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Organization

Part I : Information theory perspective, number of bits 
needed to communicate each others inputs 

Part II: Wait-free perspective, how many bits are needed 
to solve a task 

Part III: Russian cards perspective, how many bits are 
needed to communicate each others inputs privately



Part I
Information theory perspective



Information transmission with 
dependent inputs: interaction
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PART III: SOURCE CODING 

from the survey paper 


(details in other paper cited later on): 

Janos Korner and Alon Orlitsky, 

Zero-error information theory, 


IEEE Transactions on Information Theory, 1998

Hungarian, Sapienza University of Rome

 2014 Claude E. Shannon Award


With Imre Csiszár book: Information Theory: Coding Theorems for 
Discrete Memoryless Systems

Israeli , at University of California, San Diego

 2021 Claude E. Shannon Award (talk in ISIT July)
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Shannon was the first to realize the 
significance of zero-error information 

theory. 


His classic paper, “The zero-error capacity 
of a noisy channel”, is a true gem in graph 

theory and is one of his most cited articles. 


The subject was subsequently studied 
extensively 


zero-error information theory

Tinkerer, Prankster, and Father of Information Theory, one of the greatest electrical engineering heroes of all time.

https://spectrum.ieee.org/tech-history/cyberspace/claude-shannon-tinkerer-prankster-and-father-of-information-theory
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Source coding
basic problem
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• For a single instance (transmit one , once), it is well known that the smallest number of bits needed in 
the worst case is , and the smallest expected number of bits is the entropy, achieved by 
Huffman coding, is between  and 

x
⌈log2 |X |⌉

H(X) H(X) + 1

• For  independent instances, it follows that  bits are needed in the worst case, and on 
average between  and . 

n n⌈log2 |X |⌉
nH(X) nH(X) + 1

• Asymptotically, per instance, , and , resp.log2 |X | H(X)

basic problem
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• Alice wants to transmit  using an encoding  to save bits, but now Bob 
knows something about the inputs of A. Bob should learn , with no 
probability of error. 
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Side information

correlated inputs

• Alice wants to transmit  using an encoding  to save bits, but now Bob 
knows something about the inputs of A. Bob should learn , with no 
probability of error. 

x PA(x)
x

• Input graph : bipartite, vertices of A correspond to her possible inputs , 
and the vertices of B correspond to his possible inputs . An edge  
means that it is possible that A has  and B has .
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Side information

correlated inputs

• Alice wants to transmit  using an encoding  to save bits, but now Bob 
knows something about the inputs of A. Bob should learn , with no 
probability of error. 

x PA(x)
x

• Input graph : bipartite, vertices of A correspond to her possible inputs , 
and the vertices of B correspond to his possible inputs . An edge  
means that it is possible that A has  and B has .

ℐ X
Y (x, y)

x y

•  Characteristic graph: the vertices are , there is an edge  whenever 
 and   are possible inputs, for some input  of B 

X (x, x′￼)
(x, y) (x′￼, y) y

0

1

Alice white, Bob black
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Main theorem
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Main theorem

• The smallest number of possible messages the informant must transmit for a single 
instance is , the chromatic number of the characteristic graph . In terms of 
bits, .

χ(G) G
log2 χ(G)

• A and B agree in advance on a coloring of , namely G PA

• Given , A sends its color, . x PA(x)

• B, knowing his input , can determine  because there is a single  with this color 
that is jointly possible with , i.e.,   is in the source input graph .

y x x
y (x, y) ℐ

Single instance
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Examples

•   , and 2 bits are sufficient (and needed), instead of 3 
bits needed for 5 elements
χ(C5) = 3

Cycle and Kneser graphs

Cycle    C5
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Examples

•   , and 2 bits are sufficient (and needed), instead of 3 
bits needed for 5 elements
χ(C5) = 3

Cycle

Cycle    C5
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Examples

•   consists of all -element subsets of , two 
vertices are connected iff they are disjoint


