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Other Failure Patterns

Some results:

Process Crashes: FTSS [Beauquier and Kekkonen-Moneta, PODC’97]
Byzantine failures strict stabilization [Nesterenko and Arora, ICDCS’02]
Intermittent Faults intermittent lost, duplication, or reordering of

messages [Delaët and Tixeuil, JPDC, 2002]

Even with an high failure rate, convergence is possible

However: static communication networks
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Self-stabilization in presence of Topological Changes

If topological are locally detected and infrequent, then a self-stabilizing
algorithm designed for arbitrary topologies is well-suited.

Moreover:

Superstabilization: quick convergence after few topological changes
from a legitimate configuration [Dolev and Herman,
Chicago Journal of Theoretical Computer Science, 1997]

Gradual Stabilization: a generalization of superstabilization [Altisen et
al., JPDC, 2019]

However: topological changes should be transient
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Self-stabilization in Highly Dynamic Systems

Few results

Negative result: Even if the network is always connected over the
time, silent self-stabilization is impossible!
[Braud-Santoni et al., IJNC, 2016]

Silence: converges within finite time to a configuration
from which the values of the communication registers
used by the algorithm remain fixed.

Positive result: Self-stabilizing exploration of a highly dynamic ring by a
cohort of synchronous robots [Bournat et al., TCS, 2019]

Robot: visibility sensors, moving actuators, yet no
communication capabilities.

However, only one edge maybe missing at a time
(the network is always connected over the time)
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Challenge

� Self-stabilization in highly dynamic message-passing systems
� Dynamics modeled as Time-Varying Graphs (TVG)

[Casteigts et al., IJPEDS, 2012]

We look for (non-silent) self-stabilizing algorithm for
general classes of TVGs

(e.g., we do not enforce the network to be in a particular topology at a given time)
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Time-Varying Graphs (TVG)
TVG: G = (V ,E , T , ρ)

� V is a set of n nodes

� E is a set of arcs

� T is an interval over N∗

� ρ : E × T → {0, 1} is the presence
function

Snapshot of G at time t ∈ T :

Gt = (V , {e ∈ E : ρ(e, t) = 1})

Temporal Subgraph of G for
[t, t ′] ⊆ T :

G[t,t′] = (V ,E , [t, t ′], ρ′)

where ρ′ is ρ restricted to [t, t ′].

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
7/30



Time-Varying Graphs (TVG)
TVG: G = (V ,E , T , ρ)

� V is a set of n nodes

� E is a set of arcs

� T is an interval over N∗

� ρ : E × T → {0, 1} is the presence
function

Snapshot of G at time t ∈ T :

Gt = (V , {e ∈ E : ρ(e, t) = 1})

Temporal Subgraph of G for
[t, t ′] ⊆ T :

G[t,t′] = (V ,E , [t, t ′], ρ′)

where ρ′ is ρ restricted to [t, t ′].

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
7/30



Time-Varying Graphs (TVG)
TVG: G = (V ,E , T , ρ)

� V is a set of n nodes

� E is a set of arcs

� T is an interval over N∗

� ρ : E × T → {0, 1} is the presence
function

Snapshot of G at time t ∈ T :

Gt = (V , {e ∈ E : ρ(e, t) = 1})

Temporal Subgraph of G for
[t, t ′] ⊆ T :

G[t,t′] = (V ,E , [t, t ′], ρ′)

where ρ′ is ρ restricted to [t, t ′].

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Snapshot at 1: G1

Temporal
Subgraph G[1,6]:

a

b

c d

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
7/30



Time-Varying Graphs (TVG)
TVG: G = (V ,E , T , ρ)

� V is a set of n nodes

� E is a set of arcs

� T is an interval over N∗

� ρ : E × T → {0, 1} is the presence
function

Snapshot of G at time t ∈ T :

Gt = (V , {e ∈ E : ρ(e, t) = 1})

Temporal Subgraph of G for
[t, t ′] ⊆ T :

G[t,t′] = (V ,E , [t, t ′], ρ′)

where ρ′ is ρ restricted to [t, t ′].

