:
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Self-stabilization in 7C®(A) with A € IN* (3/3)

Bounded Temporal Diameter, A known

Convergence:

® The timestamps associated to each fake ID increment at each round
until reaching 2A and so vanishing,

i.e., after at most 2A rounds, no fake ID

In particular, lid(¢) = id(¢) and t(¢) = 0 forever
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Self-stabilization in 7C®(A) with A € IN* (3/3)

Bounded Temporal Diameter, A known

Convergence:

® The timestamps associated to each fake ID increment at each round
until reaching 2A and so vanishing,

i.e., after at most 2A rounds, no fake ID

In particular, lid(¢) = id(¢) and t(¢) = 0 forever

m At most A additional rounds are necessary to reach a configuration
where Vp € V, lid(p) = id(¢) vV t(p) < A

Hence, a stabilization time of at most 3A rounds.
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Self-stabilization in TC2(A) with A € IN*

Quasi Bounded Temporal Diameter, n and A known (1/3)

Variables:
m lid(p) € IDSET
m members(p): queue of at most n pairs (id, t) € IDSET x {0,...,A}
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Self-stabilization in TC2(A) with A € IN*

Quasi Bounded Temporal Diameter, n and A known (1/3)

Variables:
m lid(p) € IDSET
m members(p): queue of at most n pairs (id, t) € IDSET x {0,...,A}

For each node p, at each round:
® p sends every pair (x,y) € members(p) such that y < A
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Self-stabilization in TC2(A) with A € IN*

Quasi Bounded Temporal Diameter, n and A known (1/3)

Variables:
m lid(p) € IDSET
m members(p): queue of at most n pairs (id, t) € IDSET x {0,...,A}

For each node p, at each round:

® p sends every pair (x,y) € members(p) such that y < A
m For each received pairs (x, y)
» If x already appears in a pair of members(p), then
replace the timestamp by y if y is smaller
» Otherwise, if members(p) is full, remove the tail
Insert (x,y) at the head
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Self-stabilization in TC2(A) with A € IN*

Quasi Bounded Temporal Diameter, n and A known (1/3)

Variables:
m lid(p) € IDSET
m members(p): queue of at most n pairs (id, t) € IDSET x {0,...,A}

For each node p, at each round:
® p sends every pair (x,y) € members(p) such that y < A
m For each received pairs (x, y)
» If x already appears in a pair of members(p), then
replace the timestamp by y if y is smaller
» Otherwise, if members(p) is full, remove the tail
Insert (x,y) at the head

® Increment all timestamps in members(p)
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Self-stabilization in TC2(A) with A € IN*

Quasi Bounded Temporal Diameter, n and A known (1/3)

Variables:
m lid(p) € IDSET
m members(p): queue of at most n pairs (id, t) € IDSET x {0,...,A}

For each node p, at each round:
® p sends every pair (x,y) € members(p) such that y < A
m For each received pairs (x, y)

» If x already appears in a pair of members(p), then

replace the timestamp by y if y is smaller
» Otherwise, if members(p) is full, remove the tail
Insert (x,y) at the head

® Increment all timestamps in members(p)

m if members(p)is full, remove the tail
Insert (id(p),0)
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Self-stabilization in TC2(A) with A € IN*

Quasi Bounded Temporal Diameter, n and A known (1/3)

Variables:
m lid(p) € IDSET
m members(p): queue of at most n pairs (id, t) € IDSET x {0,...,A}

For each node p, at each round:
® p sends every pair (x,y) € members(p) such that y < A
m For each received pairs (x, y)
» If x already appears in a pair of members(p), then
replace the timestamp by y if y is smaller
» Otherwise, if members(p) is full, remove the tail
Insert (x,y) at the head
® Increment all timestamps in members(p)
m if members(p)is full, remove the tail
Insert (id(p),0)
m Update /id(p) with the smallest ID in members(p)
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Self-stabilization in TC2(A) with A € IN*

Quasi Bounded Temporal Diameter, n and A known (2/3)

Legitimate Configurations: Vp € V,
lid(p) = id(¢) A {id : (id,_) € members(p)} = {id(q): g€ V}

Correctness: trivial since the set of legitimate configuration is closed
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Self-stabilization in TC2(A) with A € IN*

Quasi Bounded Temporal Diameter, n and A known (3/3)

Convergence:

m The timestamps associated to each fake ID increment at each round
until reaching A: after at most A rounds, no fake ID is sent and so
no fake ID can be ever inserted in a members queue.
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Self-stabilization in TC2(A) with A € IN*

Quasi Bounded Temporal Diameter, n and A known (3/3)

Convergence:

m The timestamps associated to each fake ID increment at each round
until reaching A: after at most A rounds, no fake ID is sent and so
no fake ID can be ever inserted in a members queue.

B Quasi Bounded Temporal Diameter = every real ID is regularly
inserted in each members queue.
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Self-stabilization in TC2(A) with A € IN*

Quasi Bounded Temporal Diameter, n and A known (3/3)

Convergence:

m The timestamps associated to each fake ID increment at each round
until reaching A: after at most A rounds, no fake ID is sent and so
no fake ID can be ever inserted in a members queue.