• chromatic number  


•

K(u, t) t {1,…, u}

χ(K(u, t)) = u − 2t + 2

χ(K(5,2)) = 3

Kneser graphs
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Main theorem
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• A knows  and B knows x1, …, xn y1, …, yn

• The and-power  characteristic graph  has vertices , and two are in an edge 
iff for each entry  , there is a , such   and   are possible, ie edges of the 
input graph 

n Gn
∧ x1, …, xn

xi, x′￼i y x, y x′￼, y
ℐ

• Theorem: The smallest number of possible messages A must transmit for a  
instances is , the chromatic number of this characteristic graph. In terms of 
bits, .

n
χ(Gn

∧)
σn = log2 χ(Gn

∧)

Main theorem
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Multiple instances

• Clearly encoding two instances should require at most twice as many bits as needed 
for one . σ2 ≤ 2σ1

• and since different instances of the source are completely independent of each 
other, it is not intuitively clear that it is possible . Indeed, not so for an 
uncorrelated source, where the graphs are complete

σ2 < 2σ1

Saving on multiple instances
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Examples
Cycle and Kneser multiple instances
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Examples

• Witsenhausen showed that for the pentagon,  !σ2 < 2σ1

•   while for 2 or more instances,    bits per instanceσ1 = log2 3 ≈ 1.58 log2 5/2 ≈ 1.16

• For the Knesser graph, ,  sports,  players and two teams of   
players each

χ(K(u, t)) = u − 2t + 2 n u t

• Asymptotically  since the chromatic number is asymptotically  (Alon, 
Orlitsky IEEE TIT’95)

σ∞ = log u/t u/t

• Let  . Then for  need  bits, while as   need u = (2 + ϵ)t n = 1 log2(ϵt + 2) n → ∞
log2(2 + ϵ) ≤ 1 + ϵ

• Keeping   small and increasing , we see that a single sport requires arbitrarily many 
bits while many sports require roughly one bit per instance!

ϵ t

Cycle and Kneser multiple instances
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Interaction

https://earth-chronicles.com/science/the-most-striking-ways-of-communicating-animals.html
16

I would like to 
tell him x

I know y



Interactive communication
Section XII
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Interactive communication

• for some sources, interaction can reduce transmission to the logarithm of the one-
way number of bits, and  

• for a large class of sources, interaction can reduce transmission to about the same 
number of bits required when A knows  in advance. y

• For communication of multiple instances, interaction can reduce transmission by an 
arbitrary amount, and can always achieve the number of bits needed when A knows 

 in advance. y

Section XII
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Interactive communication

• Model: A and B alternate in transmitting messages, determined by an 
agreed-upon, deterministic protocol. 

• The input is a pair , Alice wants to transmit  to Bob, who knows (x, y) x y

•  = number of bits required in the worst case when B cannot transmit 
to A, while 
C1

•  = number of bits when B transmits a message reflecting , then A 
responds with a message from which B must infer 
C2 y

x

•  = number of bits of a protocol with any number of message 
exchanges
C∞

Section XII

18
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One message requires exponentially more bits than the minimum necessary 

• Sports league has  teams. t

• B knows two teams that played in a game, and 

• A knows the team that won the game, but not against whom. 

• They communicate in order for B to learn the winning team. 