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Snapshot at 2: G2

Temporal
Subgraph G[1,6]:

a

b

c d

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
7/30



Time-Varying Graphs (TVG)
TVG: G = (V ,E , T , ρ)

� V is a set of n nodes

� E is a set of arcs

� T is an interval over N∗

� ρ : E × T → {0, 1} is the presence
function

Snapshot of G at time t ∈ T :

Gt = (V , {e ∈ E : ρ(e, t) = 1})

Temporal Subgraph of G for
[t, t ′] ⊆ T :

G[t,t′] = (V ,E , [t, t ′], ρ′)

where ρ′ is ρ restricted to [t, t ′].

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Snapshot at 3: G3

Temporal
Subgraph G[1,6]:

a

b

c d

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
7/30



Time-Varying Graphs (TVG)
TVG: G = (V ,E , T , ρ)

� V is a set of n nodes

� E is a set of arcs

� T is an interval over N∗

� ρ : E × T → {0, 1} is the presence
function

Snapshot of G at time t ∈ T :

Gt = (V , {e ∈ E : ρ(e, t) = 1})

Temporal Subgraph of G for
[t, t ′] ⊆ T :

G[t,t′] = (V ,E , [t, t ′], ρ′)

where ρ′ is ρ restricted to [t, t ′].

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Snapshot at 4: G4

Temporal
Subgraph G[1,6]:

a

b

c d

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
7/30



Time-Varying Graphs (TVG)
TVG: G = (V ,E , T , ρ)

� V is a set of n nodes

� E is a set of arcs

� T is an interval over N∗

� ρ : E × T → {0, 1} is the presence
function

Snapshot of G at time t ∈ T :

Gt = (V , {e ∈ E : ρ(e, t) = 1})

Temporal Subgraph of G for
[t, t ′] ⊆ T :

G[t,t′] = (V ,E , [t, t ′], ρ′)

where ρ′ is ρ restricted to [t, t ′].

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Snapshot at 5: G5

Temporal
Subgraph G[1,6]:

a

b

c d

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
7/30



Time-Varying Graphs (TVG)
TVG: G = (V ,E , T , ρ)

� V is a set of n nodes

� E is a set of arcs

� T is an interval over N∗

� ρ : E × T → {0, 1} is the presence
function

Snapshot of G at time t ∈ T :

Gt = (V , {e ∈ E : ρ(e, t) = 1})

Temporal Subgraph of G for
[t, t ′] ⊆ T :

G[t,t′] = (V ,E , [t, t ′], ρ′)

where ρ′ is ρ restricted to [t, t ′].

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Snapshot at 6: G6

Temporal
Subgraph G[1,6]:

a

b

c d

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
7/30



Time-Varying Graphs (TVG)
TVG: G = (V ,E , T , ρ)

� V is a set of n nodes

� E is a set of arcs

� T is an interval over N∗

� ρ : E × T → {0, 1} is the presence
function

Snapshot of G at time t ∈ T :

Gt = (V , {e ∈ E : ρ(e, t) = 1})

Temporal Subgraph of G for
[t, t ′] ⊆ T :

G[t,t′] = (V ,E , [t, t ′], ρ′)

where ρ′ is ρ restricted to [t, t ′].

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Snapshot at 7: G7

Temporal
Subgraph G[1,6]:

a

b

c d

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
7/30



Time-Varying Graphs (TVG)
TVG: G = (V ,E , T , ρ)

� V is a set of n nodes

� E is a set of arcs

� T is an interval over N∗

� ρ : E × T → {0, 1} is the presence
function

Snapshot of G at time t ∈ T :

Gt = (V , {e ∈ E : ρ(e, t) = 1})

Temporal Subgraph of G for
[t, t ′] ⊆ T :

G[t,t′] = (V ,E , [t, t ′], ρ′)

where ρ′ is ρ restricted to [t, t ′].

