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Temporal graphs
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Also known as :

. time-dependent networks [Cooke, Halsey 19661,

. edge scheduled networks [Berman 19961, dynamic graphs
[Harary, Gupta 19971, temporal networks [Kempe, Kleinberg,
Kumar 2002], evolving graphs [Bhadra, Ferreira 2003],

. time-varying graphs [Casteigts, Flocchini, Quattrociocchi,
Santoro 2012],

. link streams [Latapy, Viard, Magnien 2018],...
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Temporal path

) A “f A ™
(e ) AR T
O @ l E \ o
® © o o e T
T d d d d
e @ a a a a .
2 3

A path with increasing time labels.

= 7= 174 3/ 18



Temporal path
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A path with increasing time labels.
Temporal paths are strict and waiting is allowed.
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Temporal path
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A path with increasing time labels.
Temporal paths are strict and waiting is allowed.

Reachable set R(u) : the set of nodes v that u can reach by
a temporal path (we let uRv denote v € R(u)).
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Temporal path
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A path with increasing time labels.

3

Temporal paths are strict and waiting is allowed.

Reachable set R(u) : the set of nodes v that u can reach by
a temporal path (we let uRv denote v € R(u)).

Above, we have : eRb,bRh, -aRf, -aRh
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Multidigraph tfemporalisation

Given a multidigraph M = (V. A) assign time labels to edges.
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Multidigraph tfemporalisation

Given a multidigraph M = (V. A) assign time labels to edges.

Maximum reachability goal (MRTT) : maximise total
reachability >~ |R(u)|.
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Undirected temporalisation and label connectivity

Label-connected graph : assign time labels to an undirected
graph (V,E) such that R(u) =V forallue V.
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Undirected temporalisation and label connectivity

Label-connected graph : assign time labels to an undirected
graph (V,E) such that R(u) =V forallue V.

Undirected setting : if uv is available at time t, both (u,v)
and (v, u) are available at time t.
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Undirected temporalisation and label connectivity

Label-connected graph : assign time labels to an undirected
graph (V,E) such that R(u) =V forallue V.

Undirected setting : if uv is available at time t, both (u,v)
and (v, u) are available at time t.

Known results [Gobel, Cerdeira, Veldman 19917 :

. Deciding label-connectivity is NP-hard.

« A graph is label-connected iff it contains two
edge-disjoint spanning tree-pairs and some 4-cycle
condition.
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Undirected temporalisation and label connectivity

Label-connected graph : assign time labels to an undirected
graph (V,E) such that R(u) =V forallue V.

Undirected setting : if uv is available at time t, both (u,v)
and (v, u) are available at time t.

Known results [Gobel, Cerdeira, Veldman 19917 :

. Deciding label-connectivity is NP-hard.

« A graph is label-connected iff it contains two
edge-disjoint spanning tree-pairs and some 4-cycle
condition.

Undirected and directed settings on a path.
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Public tfransport
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Temporal edge : a vehicle on a line going from one stop to
the next one.
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Public tfransport

Temporal edge : a vehicle on a line going from one stop to
the next one.

The trip of a vehicle produces a sequence of temporal edges.
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Public transport

Temporal edges are grouped into walks called frips.
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Trip temporalisation

Trip temporalisation : Given a multidigraph M whose edges
are partionned into t trips, set a starting time for each trip
(we note n = V(M) and m = [E(M))).
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Trip temporalisation

Trip temporalisation : Given a multidigraph M whose edges
are partionned into t frips, set a starting time for each trip
(we note n = V(M) and m = [E(M))).

0 ® e ®

No trip temporalisation satisfies both aRh and eRd.
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One-to-one reachability is hard

O20-RTT : given u,v € V decide if there exists a trip
temporalisation such that uRv.
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One-to-one reachability is hard

O20-RTT : given u,v € V decide if there exists a trip
temporalisation such that uRv.

Theorem O20-RTT is NP-complete.
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Consequence and work-around

Theorem For any ¢ > 0, MRTT cannot be approximated
within O(n'=¢) unless P=NP.
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Consequence and work-around
Theorem For any ¢ > 0, MRTT cannot be approximated

within O(n'=¢) unless P=NP.

Idea : connect many sources to v; and many sinks o wp1.
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Consequence and work-around

= 7=

Theorem For any ¢ > 0, MRTT cannot be approximated
within O(n'=¢) unless P=NP.

Idea : connect many sources to v; and many sinks o wp1.

Theorem O20-RTT using at most k trips can be solved in
290 mlog T where m = |E(M)| and 1 is the number of trips.
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Consequence and work-around

Theorem For any ¢ > 0, MRTT cannot be approximated
within O(n'=¢) unless P=NP.

Idea : connect many sources to v; and many sinks o wp1.

Theorem O20-RTT using at most k trips can be solved in
290 mlog T where m = |E(M)| and 1 is the number of trips.

Idea : use the k-color coding technique of [Alon, Yuster,
Zwick 2016].
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One-to-one reachability is hard

3-SAT reduction :
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Strong temporalisabilty

A trip network is strongly femporisable when for each pair
u,v €V, there exists a temporalisation such that uRv.
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A difficult strongly femporisable network
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A difficult strongly femporisable network

Bounded reachability : ", [R(u)| = O(n'5) (v/n gap).
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Unapproximability of MRTT

Theorem MRTT cannot be approximated within \/n/12
unless P=NP even in strongly femporisable trip networks.

Reduction from O20-MRTT.
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Symmetricity
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For every trip (vi,...,vg), there is a reverse trip (vg,...,v1).
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MRTT is hard in symmetric trip networks
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Approximability of symmetric trip networks

Fact A symmetric trip network is strongly temporisable iff
M is (strongly) connected.
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Approximability of symmetric trip networks

Fact A symmetric trip network is strongly temporisable iff
M is (strongly) connected.

Theorem MRTT can be approximated within 9/2 in strongly
temporisable symmetric frip networks.
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Approximability of symmetric trip networks

Fact A symmetric trip network is strongly temporisable iff
M is (strongly) connected.

Theorem MRTT can be approximated within 9/2 in strongly
temporisable symmetric trip networks.

Idea:
. group trips and reverse trips into pairs,
. compute a centroid pair C, and a partition A, {C}, B of
trip pairs,
. schedule frips pairs in A, {C}, B respectively so that :
. each node in V(A U {C}) can reach V({C} UB).

= 7= 3/317 /18



Going further

All results hold with arbitrary positive delays on edges,

= 7=

1/4 18 / 18



Going further

All results hold with arbitrary positive delays on edges,

and with fixed waiting times at stops.
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Going further

All results hold with arbitrary positive delays on edges,
and with fixed waiting times at stops.

Open : varying waiting times can be chosen in the
temporalisation.

= 7=
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Going further

All results hold with arbitrary positive delays on edges,
and with fixed waiting times at stops.

Open : varying waiting times can be chosen in the
temporalisation.

Open : each trip is duplicated K times.
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