League problem

19

Alice                         Bob

      
x = Mexico y = Mexico vs France
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One message requires exponentially more bits than the minimum necessary 

• One message.    bits are necessary: Different messages 
must be sent when one wins than when another wins


• Two messages.  B considers the binary representations of the two 
teams that played and transmits   bits describing the 
location of the first bit where they differ


• A responds by transmitting a single bit describing the bit value of the 
winning team in that location , 

C1 = ⌈log2 t⌉

⌈log2 log2 t⌉

C2 = ⌈log2 log2 t⌉ + 1

League problem

10010100
10110101

3rd position
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The largest possible discrepancy
ORLITSKY: WORST-CASE INTERACTIVE COMMUNICATION I, IV. THE LIMITS OF INTERACTION

Lϕ bits bit sent

0
0

1
0

1

convesrsation

1
2

2Lϕ

22

In the paper   if string  is 
a prefix of  but we may 

assume for simplicity that all 
conversations are of the same 

length

β ≼ α β
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and bit  otherwise 
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• Then B decodes: simply finds an  bit sequence  for which . He then finds 
and   compatible with his , for which the conversation with   and decides .
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• it is possible to show that the largest possible discrepancy is 1 more,


• Theorem:  


• Proof: uses a recursive argument, basically on the sizes of the cliques after 
comunication reduced at most in 1/2

C∞ ≥ ⌈log2 C1⌉ + 1

The largest possible discrepancy
ORLITSKY: WORST-CASE INTERACTIVE COMMUNICATION I, IV. THE LIMITS OF INTERACTION
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• Theorem: just two messages always suffice to reduce communication to almost the 
minimum:  for all sources C2 ≤ 4C∞ + 3

Limits of interaction
ORLITSKY: WORST-CASE INTERACTIVE COMMUNICATION I, IV. THE LIMITS OF INTERACTION
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• Is there an  such that an -message protocol is asymptotically optimum? m m

Limits of interaction
ORLITSKY: WORST-CASE INTERACTIVE COMMUNICATION I, IV. THE LIMITS OF INTERACTION
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Balanced and correlated files
Orlitzky, Interactive communication of balanced distributions, SIAM DM 1993
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Balanced and correlated files

• For general sources, one way communication may require exponential more bits 
than the minimum necessary (over arbitrary many exchanges), yet, for balanced 
sources, one way requires at most twice the minimum  C1 ≤ 2C∞ + 1

• This bound is almost tight 

• 3 rounds is asymptotically optimal

Orlitzky, Interactive communication of balanced distributions, SIAM DM 1993
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Balanced Sources
Orlitzky, Interactive communication of balanced distributions, SIAM DM 1993
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• A’s ambiguity  is the max over all , of the number of possible 
inputs for B, ie the max degree of an A-node in the input graph 

ν x
ℐ

• B’s ambiguity  is the max over all , of the number of possible 
inputs for A, ie the max degree of a B-node in the input graph 

μ y
ℐ

• In the leagues problem: these numbers are  ν = t − 1,μ = 2

• Balanced sources have both numbers equal μ = ν

Balanced Sources
Orlitzky, Interactive communication of balanced distributions, SIAM DM 1993

Alice

Bob

ν = 3

μ = 4

27
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Balanced sources

1. inaccurate measurements of the same quantity, are integers within a bounded 
absolute difference from each other. 

2. are obtained from a faulty memory, -bit strings within a bounded Hamming 
distance from each other. 

n

examples: measurements

28
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1. edit distance between two binary strings  and  is the minimum number of deletions 
and insertions to  needed to derive . 

x y
x y

• edit distance between  and  is 01010 10101 2

• correlated-files problem:   are binary strings within a small edit distance from each 
other. A knows  while B knows  and wants to learn . 

x, y
x y x

• Example: A and B write a joint book and each updates his version individually or  
and   are different versions of the same program or file 

x
y

• We are looking for a way to communicate  to B without transmitting all of it. x

examples: correlated files
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Results

• For balanced sources, there is almost no increase in communication due to A not 
knowing  !y

• Lemma 1: for all sources C1 ≤ log2 μ + log2 ν + 1

• proof: Each vertex in the characteristic graph belongs to at most  edges, and each 
edge contains at most  vertices. Thus, 

ν
μ χ(G) ≤ ν(μ − 1) + 1 ≤ μν
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Results

• For balanced sources, there is almost no increase in communication due to A not 
knowing  !y