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Snapshot at 8: G8

Temporal
Subgraph G[1,6]:

a

b

c d

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
7/30



Time-Varying Graphs (TVG)
TVG: G = (V ,E , T , ρ)

� V is a set of n nodes

� E is a set of arcs

� T is an interval over N∗

� ρ : E × T → {0, 1} is the presence
function

Snapshot of G at time t ∈ T :

Gt = (V , {e ∈ E : ρ(e, t) = 1})

Temporal Subgraph of G for
[t, t ′] ⊆ T :

G[t,t′] = (V ,E , [t, t ′], ρ′)

where ρ′ is ρ restricted to [t, t ′].

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Snapshot at 9: G9

Temporal
Subgraph G[1,6]:

a

b

c d

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
7/30



Time-Varying Graphs (TVG)
TVG: G = (V ,E , T , ρ)

� V is a set of n nodes

� E is a set of arcs

� T is an interval over N∗

� ρ : E × T → {0, 1} is the presence
function

Snapshot of G at time t ∈ T :

Gt = (V , {e ∈ E : ρ(e, t) = 1})

Temporal Subgraph of G for
[t, t ′] ⊆ T :

G[t,t′] = (V ,E , [t, t ′], ρ′)

where ρ′ is ρ restricted to [t, t ′].

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Temporal Subgraph G[1,6]:

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6]

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
7/30



Journey

Journey:
J = (e1, t1), (e2, t2), . . . , (ek , tk)
such that ∀i ∈ {1, . . . , k}
� ei = (pi , qi ) ∈ E
� ρ(ei , ti ) = 1
� i < k ⇒ qi = pi+1 ∧ ti < ti+1

Temporal length: tk − t1 + 1

Example:
((a, b), 1), ((b, c), 4), ((c, d), 5) is a
journey of length 5 from a to d

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
8/30



Journey

Journey:
J = (e1, t1), (e2, t2), . . . , (ek , tk)
such that ∀i ∈ {1, . . . , k}
� ei = (pi , qi ) ∈ E
� ρ(ei , ti ) = 1
� i < k ⇒ qi = pi+1 ∧ ti < ti+1

Temporal length: tk − t1 + 1

Example:
((a, b), 1), ((b, c), 4), ((c, d), 5) is a
journey of length 5 from a to d

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
8/30



Journey

Journey:
J = (e1, t1), (e2, t2), . . . , (ek , tk)
such that ∀i ∈ {1, . . . , k}
� ei = (pi , qi ) ∈ E
� ρ(ei , ti ) = 1
� i < k ⇒ qi = pi+1 ∧ ti < ti+1

Temporal length: tk − t1 + 1

Example:
((a, b), 1), ((b, c), 4), ((c, d), 5) is a
journey of length 5 from a to d

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Snapshot at time 1: G1

a

b

c d

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
8/30



Journey

Journey:
J = (e1, t1), (e2, t2), . . . , (ek , tk)
such that ∀i ∈ {1, . . . , k}
� ei = (pi , qi ) ∈ E
� ρ(ei , ti ) = 1
� i < k ⇒ qi = pi+1 ∧ ti < ti+1

Temporal length: tk − t1 + 1

Example:
((a, b), 1), ((b, c), 4), ((c, d), 5) is a
journey of length 5 from a to d

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Snapshot at time 2: G2

a

b

c d

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
8/30



Journey

Journey:
J = (e1, t1), (e2, t2), . . . , (ek , tk)
such that ∀i ∈ {1, . . . , k}
� ei = (pi , qi ) ∈ E
� ρ(ei , ti ) = 1
� i < k ⇒ qi = pi+1 ∧ ti < ti+1

Temporal length: tk − t1 + 1

Example:
((a, b), 1), ((b, c), 4), ((c, d), 5) is a
journey of length 5 from a to d

