Upper and Lower Bounds for Deterministic Approximate Objects

Danny Hendler, Ben-Gurion University Adnane Khattabi, LaBRI – CNRS Alessia Milani, LaBRI Corentin Travers, LaBRI

Context

- Linearizable shared objects are fundamental building blocks for distributed algorithms (e.g. Counter, Max Register, Stack etc.).
- The implementations of linearizable shared objects are expensive. (e.g. [Attiya, and Welch, TOCS '94])
- **Relaxing the semantics** of shared objects to improve the complexity of their implementations.
 - k-additive, [Aspnes, Attiya, and Censor-Hillel, J. ACM '12]
 - k-multiplicative, [Aspnes, Censor-Hillel, Attiya, and Hendler, SIAM J. Comput '16]
 - k-out-of-order, stuttering, [Henzinger, Kirsch, Payer, Sezgin, and Sokolova, POPL '13]

How would the relaxation of the sequential specification of different concurrent objects affect their complexity?

Context

- K-additive, [Aspnes, Attiya, and Censor-Hillel, J. ACM '12]
 F(X) = X ± i where (i≤k)
- K-multiplicative, [Aspnes, Censor-Hillel, Attiya, and Hendler, SIAM J. Comput '16]
 F(X) = (X × i) OR (X ÷ i)

Max Register Object (sequential specification)

- *Write(v)*: writes the value *v* to the register, if *v* is larger than all previous values written to the register.
- Read(): returns the maximum value written to the register.
- An **m-bounded** max register can only execute *Write(v)* operations where *v<m*.
- Relaxation of the exact max register object into a **k-multiplicative-accurate** max register.
- *Relaxed Read()* returns a value within a **k** multiplicative factor from the value returned by the exact max register.

Counter Object (sequential specification)

- *CounterIncrement*: increases the value of the counter by 1.
- CounterRead: returns the number of previous calls to CounterIncrement.
- Relaxation of the exact counter object into a **k-multiplicative-accurate** counter.
- *Relaxed CounterRead* returns a value within a **k** multiplicative factor from the number of previous calls to *CounterIncrement*.

Model & Correctness

- n asynchronous deterministic processes with unique IDs that are prone to crashing (fail-stop).
- Processes communicate using read/write and test&set primitives via shared memory access.

Model & Correctness

- n asynchronous deterministic processes with unique IDs that are prone to crashing (fail-stop).
- Processes communicate using read/write and test&set primitives via shared memory access.
- Linearizability: high-

level operations appear atomic and the linearization respects real-time order. [Herlihy and Wing, TOPLAS '90]

Model & Correctness

- n asynchronous deterministic processes with unique IDs that are prone to crashing (fail-stop).
- Processes communicate using read/write and test&set primitives via shared memory access.

• Wait-Freedom: all high-level operations finish in a finite number of lowlevel operations for any interleaving. [Herlihy , TOPLAS '91]

Related Word (Max Register)

	Worst ca	se (step)		Amortized (step)
	Lower bound	Upper bound		Upper bound
Exact m- bounded Max Register	Ω(log₂m) [Aspnes et al., SIAM J. Comput '16]	O(log₂m) [Aspnes et al., SIAM J. Comput '16]	Exact unbounded Max Register	O(log₂n) [Baig et al., DISC '19]

Related Word (Counter)

	Worst ca	ase (step)	Amortized (step)
	Lower bound	Upper bound	Upper bound
		O(n) [Inoue et al., IDWA '94]	$\mathbf{O}(\mathbf{I}_{1},\mathbf{i}_{2})$
Exact Counter	Ω(n) [Jayanti et al., PODC '96]	Polylogarithmic for bounded executions. [Aspnes et al., JACM '12]	O(log²n) [Baig et al., DISC '19]

Related Word (Counter)

	Worst ca	ase (step)	Amortized (step)
	Lower bound	Upper bound	Upper bound
		O(n) [Inoue et al., IDWA '94]	O(1 - 2)
Exact Counter	Ω(n) [Jayanti et al., PODC '96]	Polylogarithmic for bounded executions. [Aspnes et al., JACM '12]	O(log ² n) [Baig et al., DISC '19]

Relaxation of the sequential specification

- Lower bound on amortized and worst case complexity?
- Upper bound on amortized complexity?

Contributions (Max Register)

- By extension to [Aspnes et al., SIAM J. Comput '16], we prove a lower bound of Ω(min(n,log₂log_km)) on the worst case step complexity of any n-process solo terminating implementation of a k-multiplicative-accurate m-bounded max register from read/write and conditional primitive operations.
- We present a wait-free implementation of the k-multiplicative-accurate mbounded max register with a worst case step complexity that matches the lower bound.
- We plug-in our bounded max register implementation into the construction given by [Baig et al., DISC '19] to obtain an unbounded k-multiplicative-accurate max register with O(min(n,log₂log_km)) amortized complexity.