• Lemma 1: for all sources C1 ≤ log2 μ + log2 ν + 1

• proof: Each vertex in the characteristic graph belongs to at most  edges, and each 
edge contains at most  vertices. Thus, 

ν
μ χ(G) ≤ ν(μ − 1) + 1 ≤ μν

• Corollary 1:  for balanced sources. C1 ≤ 2 log2 μ + 1 ≤ 2C∞ + 1

Balanced sources

Alice

Bob

ν = 3

μ = 5

30



Three messages is asymptotically optimal

• This is proved in Sec 3


• Section 5: correlated files:  are binary strings within edit distance of  from each 
other.


• It shows that the previos results can be used to obtain efficient 3 message protocols. 

x, y α

using perfect hash functions and Lovasz local lemma

31



Rsynch

32

H. Yan; U. Irmak; T. Suel,

Algorithms for Low-Latency Remote File Synchronization,  IEEE INFOCOM 2008


• The remote file synchronization problem is how to update an outdated version of a file located on one machine to 
the current version located on another machine with a minimal amount of network communication.


•  It arises in many scenarios including web site mirroring, file system backup and replication, or web access over slow 
links. 


• A widely used open-source tool called rsync uses a single round of messages to solve this problem.

In this paper, they study single-round synchronization techniques that achieve savings in bandwidth consumption while 

preserving many of the advantages of the rsync approach. 
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Tasks

• The computational power of a 
distributed system depends on its 
communication, process relative speeds, 
and failure assumptions. 


• A model’s computational power is 
typically studied with respect to tasks, 
such as consensus, etc.


• Specified by an input/output relation Δ Two process 
binary consensus



Distributed computability
Two milestones

• A characterization of the tasks that are solvable in an asynchronous message 
passing system where at most one process may crash [BiranMoranZaks’90]


•  A wait-free characterization of the tasks, solvable in an asynchronous read/
write shared memory system where any number of processes may crash 
[HerlihyShavit’99]
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Nature of the characterizations
Task solvability and complexity

• These papers discovered the intimate relation with topology. 

• Task solvability characterizations have been described for 
many models:

- share memory, message passing, mobile robots, etc. 

- crash and Byzantine failures, both dependent and 
independent

- Determine solvability for many tasks: consensus, set 
agreement, renaming, symmetry breaking, equality 
negation, etc.
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Full-information protocols
Motivation

• All the task solvability characterizations considered in the literature assume a 
full-information protocol 

• a process keeps in its state everything it knows, and each time it communicates 
with other processes, it sends its entire state 

• the size of the messages (or the values written to the shared-memory) grows 
with the number of rounds:

- rounds become slower and slower, to implement the necessary information 
exchange

- Notice the number of rounds needed to solve a task can grow so fast, that it 
is undecidable if a task has a wait-free protocol, even for three processes 



Full-information protocols are convenient
Topology structure of the protocol is easier to analyze

• Intuitively, subdivisions are obtained, perhaps with holes in more powerful 
models

Three process examples 
2 and 3 rounds



What is the minimum number of bits per message, 
needed to encode a full-information protocol, 

without incurring a cost in communication rounds? 

We pose the question:

• It is easy to encode a full information protocol by sending 
smaller messages, at the cost of extra rounds



What is the minimum number of bits per message, 
needed to encode a full-information protocol, 

without a cost in communication rounds? 