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Snapshot at time 3: G3

a

b

c d

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
8/30



Journey

Journey:
J = (e1, t1), (e2, t2), . . . , (ek , tk)
such that ∀i ∈ {1, . . . , k}
� ei = (pi , qi ) ∈ E
� ρ(ei , ti ) = 1
� i < k ⇒ qi = pi+1 ∧ ti < ti+1

Temporal length: tk − t1 + 1

Example:
((a, b), 1), ((b, c), 4), ((c, d), 5) is a
journey of length 5 from a to d

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Snapshot at time 4: G4

a

b

c d

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
8/30



Journey

Journey:
J = (e1, t1), (e2, t2), . . . , (ek , tk)
such that ∀i ∈ {1, . . . , k}
� ei = (pi , qi ) ∈ E
� ρ(ei , ti ) = 1
� i < k ⇒ qi = pi+1 ∧ ti < ti+1

Temporal length: tk − t1 + 1

Example:
((a, b), 1), ((b, c), 4), ((c, d), 5) is a
journey of length 5 from a to d

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Snapshot at time 5: G5

a

b

c d

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
8/30



Journey

Journey:
J = (e1, t1), (e2, t2), . . . , (ek , tk)
such that ∀i ∈ {1, . . . , k}
� ei = (pi , qi ) ∈ E
� ρ(ei , ti ) = 1
� i < k ⇒ qi = pi+1 ∧ ti < ti+1

Temporal length: tk − t1 + 1

Example:
((a, b), 1), ((b, c), 4), ((c, d), 5) is a
journey of length 5 from a to d

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Snapshot at time 6: G6

a

b

c d

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
8/30



Journey

Journey:
J = (e1, t1), (e2, t2), . . . , (ek , tk)
such that ∀i ∈ {1, . . . , k}
� ei = (pi , qi ) ∈ E
� ρ(ei , ti ) = 1
� i < k ⇒ qi = pi+1 ∧ ti < ti+1

Temporal length: tk − t1 + 1

Example:
((a, b), 1), ((b, c), 4), ((c, d), 5) is a
journey of length 5 from a to d

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Snapshot at time 7: G7

a

b

c d

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
8/30



Journey

Journey:
J = (e1, t1), (e2, t2), . . . , (ek , tk)
such that ∀i ∈ {1, . . . , k}
� ei = (pi , qi ) ∈ E
� ρ(ei , ti ) = 1
� i < k ⇒ qi = pi+1 ∧ ti < ti+1

Temporal length: tk − t1 + 1

Example:
((a, b), 1), ((b, c), 4), ((c, d), 5) is a
journey of length 5 from a to d

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Snapshot at time 8: G8

a

b

c d

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
8/30



Journey

Journey:
J = (e1, t1), (e2, t2), . . . , (ek , tk)
such that ∀i ∈ {1, . . . , k}
� ei = (pi , qi ) ∈ E
� ρ(ei , ti ) = 1
� i < k ⇒ qi = pi+1 ∧ ti < ti+1

Temporal length: tk − t1 + 1

Example:
((a, b), 1), ((b, c), 4), ((c, d), 5) is a
journey of length 5 from a to d

a

b

c d[1, 2]

[2, 3]

[3, 4]

[5, 6] ∪ [8, 9]

Snapshot at time 9: G9

a

b

c d

Altisen et al. Self-stabilizing Systems in Spite of High Dynamics
8/30



Considered Classes of TVGs
We only consider infinite TVG: G = (V ,E , T , ρ): T is right-open.

