Memory Lower Bounds for Deterministic Self-Stabilization

Lélia Blin, Laurent Feuillolet et Gabriel Le Bouder

Sorbonne Université, LIP6.

Lélia Blin

Memory Lower Bounds for Deterministic Self-Stabilization

E 6 4 E 6

Modèle	Problems 000	Memory bounds	Conclusion O
	The second se	Modèle	J
			I = I = √Q(

Modèle	Problems	Memory bounds	Conclusion
●00000000000	000	0000000	0
Système réparti			

Système réparti

Modèle

- Réseaux asynchrones G = (V, E) avec identifiants.
- Fautes transitoires (corruptions de variables).

Modèle	Problems	Memory bounds	Conclusion
00000000000	000	000000	0
Modèle à Etat			

Modèle à Etat

En une étape atomique un noeud v peut

- Lire ses variables et les variables de ses voisins.
- Calculer.
- Mettre à jour ses variables.

< ロト < 同ト < ヨト < ヨト

Modèle	Problems	Memory bounds	Conclusion
00000000000	000	000000	0
Modèle à Etat			

Réseaux non-anonyme

Identifiants

- Identifiants deux à deux distincts.
- $\exists c > 1 : \forall v \in V, id_v \in [1, n^c]$
- Les identifiants ne sont pas stocké dans les variables, ils ne sont pas accessibles aux voisins.

Modèle	Problems	Memory bounds	Conclusion
00000000000	000	000000	0
Modèle à Etat			

Noeud activable

Un noeud est activable si au moins une des règles de son algorithme est exécutable.

・ロン ・四 ・ ・ ヨン ・ ヨン

Modèle	Problems	Memory bounds	Conclusion
00000000000	000	000000	0
Scheduler			

Ordonnanceur

Definition

Ordonnanceur choisit parmi les noeuds activables les noeuds qui s'activent.

Lélia Blin

Modè	le ○●○○○○○○○	00	Problems 000	Memory bounds 0000000	Conclusion O
Config	gurations				
Сс	onfigi	urations			
	Etat				
		L'état d'un riables	noeud est l'ensem	ıble de ses va-	
	Confi	guration			

Memory Lower Bounds for Deterministic Self-Stabilization

3

Modèle	Problems	Memory bounds	Conclusion
000000000000	000	000000	0
Configurations			

Configurations légitimes

Dépend du prédicat correspondant à la tâche à résoudre. Exemple : prédicat arbre couvrant.

< 回 > < 三 > < 三 >

Modèle	Problems	Memory bounds	Conclusion
000000000000	000	0000000	0
Configurations			

Ensemble de toutes les configurations

Memory Lower Bounds for Deterministic Self-Stabilization

< ロト < 同ト < ヨト < ヨト

Modèle	Problems	Memory bounds	Conclusion
0000000000000	000	0000000	0
Configurations			

Algorithmes distribuées "classique"

Memory Lower Bounds for Deterministic Self-Stabilization

3

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Modèle	Problems	Memory bounds	Conclusion
000000000000000000000000000000000000000	000	0000000	0
Configurations			

Auto-stabilisation propriété de Silence

3

・ロト ・聞ト ・ヨト ・ヨト

Modèle	Problems	Memory bounds	Conclusion
000000000000000000000000000000000000000	000	0000000	0
Configurations			

Auto-stabilisation

イロト イロト イヨト イヨト 二日

Modèle ○○○○○○○○○●○	Problems 000	Memory bounds 0000000	Conclusion O
Définition			
Algorithme auto	stabilisant		

Algorithme auto-stabilisant Dijkstra, 1974

Un algorithme auto-stabilisant résolvant une tâche ${\cal T}$ est un algorithme distribué ${\cal A}$ satisfaisant :

- Convergence : Démarrant d'une configuration arbitraire,
 A finit par rejoindre une configuration légale.
- Cloture : Démarrant d'une configuration légale, le système reste dans une configuration légale.

- 4 目 ト - 4 日 ト - 4 日 ト

Modèle ○○○○○○○○○○●	Problems 000	Memory bounds 0000000	Conclusion O
Performances			

Complexités

Espace mémoire

Espace mémoire maximum utilisé par l'ensemble des variables (en binaire).

Temps : nombre d'étapes

Une étape est une transition d'une configuration vers une autre.

Temps : Le nombre de rondes

Une ronde est la plus petite portion d'exécution où tout noeud activable est activé ou devient non activable.