What is the cost in terms of 
communication rounds, of having 

constant size messages ?
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Characterizations depend on the protocol being full-information

• In non full-information protocols the topology may change; the protocol 
complex changes

• First fix a model…
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Wait-free dynamic network 

• Equivalent to other wait-free models, at the core of the Herlihy-Shavit 
characterization


• Round-based


• A directed graph determines messages delivered in each round


• Processes do not crash

k-Set-Agreement-in-Communication-Networks-with-Godard-Perdereau



Results
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Results for two processes
• Mostly single bit messages suffice, to solve any solvable task, without an 

extra cost in the number of rounds, w.r.t. to a full-information protocol

• Additionally, to identify the input configuration (an edge), sometimes 
messages of log c bits must be sent, where c is a chromatic number of the 
characteristic, distance-2 input graph, but this vanishes as the number of 
rounds grows

• No penalty on the number of rounds even sending only beeps



Results for more than 2 processes

• Already for  3 processes, messages of constant size do not suffice to solve 
every task in an optimal number of rounds 


• Wait-free computability inherently requires rounds with growing information 
exchange



Techniques
Approximate agreement

• Wait-free task solvability is essentially a form of approximate agreement


- e.g. see Book Herlihy, Kozlov, Rajsbaum


• Processes are required to compute values that are close to each other

7 edges => outputs are 1/7-th appart


k-approximate agreement,  edges 





3k

ϵ = 1/3k



• For an input graph  of only one input edge


• Solving k-edge approximate agreement with 1-bit messages, in k rounds

ℐ

• decide values arbitrarily 
close to each other, by 
running enough rounds, k. 
However, the size of 
messages sent grows with k. 

Two process
Approximate agreement



The foundation
Approximate agreement



Two processes 
results

first

https://www.kiss.ie/disney-plus-drop-a-special-simpsons-episode-focussing-on-maggie/
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First main result
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Approximate agreement with few bits 
Lower bound result

• For binary consensus, two round 
protocol complex


• Formulation from:             
Armenta, Ledent, R. LANMR 2020,


• where using epistemic logic it is 
formalized what exactly a process 
learns, and why is optimal
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Upper bound for general input graphs
Input information transmission as a coding problem

• Process A, with input a, does not need to know the input of B, it is sufficient 
that it distinguishes the different possible inputs of B

• View a protocol as a code: a vertex coloring of two graphs

-  the distance 2 graph of the A-vertices and of the distance 2-graph of the 
B-vertices



Input information transmission as a coding problem
Result



Beep model

https://giphy.com/gifs/season-16-the-simpsons-16x7-xT5LMS2wWNZb5qZmGA
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The beep model

• all messages sent by a protocol are identical: they consist of a unary signal

• A process can decide in each round to send a message or not 

• Notice that if both A and B decide to send a beep in the same round, at least 
one of them receives a beep. But if only one of them sends, possibly no-one 
receives.



Protocols in the beep model
For approximate agreement

• it is possible to solve                     
k-edge approximate agreement in 
3k rounds

0 means no beep is sent



Beep model
Only a constant cost on the extra number of rounds over 
the optimal



Three processes
There is no solution with 
constant overhead on 
the number of rounds 

https://www.pinterest.com/pin/631418810241227883/



Dynamic network wait-free model
For 3 processes

Each triangle represents a possible digraph


describing which messages are delivered



The impossibility
Intuition

• As the number of rounds grows, the size of the  code 
needed to distinguish executions grows



The impossibility
Intuition

Blue process must distinguish all 9 
possible executions by the other two 

One round later the 
path around the blue 
is 3 times longer



The impossibility
Main result
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Card games

• Peter Winkler in Bridge Magazine 1981 
showed how one player could send her 
partner information about her hand, 

• by public announcements,

• undecipherable to the opponents, 

• even though the protocol was known to 
them 



Card games

• Fischer, Wright, etc extended the ideas 
for secret bit  and key exchange, eg
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Card games
Security in the presence of computationally unbounded adversaries

• Correlated inputs are needed for security 
in the presence of computationally 
unbounded adversaries


• cards represent correlated initial local 
variables for the players
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Russian Cards problem
Moscow Mathematics Olympiad in 2000

• A deck of 7 cards  {0,1,2,3,4,5,6}


• Each of Alice and Bob have 3 cards,    eg, 
 and 


• Cath has the remaining card out of 7           eg, 

a = {012} b = {345}

c = {6}

a b

c



Russian Cards problem
Moscow Mathematics Olympiad in 2000

Goal


• Alice and Bob learn each other cards using 
public announcements (no encryption)