Class T CB(∆) with ∆ ∈ N∗ (Bounded Temporal Diameter): At any
point in time, every node can reach all the others through
a journey of temporal length at most ∆, i.e., the
temporal diameter is bounded by ∆, [Gómez-Calzado et
al., Euro-Par’15]

Class T CQ(∆) with ∆ ∈ N∗ (Quasi Bounded Temporal Diameter):
Every node can always eventually reach each other node
through a journey of temporal length at most ∆. [New]

Class T CR (Recurrent Temporal Connectivity): At any point in time,
every node can reach all the others through a journey,
[Casteigts et al., IJPEDS, 2012]

T CB(∆) ⊆ T CQ(∆) ⊆ T CR
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Computational Model: Synchronous Rounds (1/2)
[Charron-Bost and Moran, STACS’18 / Barjon et al., CJ, 2019]

We model the dynamic network topology by a TVG G = (V ,E , T , ρ),
where T is right-open, i.e., G is infinite.

Let oT = min T the first instant

The neighborhood of node p at Round i is

N (p)i = {q ∈ V : ρ((p, q), oT + i − 1) = 1}

(i.e., neighbors of p in the snapshot GoT +i−1)

N (p)i is unknown by all nodes
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Computational Model: Synchronous Rounds (2/2)
[Charron-Bost and Moran, STACS’18 / Barjon et al., CJ, 2019]

Execution in G: infinite sequence of configurations γ0, γ1, . . . such that

� γ0 is arbitrary
� ∀i > 0, γi is obtained from γi−1 as follows:

1 Every node p sends a message consisting of all or a part of its local state
in γi−1,

2 p receives all messages sent by nodes in N (p)i , and
3 p computes its state in γi .

∀i > 0,
� γi−1 is the configuration at the beginning of Round i
� γi is the configuration at the end of Round i
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Self-stabilization in an Highly Dynamic Context
Adaptation of the definition in the book [Self-Stabilization, Dolev, 2000]

An algorithm A is self-stabilizing for the specification SP on the TVG
class C if
there exists a non-empty subset of configurations L, called the set of
legitimate configurations, such that:

1 for every G ∈ C, for every configuration γ, every execution of A in G
starting from γ contains a legitimate configuration γ′ ∈ L
(Convergence), and

2 for every G ∈ C, for every t ≥ oT , for every legitimate configuration
γ ∈ L, for every execution e in G[t,+∞) starting from γ, SP(e) holds
(Correctness).
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Self-stabilization in Classes T CB(∆), T CQ(∆), and T CR

These three classes are recurring in the sense that

∀G ∈ C,∀t ≥ oT ,G[t,+∞) ∈ C

In this case, the definition can be simplified as follows

An algorithm A is self-stabilizing for the specification SP on the recurring
TVG class C if
there exists a non-empty subset of legitimate configurations L such that:

1 for every G ∈ C, for every configuration γ, every execution of A in G starting
from γ contains a legitimate configuration γ′ ∈ L (Convergence), and

2 for every G ∈ C, for every legitimate configuration γ ∈ L, for every
execution e in G starting from γ, SP(e) holds (Correctness).
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Self-stabilizing Algorithms for Highly Dynamic Systems
(1/3)
Case-Study: Leader Election

In Classes:

Class T CB(∆) with ∆ ∈ N∗: Bounded Temporal Diameter

Class T CQ(∆) with ∆ ∈ N∗: Quasi Bounded Temporal Diameter

Class T CR: Recurrent Temporal Connectivity

T CB(∆) ⊆ T CQ(∆) ⊆ T CR
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Self-stabilizing Algorithms for Highly Dynamic Systems
(2/3)
Case-Study: Leader Election

In Class T CB(∆) with ∆ ∈ N∗ (Bounded Temporal Diameter)

� ∆ known
� Stabilization Time: at most 3∆ rounds
� Memory Requirement: O(log(n + ∆)) bits per node
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Self-stabilizing Algorithms for Highly Dynamic Systems
(3/3)
Case-Study: Leader Election

Class T CQ(∆) with ∆ ∈ N∗ (Quasi Bounded Temporal Diameter)

� ∆ and n known
� Memory Requirement: O(n(log(n + ∆))) bits per node

Class T CR(Recurrent Temporal Connectivity)
� n known
� Memory Requirement: infinite

Stabilization time unboundable in those two classes, but ...
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Speculation

Speculation [Kotla et al., ACM Trans. Comput. Syst., 2009]:
� the system satisfies its requirements for all executions,
� but also exhibits significantly better performances in a subset of more

probable executions.