Contributions (Counter)

- We present the first deterministic wait-free read/write and test&set based, kmultiplicative-accurate counter implementation with O(1) amortized complexity for k ≥ √n.
- By extension to [Attiya, and Hendler, DISC '05], we prove a lower bound of Ω(log n/k²) for k ≤ √n/2 on the amortized step complexity of any n-process solo terminating implementation of a k-multiplicative-accurate counter from read/write and conditional primitive operations.
- We prove that the lower bound of Ω(n) on the worst case step complexity presented by [Jayanti et al., PODC '96], holds for unbounded k-multiplicative accurate counters.

Algorithms

• Intuition:

K-multiplicative-accurate Max Register

- Using a (|log_k(m-1)| +1)-bounded exact max register to implement a k-multiplicative-accurate mbounded max register.
- Exponential improvement in complexity from the implementation of the exact max register in [Aspnes et al., SIAM J. Comput '16].

Algorithm 2: A k-multiplicative-accurate mbounded max register

1 Shared variables M:

 $((\lfloor log_k(m-1) \rfloor) + 1)$ -bounded max register initially 0

2 Function Read()

$$p \leftarrow M.read()$$

4 **if**
$$p=0$$
 then return 0;

5 else return k^p ;

6 end

7 **Function** *Write(v)*

8
$$p \leftarrow \lfloor log_k v \rfloor + 1;$$

9 $M.write(p);$

10 end

- The shared counter is an infinite array of bits.
- Initially, the local counter is set to 0 and the threshold to 1.

- The shared counter is an infinite array of bits.
- Initially, the local counter is set to 0 and the threshold to 1.
- After the first call to *CounterIncrement(),* the process attemps to set the first bit.

- The shared counter is an infinite array of bits.
- Initially, the local counter is set to 0 and the threshold to 1.
- After the test&set succeeds, the process resets its local counter and updates the threshold.

- After the first bit, the shared counter is segmented into sets of k bits.
- After the local counter reaches the new threshold of k, the process attempts to set a bit in the first set.

- After the first bit, the shared counter is segmented into **sets of k bits**.
- After the local counter reaches the new threshold of k, the process attempts to set a bit in the first set.
- Until all bits of a set are set, the threshold remains the same.

- After the first bit, the shared counter is segmented into sets of k bits.
- After the local counter reaches the new threshold of k, the process attempts to set a bit in the first set.
- Until all bits of a set are set, the threshold remains the same.

- After the first bit, the shared counter is segmented into **sets of k bits**.
- After the local counter reaches the new threshold of k, the process attempts to set a bit in the first set.
- Until all bits of a set are set, the threshold remains the same.

- After the first bit, the shared counter is segmented into sets of k bits.
- After the local counter reaches the new threshold of k, the process attempts to set a bit in the first set.
- Until all bits of a set are set, the threshold remains the same.

 Threshold value may be outdated due to increment operations by other processes.

- Threshold value may be outdated due to increment operations by other processes.
- When an attempt at setting a bit fails, the process updates the threshold but keeps the local counter value.

- Threshold value may be outdated due to increment operations by other processes.
- When an attempt at setting a bit fails, the process updates the threshold but keeps the local counter value.

- Threshold value may be outdated due to increment operations by other processes.
- When an attempt at setting a bit fails, the process updates the threshold but keeps the local counter value.
- When the threshold reaches the current state of the shared counter, the process may set a bit.

- Threshold value may be outdated due to increment operations by other processes.
- When an attempt at setting a bit fails, the process updates the threshold but keeps the local counter value.
- When the threshold reaches the current state of the shared counter, the process may set a bit.

K-multiplicative-accurate Counter (CounterRead)

- Searching for the first bit that has not already been set by a process.
- The process only checks the first and last bit of each set.
- Based on the index, the process computes an approximation of the counter value within a k-multiplicative range.

Summary

	Worsto	case (step)	Amortized (step)
	Lower bound	Upper bound	Upper bound
		O(n) [Inoue et al., IDWA '94]	$O(1, 1^2, 1)$
Exact Counter	Ω(n) [Jayanti et al., PODC '96]	Polylogarithmic for bounded executions. [Aspnes et al., JACM '12]	O(log²n) [Baig et al., DISC'19]
k-multiplicative-accurate	O(r)		O(1) For k ≥ √n
Counter	Ω(n)		Ω(log n/k²) When k ≤ √n/2

Conclusion & Discussion

	Worst ca	se (step)
	Lower bound	Upper bound
Exact m- bounded Max Register	Ω(log₂m) [Aspnes et al., SIAM J. Comput '16]	O(log₂m) [Aspnes et al., SIAM J. Comput '16]
m-bounded k- multiplicative- accurate Max Register	Ω(min(n,log ₂ log _k m))	O(min(n,log ₂ log _k m))

Thank you for your attention!

- Presented during ICDCS21
- Ref: <u>https://hal.archives-ouvertes.fr/hal-03202712v2</u>