B Quasi Bounded Temporal Diameter = every real ID is regularly
inserted in each members queue.

Speculation:
Bounded Temporal Diameter = all real ID are inserted in each
members queue in each period of A rounds

Hence, the stabilization time is at most 2A rounds in TCB(A).
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Self-stabilization in TC®

Recurrent Temporal Connectivity, n known (1/3)

Variables:
m lid(p) € IDSET
B members(p): map of at most n pairs (id, t) € IDSET x IN
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Self-stabilization in TC®

Recurrent Temporal Connectivity, n known (1/3)

Variables:
m lid(p) € IDSET
B members(p): map of at most n pairs (id, t) € IDSET x IN

For each node p, at each round:

B p sends members(p)
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Self-stabilization in TC®

Recurrent Temporal Connectivity, n known (1/3)

Variables:
m lid(p) € IDSET
B members(p): map of at most n pairs (id, t) € IDSET x IN

For each node p, at each round:
B p sends members(p)
B For each received pairs (x, y)

» If x already appears in a pair of members(p), then
replace the timestamp by y if y is smaller
» Otherwise, let t be the largest timestamp in members(p)
If y < t and members(p) is full, then remove a pair (_, t) from members
If members(p) is not full, then Insert (x,y) in members(p)
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Self-stabilization in TC®

Recurrent Temporal Connectivity, n known (1/3)

Variables:
m lid(p) € IDSET
B members(p): map of at most n pairs (id, t) € IDSET x IN

For each node p, at each round:
B p sends members(p)
B For each received pairs (x, y)

» If x already appears in a pair of members(p), then
replace the timestamp by y if y is smaller
» Otherwise, let t be the largest timestamp in members(p)
If y < t and members(p) is full, then remove a pair (_, t) from members
If members(p) is not full, then Insert (x,y) in members(p)
B Increment all timestamps in members(p)
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Self-stabilization in TC®

Recurrent Temporal Connectivity, n known (1/3)

Variables:
m lid(p) € IDSET
B members(p): map of at most n pairs (id, t) € IDSET x IN

For each node p, at each round:
B p sends members(p)
B For each received pairs (x, y)
» If x already appears in a pair of members(p), then
replace the timestamp by y if y is smaller
» Otherwise, let t be the largest timestamp in members(p)
If y < t and members(p) is full, then remove a pair (_, t) from members
If members(p) is not full, then Insert (x,y) in members(p)
B Increment all timestamps in members(p)
B If members(p) is full, then remove a pair in members with a largest timestamp
Insert (id(p), 0)
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Self-stabilization in TC®

Recurrent Temporal Connectivity, n known (1/3)

Variables:
m lid(p) € IDSET
B members(p): map of at most n pairs (id, t) € IDSET x IN

For each node p, at each round:
B p sends members(p)
B For each received pairs (x, y)
» If x already appears in a pair of members(p), then
replace the timestamp by y if y is smaller
» Otherwise, let t be the largest timestamp in members(p)
If y < t and members(p) is full, then remove a pair (_, t) from members
If members(p) is not full, then Insert (x,y) in members(p)
B Increment all timestamps in members(p)
B If members(p) is full, then remove a pair in members with a largest timestamp
Insert (id(p), 0)
B Update lid(p) with the smallest ID in members(p)
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Self-stabilization in TC®

Recurrent Temporal Connectivity, n known (2/3)

Legitimate Configurations: Vp € V,
lid(p) = id(¢) N{id : (id,_) € members(p)} = {id(q) : q € V}

Correctness: trivial since the set of legitimate configuration is closed
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Self-stabilization in TC®

Recurrent Temporal Connectivity, n known (3/3)

Convergence: similar to the previous algorithm

Speculation: in 7C5(A),
m After the first round, at each round, each node p sends (id(p),0)

m For every node q, a pair (id(p), xq) with x4 < A reaches g within x
rounds.

m At that time, all fake IDs have a timestamps > x,.
So, id(p) is inserted and never more removed.

Hence, a stabilization time in at most A + 1 rounds in 7C5(A).
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Conclusion

It is a first attempt ...
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Conclusion

It is a first attempt ...

Yet, we have circumvented the impossibility result of [Braud-Santoni et
al., IINC, 2016] by considering non-silent solutions

Actually, we have even considered more general classes!
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Conclusion

It is a first attempt ...

Yet, we have circumvented the impossibility result of [Braud-Santoni et
al., IINC, 2016] by considering non-silent solutions

Actually, we have even considered more general classes!

Extensions:
m Even more general classes
m Expressiveness in particular TVG classes

Transformer (e.g., [Katz and Perry, DC, 1993]):
Propagation of Information with Feedback + Leader Election
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Thank you for your attention

m Karine Altisen, Stéphane Devismes, and Anais Durand, Colette
Johnen, and Franck Petit.
. Submitted to OPODIS'19.
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