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Temporal graphs
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Also known as :
• time-dependent networks [Cooke, Halsey 1966],
• edge scheduled networks [Berman 1996], dynamic graphs

[Harary, Gupta 1997], temporal networks [Kempe, Kleinberg,
Kumar 2002], evolving graphs [Bhadra, Ferreira 2003],

• time-varying graphs [Casteigts, Flocchini, Quattrociocchi,
Santoro 2012],

• link streams [Latapy, Viard, Magnien 2018],...
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Temporal path
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A path with increasing time labels.
Temporal paths are strict and waiting is allowed.
Reachable set R(u) : the set of nodes v that u can reach by
a temporal path (we let uRv denote v ∈ R(u)).
Above, we have : eRb,bRh,¬aRf,¬aRh
.
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Multidigraph temporalisation

Given a multidigraph M = (V,A) assign time labels to edges.

Maximum reachability goal (MRTT) : maximise total
reachability

∑
u |R(u)|.
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Undirected temporalisation and label connectivity

Label-connected graph : assign time labels to an undirected
graph (V,E) such that R(u) = V for all u ∈ V.

Undirected setting : if uv is available at time t, both (u, v)
and (v, u) are available at time t.

Known results [Göbel, Cerdeira, Veldman 1991] :
• Deciding label-connectivity is NP-hard.
• A graph is label-connected iff it contains two

edge-disjoint spanning tree-pairs and some 4-cycle
condition.

Undirected and directed settings differ on a path.
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Public transport

Temporal edge : a vehicle on a line going from one stop to
the next one.

The trip of a vehicle produces a sequence of temporal edges.
⇐ ? ⇒ 1 / 2 6 / 18
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Public transport
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Temporal edges are grouped into walks called trips.
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Trip temporalisation

Trip temporalisation : Given a multidigraph M whose edges
are partionned into t trips, set a starting time for each trip
(we note n = |V(M)| and m = |E(M)|).
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No trip temporalisation satisfies both aRh and eRd.
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One-to-one reachability is hard

O2O-RTT : given u, v ∈ V decide if there exists a trip
temporalisation such that uRv.

Theorem O2O-RTT is NP-complete.
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Consequence and work-around

Theorem For any ε > 0, MRTT cannot be approximated
within O(n1−ε) unless P=NP.

Idea : connect many sources to v1 and many sinks to wm+1.

Theorem O2O-RTT using at most k trips can be solved in
2O(k)m logT where m = |E(M)| and t is the number of trips.

Idea : use the k-color coding technique of [Alon, Yuster,
Zwick 2016].

⇐ ? ⇒ 1 / 4 10 / 18



Consequence and work-around

Theorem For any ε > 0, MRTT cannot be approximated
within O(n1−ε) unless P=NP.

Idea : connect many sources to v1 and many sinks to wm+1.

Theorem O2O-RTT using at most k trips can be solved in
2O(k)m logT where m = |E(M)| and t is the number of trips.

Idea : use the k-color coding technique of [Alon, Yuster,
Zwick 2016].

⇐ ? ⇒ 2 / 4 10 / 18



Consequence and work-around

Theorem For any ε > 0, MRTT cannot be approximated
within O(n1−ε) unless P=NP.

Idea : connect many sources to v1 and many sinks to wm+1.

Theorem O2O-RTT using at most k trips can be solved in
2O(k)m logT where m = |E(M)| and t is the number of trips.

Idea : use the k-color coding technique of [Alon, Yuster,
Zwick 2016].

⇐ ? ⇒ 3 / 4 10 / 18



Consequence and work-around

Theorem For any ε > 0, MRTT cannot be approximated
within O(n1−ε) unless P=NP.

Idea : connect many sources to v1 and many sinks to wm+1.

Theorem O2O-RTT using at most k trips can be solved in
2O(k)m logT where m = |E(M)| and t is the number of trips.

Idea : use the k-color coding technique of [Alon, Yuster,
Zwick 2016].

⇐ ? ⇒ 4 / 4 10 / 18



One-to-one reachability is hard

3-SAT reduction :
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Strong temporalisabilty

A trip network is strongly temporisable when for each pair
u, v ∈ V, there exists a temporalisation such that uRv.

⇐ ? ⇒ 1 / 1 12 / 18



A difficult strongly temporisable network
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Bounded reachability :
∑

u |R(u)| = O(n1.5) (
√
n gap).
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Unapproximability of MRTT
Theorem MRTT cannot be approximated within

√
n/12

unless P=NP even in strongly temporisable trip networks.
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(D = (V,E),T)

Reduction from O2O-MRTT.
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Symmetricity

For every trip ⟨v1, . . . , vk⟩, there is a reverse trip ⟨vk, . . . , v1⟩.
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MRTT is hard in symmetric trip networks
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Approximability of symmetric trip networks

Fact A symmetric trip network is strongly temporisable iff
M is (strongly) connected.

Theorem MRTT can be approximated within 9/2 in strongly
temporisable symmetric trip networks.

Idea :
• group trips and reverse trips into pairs,
• compute a centroid pair C, and a partition A, {C},B of

trip pairs,
• schedule trips pairs in A, {C},B respectively so that :

• each node in V(A ∪ {C}) can reach V({C} ∪ B).
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Going further

All results hold with arbitrary positive delays on edges,

and with fixed waiting times at stops.

Open : varying waiting times can be chosen in the
temporalisation.

Open : each trip is duplicated K times.
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