Idea: worst possible scenarios are often rare in practice.

A speculative algorithm self-adapts its performances w.r.t. the
“quality” of the environment, i.e., the more favorable the environment
is, the better the complexity of the algorithm should be.

In Self-Stabilizing (Static) Systems: a self-stabilizing mutual
exclusion algorithm whose stabilization time is significantly better when
the execution is synchronous. [Dubois and Guerraoui, PODC’13]
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Speculative Self-stabilizing Algorithms for Highly Dynamic
Systems
Our solutions

Class T CQ(∆) with ∆ ∈ N∗ (Quasi Bounded Temporal Diameter)

� ∆ and n known
� Memory Requirement: O(n(log(n + ∆))) bits per node
� Speculation: stabilization time in T CB(∆) ⊆ T CQ(∆) is at most

2∆ rounds

Class T CR(Recurrent Temporal Connectivity)
� n known
� Memory Requirement: infinite
� Speculation: stabilization time in T CB(∆) ⊆ T CR is at most ∆ + 1

rounds
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Overview of our solutions

Nodes are identified: ∀p ∈ V , id(p) is unique identifier of p

Let IDSET be the definition domain of the identifiers
(n.b., usually |IDSET | � n)

∀v ∈ IDSET ,
� v is a real ID if ∃p ∈ V , id(p) = v ,
� v is a fake ID otherwise

Every node p computes the identifier of the leader in lid(p)
Initially, the value of lid(p) may be a fake ID

Strategy:
1 First, eliminate all fake IDs, and then
2 Compute in all output variables the minimum real ID, noted id(`).
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Self-stabilization in T CB(∆) with ∆ ∈ N∗ (1/3)
Bounded Temporal Diameter, ∆ known

Variables: lid(p) ∈ IDSET and t(p) ∈ {0, ..., 2∆}

For each node p, at each round:
1 p sends 〈lid(p), t(p)〉
2 If p receives some messages, then
I Let (x , tx ) the smallest received pair (lexicographic order)
I if 〈x , tx 〉 < 〈lid(p), t(p)〉, then 〈lid(p), t(p)〉 := 〈x , tx 〉

3 t(p) + +
4 if lid(p) ≥ id(p) ∨ t ≥ 2∆, then 〈lid(p), t(p)〉 := 〈id(p), 0〉 (Reset)
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Self-stabilization in T CB(∆) with ∆ ∈ N∗ (2/3)
Bounded Temporal Diameter, ∆ known

Legitimate Configurations:

∀p ∈ V , lid(p) = id(`) ∧ t(p) ≤ ∆ ∧ p = `⇒ t(p) = 0

Correctness:
� No fake ID ⇒ id(`) is the minimum value of IDSET in the network.

So, lid(`) = id(`) and t(`) = 0 forever

� Bounded temporal diameter ⇒ no reset

So, ∀p ∈ V , lid(p) = id(`) forever
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Self-stabilization in T CB(∆) with ∆ ∈ N∗ (3/3)
Bounded Temporal Diameter, ∆ known

Convergence:

� The timestamps associated to each fake ID increment at each round
until reaching 2∆ and so vanishing,

i.e., after at most 2∆ rounds, no fake ID

In particular, lid(`) = id(`) and t(`) = 0 forever

� At most ∆ additional rounds are necessary to reach a configuration
where ∀p ∈ V , lid(p) = id(`) ∨ t(p) ≤ ∆

Hence, a stabilization time of at most 3∆ rounds.
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Self-stabilization in T CQ(∆) with ∆ ∈ N∗

Quasi Bounded Temporal Diameter, n and ∆ known (1/3)

Variables:
� lid(p) ∈ IDSET
� members(p): queue of at most n pairs 〈id , t〉 ∈ IDSET × {0, . . . ,∆}

