Graph temporalisation

Filippo Brunelli, Pierluigi Crescenzi and Laurent Viennot

Inria Paris - GSSI - Irif (Université de Paris and CNRS)
Descartes - Fontainebleau 2021

Temporal graphs

Also known as

- time-dependent networks [Cooke, Halsey 1966],
- edge scheduled networks [Berman 1996], dynamic graphs [Harary, Gupta 1997], temporal networks [Kempe, Kleinberg,
Kumar 2002], evolving graphs [Bhadra, Ferreira 2003],
- time-varying graphs

Santoro 2012],

Temporal graphs

Also known as :

- time-dependent networks [Cooke, Halsey 1966],
- edge scheduled networks [Berman 1996], dynamic graphs [Harary, Gupta 1997], temporal networks [Kempe, Kleinberg, Kumar 2002], evolving graphs [Bhadra, Ferreira 2003],
- time-varying graphs [Casteigts, Flocchini, Quattrociocchi,

Santoro 2012],

- link streams [Latapy, Viard, Magnien 2018],...

Temporal path

A path with increasing time labels.
Temporal paths are strict and waiting is allowed.
Reachable set $\mathcal{R}(u)$: the set of nodes v that u can reach by
a temporal path (we let uRv denote $v \in \mathcal{R}(u)$).
Above, we have : eRb,bRh, $\neg a \mathcal{R} f, \neg a R h$

Temporal path

A path with increasing time labels.
Temporal paths are strict and waiting is allowed.

Temporal path

A path with increasing time labels.
Temporal paths are strict and waiting is allowed.
Reachable set $\mathcal{R}(u)$: the set of nodes v that u can reach by a temporal path (we let $u \mathcal{R} v$ denote $v \in \mathcal{R}(u)$).

Temporal path

A path with increasing time labels.
Temporal paths are strict and waiting is allowed.
Reachable set $\mathcal{R}(u)$: the set of nodes v that u can reach by a temporal path (we let $u \mathcal{R} v$ denote $v \in \mathcal{R}(u)$).
Above, we have : $e \mathcal{R} b, b \mathcal{R} h, \neg a \mathcal{R} f, \neg a \mathcal{R} h$

Multidigraph temporalisation

Given a multidigraph $M=(V, A)$ assign time labels to edges.

Maximum reachability goal (MRTT) : maximise total reachability $\sum_{u}|\mathcal{R}(u)|$

Multidigraph temporalisation

Given a multidigraph $M=(V, A)$ assign time labels to edges.

Maximum reachability goal (MRTT) : maximise total reachability $\sum_{u}|\mathcal{R}(\mathbf{u})|$.

Undirected temporalisation and label connectivity

Label-connected graph : assign time labels to an undirected graph (V, E) such that $\mathcal{R}(u)=V$ for all $u \in V$.

Undirected setting : if uv is available at time \dagger, both (u, v)

 and (v, u) are available at time \dagger.
condition.

Undirected and directed settings differ on a path.

Undirected temporalisation and label connectivity

Label-connected graph : assign time labels to an undirected graph (V, E) such that $\mathcal{R}(\mathrm{u})=\mathrm{V}$ for all $\mathrm{u} \in \mathrm{V}$.

Undirected setting: if uv is available at time t, both (\mathbf{u}, \mathbf{v}) and (v, u) are available at time t.

condition.

Undirected and directed settings

Undirected temporalisation and label connectivity

Label-connected graph : assign time labels to an undirected graph (V, E) such that $\mathcal{R}(u)=V$ for all $u \in V$.

Undirected setting : if $u v$ is available at time t, both (u, v) and (v, u) are available at time t.

Known results [Göbel, Cerdeira, Veldman 1991]:

- Deciding label-connectivity is NP-hard.
- A graph is label-connected iff it contains two edge-disjoint spanning tree-pairs and some 4-cycle condition.

Undirected and directed settings
on a path.

Undirected temporalisation and label connectivity

Label-connected graph : assign time labels to an undirected graph (V, E) such that $\mathcal{R}(u)=V$ for all $u \in V$.

Undirected setting : if $u v$ is available at time t, both (u, v) and (v, u) are available at time t.

Known results [Göbel, Cerdeira, Veldman 1991]:

- Deciding label-connectivity is NP-hard.
- A graph is label-connected iff it contains two edge-disjoint spanning tree-pairs and some 4-cycle condition.

Undirected and directed settings differ on a path.

Public transport

Temporal edge : a vehicle on a line going from one stop to the next one.

The trip of a vehicle produces a sequence of temporal edges.

Public transport

Temporal edge : a vehicle on a line going from one stop to the next one.

The trip of a vehicle produces a sequence of temporal edges.

Public transport

Temporal edges are grouped into walks called trips.

Trip temporalisation

Trip temporalisation : Given a multidigraph M whose edges are partionned into \dagger trips, set a starting time for each trip (we note $n=|V(M)|$ and $m=|E(M)|$).

No trip temporalisation satisfies both aRh and eRd.

Trip temporalisation

Trip temporalisation : Given a multidigraph M whose edges are partionned into \dagger trips, set a starting time for each trip (we note $n=|V(M)|$ and $m=|E(M)|$).

No trip temporalisation satisfies both a $\mathcal{R} h$ and $e \mathcal{R} d$.

One-to-one reachability is hard

O20-RTT: given $u, v \in V$ decide if there exists a trip temporalisation such that uRv.