• While Cath should not learn the location of any 
single card (in spite of knowing the protocol of 
Alice and Bob)



Russian Card problem
Moscow Mathematics Olympiad in 2000

Classic two-step solution


• Alice announces sum mod 7 of  = 3a = {012}
3
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• Alice announces sum of  mod 7,   
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• Bob responds with 


• from which Alice learns 
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Russian Card problem
Security in the presence of computationally unbounded adversaries

• two-step solution:


• Alice announces sum of  mod 7,   


• Bob deduces from his own  and  mod 7 


• Bob responds with 


• from which Alice learns 


• and Cath learns nothing 

a

a = {012} b a

c = {6}

b

c
ab

?
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generalized Russian cards problem:
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gets  c
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Generalized Russian Cards

•  Hans van Ditmarsch started a research line on the 
generalized Russian cards problem:


• deck of n cards, Alice gets a, Bob gets b, and Cath 
gets the remaining  c 

• Same goal: Alice and Bob learn each other cards 
using public announcements, while Cath should not 
learn the location of any single card


• mostly two-step solutions

Signature

(a,b,c), 


n =a+b+c



Generalized Russian Cards

•  Numerous papers by van Ditmarsch, Fernández-
Duque, Swanson, Stinson, etc


• Using either combinatorial designs or epistemic logic


• including variants such as stronger security 
requirements or more rounds



For a  signature       the question has been(a, b, c), n = a + b + c

For what signatures there exists a 2-step protocol that is


• Informative: Bob learns the cards of Alice, and


• Safe: Cath does not learn the location of any single card



• When c = 1, solutions exist where Alice announces the cards sum modulo an 
appropriate prime number greater or equal to n 


• Only special cases are known when c >1


Known



Contributions

We extend these results

• For the general case when c = 1, solutions exist that announce the cards sum 
modulo an appropriate prime number greater or equal to n 


• Only special cases are known when c >1
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Contributions

For what signatures there exists a 2-step protocol?

1. How many bits of communication are needed?

2. Introduce the notion of Minimally informative protocol, where 
Alice wants to communicate something to Bob? 

3. What if there are r cards that are dealt to no one, so 

n =  a+b+c+r ?

and new



A new perspective

• Inspired by distributed computing



A new perspective

• Inspired by distributed computing


• based on Johnson graphs


• using coding and additive number theory 
techniques



A new perspective

• Correlated inputs


• n = 4, a =1, b=1, c=1 


• Each triangle represents a possible way 
of dealing the cards (appears in 
renaming)


• As opposed the the standard model 
used in communication complexity

3 1

0 or 2
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The indistinguishability graphs of Bob and Cath are ,  d-distance Johnson graphs!Jd(n, a)

• vertices are 


• edges  of  are  when  


• When  we get the thoroughly studied

𝒫a(D)

Jd(n, a) (a, a′￼) a − d ≤ |a ∩ a′￼|

d = 1
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<latexit sha1_base64="b4POg+ybgm0PJUd+grjFpPU6wcQ=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpTdUlFvBS/iqYL9gHYp2TTbxmaTJckKZel/8OJBEa/+H2/+G9N2D1p9MPB4b4aZeUHMmTau++XkVlbX1jfym4Wt7Z3dveL+QUvLRBHaJJJL1QmwppwJ2jTMcNqJFcVRwGk7GF/P/PYjVZpJcW8mMfUjPBQsZAQbK7Vuy7Wz6mm/WHIr7hzoL/EyUoIMjX7xszeQJImoMIRjrbueGxs/xcowwum00Es0jTEZ4yHtWipwRLWfzq+dohOrDFAolS1h0Fz9OZHiSOtJFNjOCJuRXvZm4n9eNzHhpZ8yESeGCrJYFCYcGYlmr6MBU5QYPrEEE8XsrYiMsMLE2IAKNgRv+eW/pFWteLXK1V2tVD/P4sjDERxDGTy4gDrcQAOaQOABnuAFXh3pPDtvzvuiNedkM4fwC87HN7RijeI=</latexit>