(人間) システン イラン

Modèle	Problems	Memory bounds	Conclusion
000000000000	000	0000000	0

Fondamental Problems

3

Modèle 00000000	00000	Problems ●○○	Memory bounds	Conclusion O
(Delta+1)-c	oloration			
1.		_		

$(\Delta + 1)$ -coloration

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Modèle	Problems	Memory bounds	Conclusion
00000000000	$\odot \bullet \circ$	000000	0
Spanning-tree construction			

Spanning-tree construction

イロト イロト イヨト イヨト 二日

Modèle 000000000000	Problems ○○●	Memory bounds	Conclusion O
Leader Election			

Leader Election

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Modèle	Problems	Memory bounds	Conclusion
000000000000	000	●000000	0
Complexity			

Performances

Definition : Space complexity

Number of bits per node

Parameters

- n number of nodes
- Δ degree of the graph

・ 同下 ・ ヨト ・ ヨト

Modèle	Problems	Memory bounds	Conclusion
00000000000	000	000000	0
State of the art			

State of the art, Silent algorithms (1/2)

Memory requirements for silent stabilization : lower bound

[DolevGS99] prove that the leader election, the spanning tree construction, and the identification of the centers of a graph, require $\Omega(\log n)$ bits per edge.

Memory requirements for silent stabilization : upper bound

There exist algorithms for the leader election, the spanning tree construction, the identification of the centers of a graph, and the coloration, that use only $O(\log n)$ bits per node.

< ロト < 同ト < ヨト < ヨト

Modèle	Problems	Memory bounds	Conclusion
00000000000	000	000000	0
State of the art			

State of the art : Silent algorithms (2/2)

Definition : Proof Labelling Scheme (PLS) : [KormanKP07]

An **oracle**, assigning to every node v a label l(v) based on its local state, and a **verifier**, a distributed predicate that, on node v, reads both the states and the labels of v and the label of its neighboors, such that

- for every legal state, the verifier returns true at each node
- for every illegal state, the verifier returns false at at least one node

Lower Bound : [BlinFP14]

If there exist a silent self-stabilizing algorithm using k bits, then there exist a PLS using at most k bits.

Modèle	Problems	Memory bounds	Conclusion
00000000000	000	0000000	0
State of the art			

State of the art : General case

Best complexity achieved

[BlinT18] provide algorithm that require $O(\log \log n + \log \Delta)$ bits per node for the problems of $(\Delta + 1)$ -coloration, spanning tree, and leader election.

Lower Bound

[BeauquierGJ99] prove that the leader election cannot be solved with a constant number of bit per node.

Modèle	Problems	Memory bounds	Conclusion
00000000000	000		0
Our contribution			

Our result

Space complexity of the $(\Delta + 1)$ -coloration

The space complexity of the $(\Delta + 1)$ -coloring problem is $\Theta(\log \log n + \log \Delta)$ bits per node.

Space complexity of the spanning tree construction

The space complexity of the spanning tree construction problem is $\Theta(\log \log n + \log \Delta)$ bits per node.

Space complexity of the leader election

The leader election problem requires $\Omega(\log \log n)$ bits per node.

Modèle	0000		Problems 000	Memory bounds	Conclusion O
Our contributi	ion				
<u></u>		<u> </u>	6 1 10		

Sketch of proof 1/2

We consider the *n*-nodes ring.

Idea

- Main algorithm : $\mathcal{A}: [n^c] \times \{0,1\}^{3f(n)} \to \{0,1\}^{f(n)}$
- $\forall v \in V$, with ID id_v , $\exists \delta_{id_v} : \{0,1\}^{3f(n)} \rightarrow \{0,1\}^{f(n)}$
- S denotes the set of all functions δ_i
- If f(n) = o(log log n), then we can find n different IDs that match the same function

< ロト < 同ト < ヨト < ヨト

Modèle 000000000000	Problems 000	Memory bounds ○○○○○○●	Conclusion O
Our contribution			
Sketch of proof	2/2	$ID \in [n^c]$	
$ \mathcal{S} =$	$2^{f(n) \times 2^{3f(n)}}$	$\begin{array}{c c} & a \\ \hline a \\ a \\$	s]
$f(n) = o(\log \log n)$	$ \mathcal{S} = o(n^{c-1})$	$\begin{array}{c} 24 \\ 25 \\ 26 \\ 27 \\ \end{array}$]

・ロット 4 四マ 4 回マ 4 日マ

Lélia Blin

Memory Lower Bounds for Deterministic Self-Stabilization

Modèle	Problems	Memory bounds	Conclusion
00000000000	000	000000	•
Open Problem			
			,

Open Problems

Message passing

Does the generic bound $\Omega(\log \log n)$ still holds in the message passing model?

Thight bound for leader election?

Does there exist an algorithm for the leader election that does not require the extra $O(\log \Delta)$ bits per node quantity?

(人間) とくま とくまと