Theorem O2O-RTT is NP-complete.

One-to-one reachability is hard

O20-RTT : given $u, v \in V$ decide if there exists a trip temporalisation such that uRv.

Theorem O2O-RTT is NP-complete.

Consequence and work-around

Theorem For any $\varepsilon>0$, MRTT cannot be approximated within $O\left(n^{1-\varepsilon}\right)$ unless $P=N P$.

Idea: connect many sources to v_{1} and many sinks to $\mathrm{w}_{\mathrm{m}+1}$.

Theorem O20-RTT using at most k trips can be solved in $2^{O(\mathrm{k})} \mathrm{m} \log T$ where $m=|E(M)|$ and \dagger is the number of trips.

Idea: use the k-color coding technique of [Alon, Yuster Zwick 2016].

Consequence and work-around

Theorem For any $\varepsilon>0$, MRTT cannot be approximated within $O\left(n^{1-\varepsilon}\right)$ unless $P=N P$.

Idea: connect many sources to v_{1} and many sinks to $\mathrm{w}_{\mathrm{m}+1}$.
\square

Idea : use the k -color coding technique of [Alon, Yuster

Consequence and work-around

Theorem For any $\varepsilon>0$, MRTT cannot be approximated within $O\left(n^{1-\varepsilon}\right)$ unless $P=N P$.

Idea : connect many sources to v_{1} and many sinks to $\mathrm{w}_{\mathrm{m}+1}$.

Theorem O2O-RTT using at most k trips can be solved in $2^{O(k)} \mathrm{m} \log T$ where $m=|E(M)|$ and \dagger is the number of trips.

Idea : use the k -color coding technique of [Alon, Yuster

Consequence and work-around

Theorem For any $\varepsilon>0$, MRTT cannot be approximated within $O\left(n^{1-\varepsilon}\right)$ unless $P=N P$.

Idea: connect many sources to v_{1} and many sinks to w_{m+1}.

Theorem 020-RTT using at most k trips can be solved in $2^{O(\mathrm{k})} \mathrm{m} \log T$ where $m=|E(M)|$ and t is the number of trips.

Idea: use the k-color coding technique of [Alon, Yuster, Zwick 2016].

One-to-one reachability is hard

3-SAT reduction :

Strong temporalisabilty

A trip network is strongly temporisable when for each pair $u, v \in V$, there exists a temporalisation such that uRv.

A difficult strongly temporisable network

Bounded reachability: $\sum_{u}|\mathcal{R}(u)|=O\left(n^{1.5}\right)(\sqrt{n}$ gap $)$.

A difficult strongly temporisable network

Bounded reachability : $\sum_{u}|\mathcal{R}(u)|=O\left(n^{1.5}\right)(\sqrt{n}$ gap).

Unapproximability of MRTT

Theorem MRTT cannot be approximated within $\sqrt{n} / 12$ unless $P=N P$ even in strongly temporisable trip networks.

Reduction from O2O-MRTT.

Symmetricity

For every $\operatorname{trip}\left\langle\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle$, there is a reverse $\operatorname{trip}\left\langle\mathrm{v}_{\mathrm{k}}, \ldots, \mathrm{v}_{1}\right\rangle$.

MRTT is hard in symmetric trip networks

Approximability of symmetric trip networks

Fact A symmetric trip network is strongly temporisable iff M is (strongly) connected.

> Theorem MRTT can be approximated within 9/2 in strongly temporisable symmetric trip networks.

Idea:

- group trips and reverse trips into pairs,
- compute a centroid pair C, and a partition $A,\{C\}, B$ of
trip pairs,
- schedule trips pairs in $A,\{C\}, B$ respectively so that - each node in $V(A \cup\{C\})$ can reach $V(\{C\} \cup B)$.

Approximability of symmetric trip networks

Fact A symmetric trip network is strongly temporisable iff M is (strongly) connected.

Theorem MRTT can be approximated within 9/2 in strongly temporisable symmetric trip networks.

Idea:

- group trips and reverse trips into pairs,
- compute a centroid pair C, and a partition $A,\{C\}, B$ of
trip pairs,
- schedule trips pairs in $A,\{C\}$, B respectively so that :

Approximability of symmetric trip networks

Fact A symmetric trip network is strongly temporisable iff M is (strongly) connected.

Theorem MRTT can be approximated within 9/2 in strongly temporisable symmetric trip networks.

Idea:

- group trips and reverse trips into pairs,
- compute a centroid pair C, and a partition $A,\{C\}, B$ of trip pairs,
- schedule trips pairs in $A,\{C\}, B$ respectively so that :
- each node in $V(A \cup\{C\})$ can reach $V(\{C\} \cup B)$.

Going further

All results hold with arbitrary positive delays on edges, and with fixed waiting times at stops.

Open : varying waiting times can be chosen in the temporalisation.

Open : each trip is duplicated K times.

Going further

All results hold with arbitrary positive delays on edges, and with fixed waiting times at stops.

Open : varying waiting times can be chosen in the temporalisation.

Open : each trip is duplicated K times.

Going further

All results hold with arbitrary positive delays on edges, and with fixed waiting times at stops.

Open: varying waiting times can be chosen in the temporalisation.

Open : each trip is duplicated K times.

Going further

All results hold with arbitrary positive delays on edges,
and with fixed waiting times at stops.

Open: varying waiting times can be chosen in the temporalisation.

Open : each trip is duplicated K times.