J(5, 2)

<latexit sha1_base64="X/MGWkipXpp96f3JvBs6HkLI8ko=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoMQQcJuiK9bwIt4imAekCxhdjJJxszOLDOzQljyD148KOLV//Hm3zhJ9qCJBQ1FVTfdXUHEmTau++1kVlbX1jeym7mt7Z3dvfz+QUPLWBFaJ5JL1QqwppwJWjfMcNqKFMVhwGkzGN1M/eYTVZpJ8WDGEfVDPBCszwg2VmrcFc/PyqfdfMEtuTOgZeKlpAApat38V6cnSRxSYQjHWrc9NzJ+gpVhhNNJrhNrGmEywgPatlTgkGo/mV07QSdW6aG+VLaEQTP190SCQ63HYWA7Q2yGetGbiv957dj0r/yEiSg2VJD5on7MkZFo+jrqMUWJ4WNLMFHM3orIECtMjA0oZ0PwFl9eJo1yyauUru8rhepFGkcWjuAYiuDBJVThFmpQBwKP8Ayv8OZI58V5dz7mrRknnTmEP3A+fwC2No3k</latexit>

 Johnson graphs  

J(n, a)



The clicks  of the distance d Johnson graphKp( ⋅ )

• Given a hand  of Bob, the hands of Alice that he considers possible form a 
click  in 

b
Kp(b) Jc+r(n, a)



Chromatic number Johnson graphs
Needed for a protocol to be informative

• But even the chromatic number of Johnson 
graphs, when , is an open 
problem, 


• that has been studied in coding theory, graph 
theory and combinatorics of intersecting sets

d = c + r = 1



Informative protocols
Main results

We adapt results from coding theory to show that for 


Theorem


For an informative protocol  bits are needed and sufficient. 

Jc+r(n, a)

Θ((c + r)log n)

d

d



Informative and safe protocols
Main results

Simple coding theory plus additive number theory to show that for  


Theorem


 bits are needed and sufficient for an informative and safe protocol, 
,     , 


Alice sends the sum of her cards modulo 

J(n, a)

Θ(log n)
c + r = 1 a, b ≥ 3 n ≥ 7

n

d = 1

d = 1



Minimally informative
Main results
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Minimally informative
Main results

• When c + r = 1

    Minimally informative is equivalent to Bob learning one card of Alice

• in general, Bob learns that Alice has one of the cards in a set of size 
 c + r ≥ 1



Minimally informative
Main results: partial characterization of existence and reductions from the informative case

Theorem 

One bit is sufficient for a minimally informative and safe protocol, ,     
 and  .


Alice sends the sum of her cards modulo .


.

c + r = 1
a > ⌈n/2⌉ − 1 b < n/2

2



Minimally informative
Main results: partial characterization of existence and reductions from the informative case

Theorem 

One bit is sufficient for a minimally informative and safe protocol, ,     
 and  .


Alice sends the sum of her cards modulo .


There is a 1-bit minimally informative and safe protocol for the Russian cards 
.

c + r = 1
a > ⌈n/2⌉ − 1 b < n/2

2

(3,3,1)



Conclusions
Alice and Bob, communication complexity and privacy under correlated inputs

• Studied under different perspectives: information theory, complexity theory, 
distributed computing, combinatorics, epistemic logic


• Using various techniques from information and coding theory, combinatorics, 
epistemic logic, topology, with interesting interactions


• Many open problems in the case of Alice and Bob, many more for arbitrary 
number of participants
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- important relations with complexity theory and 
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complexity)
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