For each node p, at each round:
� p sends every pair 〈x , y〉 ∈ members(p) such that y < ∆
� For each received pairs 〈x , y〉
I If x already appears in a pair of members(p), then

replace the timestamp by y if y is smaller
I Otherwise, if members(p) is full, remove the tail

Insert 〈x , y〉 at the head
� Increment all timestamps in members(p)
� if members(p)is full, remove the tail

Insert 〈id(p), 0〉
� Update lid(p) with the smallest ID in members(p)
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Self-stabilization in T CQ(∆) with ∆ ∈ N∗

Quasi Bounded Temporal Diameter, n and ∆ known (2/3)

Legitimate Configurations: ∀p ∈ V ,
lid(p) = id(`) ∧ {id : 〈id ,_〉 ∈ members(p)} = {id(q) : q ∈ V }

Correctness: trivial since the set of legitimate configuration is closed
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Self-stabilization in T CQ(∆) with ∆ ∈ N∗

Quasi Bounded Temporal Diameter, n and ∆ known (3/3)

Convergence:
� The timestamps associated to each fake ID increment at each round

until reaching ∆: after at most ∆ rounds, no fake ID is sent and so
no fake ID can be ever inserted in a members queue.

� Quasi Bounded Temporal Diameter ⇒ every real ID is regularly
inserted in each members queue.

Speculation:
Bounded Temporal Diameter ⇒ all real ID are inserted in each
members queue in each period of ∆ rounds

Hence, the stabilization time is at most 2∆ rounds in T CB(∆).
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Self-stabilization in T CR

Recurrent Temporal Connectivity, n known (1/3)

Variables:
� lid(p) ∈ IDSET
� members(p): map of at most n pairs 〈id , t〉 ∈ IDSET ×N

For each node p, at each round:
� p sends members(p)
� For each received pairs 〈x , y〉
I If x already appears in a pair of members(p), then

replace the timestamp by y if y is smaller
I Otherwise, let t be the largest timestamp in members(p)

If y < t and members(p) is full, then remove a pair 〈_, t〉 from members
If members(p) is not full, then Insert 〈x , y〉 in members(p)

� Increment all timestamps in members(p)
� If members(p) is full, then remove a pair in members with a largest timestamp

Insert 〈id(p), 0〉
� Update lid(p) with the smallest ID in members(p)
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Self-stabilization in T CR

Recurrent Temporal Connectivity, n known (1/3)
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Self-stabilization in T CR

Recurrent Temporal Connectivity, n known (2/3)

Legitimate Configurations: ∀p ∈ V ,
lid(p) = id(`) ∧ {id : 〈id ,_〉 ∈ members(p)} = {id(q) : q ∈ V }

Correctness: trivial since the set of legitimate configuration is closed
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Self-stabilization in T CR

Recurrent Temporal Connectivity, n known (3/3)

Convergence: similar to the previous algorithm

Speculation: in T CB(∆),

� After the first round, at each round, each node p sends 〈id(p), 0〉
� For every node q, a pair 〈id(p), xq〉 with xq ≤ ∆ reaches q within x

rounds.
� At that time, all fake IDs have a timestamps > xq.

So, id(p) is inserted and never more removed.

Hence, a stabilization time in at most ∆ + 1 rounds in T CB(∆).
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Conclusion

It is a first attempt ...

Yet, we have circumvented the impossibility result of [Braud-Santoni et
al., IJNC, 2016] by considering non-silent solutions

Actually, we have even considered more general classes!

Extensions:
� Even more general classes
� Expressiveness in particular TVG classes

Transformer (e.g., [Katz and Perry, DC, 1993]):
Propagation of Information with Feedback + Leader Election
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Thank you for your attention

� Karine Altisen, Stéphane Devismes, and Anaïs Durand, Colette
Johnen, and Franck Petit. Self-stabilizing Systems in Spite of High
Dynamics. Submitted to OPODIS’19.
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