Upper and Lower Bounds for Deterministic Approximate Objects

Danny Hendler, Ben-Gurion University
Adnane Khattabi, LaBRI - CNRS
Alessia Milani, LaBRI
Corentin Travers, LaBRI

Context

- Linearizable shared objects are fundamental building blocks for distributed algorithms (e.g. Counter, Max Register, Stack etc.).
- The implementations of linearizable shared objects are expensive. (e.g. [Attiya, and Welch, TOCS '94])
- Relaxing the semantics of shared objects to improve the complexity of their implementations.
- k-additive, [Aspnes, Attiya, and Censor-Hillel, J. ACM '12]
- k-multiplicative, [Aspnes, Censor-Hillel, Attiya, and Hendler, SIAM J. Comput '16]
- k-out-of-order, stuttering, [Henzinger, Kirsch, Payer, Sezgin, and Sokolova, POPL '13]

How would the relaxation of the sequential specification of different
concurrent objects affect their complexity?

Context

- K-additive, [Aspnes, Attiya, and Censor-Hillel, J. ACM '12]
$\mathbf{F}(\mathrm{X})=\mathbf{X} \pm \mathbf{i}$ where ($\mathbf{i \leq k}$)
- K-multiplicative, [Aspnes, CensorHillel, Attiya, and Hendler, SIAM J. Comput '16]
$F(X)=(X \times i) O R(X \div i)$
where ($\mathrm{i} \leq \mathrm{k}$)

Max Register Object (sequential specification)

- Write(v): writes the value v to the register, if v is larger than all previous values written to the register.
- Read(): returns the maximum value written to the register.
- An m-bounded max register can only execute Write(v) operations where $v<m$.
- Relaxation of the exact max register object into a \mathbf{k}-multiplicative-accurate max register.
- Relaxed Read() returns a value within a \mathbf{k} multiplicative factor from the value returned by the exact max register.

Counter Object (sequential specification)

- CounterIncrement: increases the value of the counter by 1.
- CounterRead: returns the number of previous calls to CounterIncrement.
- Relaxation of the exact counter object into a k-multiplicative-accurate counter.
- Relaxed CounterRead returns a value within a \mathbf{k} multiplicative factor from the number of previous calls to CounterIncrement.

Model \& Correctness

- n asynchronous deterministic processes with unique IDs that are prone to crashing (fail-stop).
- Processes communicate using read/write and test\&set primitives via shared memory access.

Model \& Correctness

- n asynchronous deterministic processes with unique IDs that are prone to crashing (fail-stop).
- Processes communicate using read/write and test\&set primitives via shared memory access.
- Linearizability: highlevel operations appear atomic and the linearization respects real-time order. [Herlihy and Wing, TOPLAS '90]

Linearization

Model \& Correctness

- n asynchronous deterministic processes with unique IDs that are prone to crashing (fail-stop).
- Processes communicate using read/write and test\&set primitives via shared memory access.
- Wait-Freedom: all high-level operations finish in a finite number of lowlevel operations for any interleaving. [Herlihy , TOPLAS '91]

Related Word (Max Register)

	Worst case (step)			Amortized (step)
	Lower bound	Upper bound		Upper bound
Exact mbounded Max Register	$\Omega\left(\log _{2} \mathrm{~m}\right)$ [Aspnes et al., SIAM J. Comput '16]	$\mathrm{O}\left(\log _{2} \mathrm{~m}\right)$ [Aspnes et al., SIAM J. Comput '16]	Exact unbounded Max Register	$\mathrm{O}\left(\log _{2} n\right)$ [Baig et al., DISC '19]

Related Word (Counter)

	Worst case (step)		Amortized (step)
	Lower bound	Upper bound	Upper bound
Exact Counter	$\begin{aligned} & \Omega(\mathrm{n}) \\ & \text { [Jayanti et al., PODC '96] } \end{aligned}$	$\mathrm{O}(\mathrm{n})$ [Inoue et al., IDWA '94] Polylogarithmic for bounded executions. [Aspnes et al., JACM '12]	$\frac{\mathrm{O}\left(\log ^{2} \mathrm{n}\right)}{\text { [Baig et al., DISC '19] }}$

Related Word (Counter)

	Worst case (step)		Amortized (step)
	Lower bound	Upper bound	Upper bound
Exact Counter	$\Omega(n)$ [Jayanti et al., PODC '96]	$\mathrm{O}(\mathrm{n})$ [Inoue et al., IDWA '94] Polylogarithmic for bounded executions. [Aspnes et al., JACM '12]	$\begin{aligned} & \mathrm{O}\left(\log ^{2} \mathrm{n}\right) \\ & \text { [Baig et al., DISC '19] } \end{aligned}$

Relaxation of the sequential specification

- Lower bound on amortized and worst case complexity?
- Upper bound on amortized complexity?

Contributions (Max Register)

- By extension to [Aspnes et al., SIAM J. Comput '16], we prove a lower bound of $\boldsymbol{\Omega}\left(\boldsymbol{m i n}\left(\mathbf{n}, \log _{2} \log _{k} \mathbf{m}\right)\right.$) on the worst case step complexity of any n-process solo terminating implementation of a k-multiplicative-accurate m-bounded max register from read/write and conditional primitive operations.
- We present a wait-free implementation of the \mathbf{k}-multiplicative-accurate \mathbf{m} bounded max register with a worst case step complexity that matches the lower bound.
- We plug-in our bounded max register implementation into the construction given by [Baig et al., DISC '19] to obtain an unbounded k-multiplicative-accurate max register with $\mathbf{O}\left(\mathbf{m i n}\left(\mathbf{n}, \log _{2} \log _{\mathrm{k}} \mathbf{m}\right)\right)$ amortized complexity.

Contributions (Counter)

- We present the first deterministic wait-free read/write and test\&set based, k-multiplicative-accurate counter implementation with $\mathbf{O (1)}$ amortized complexity for $k \geq \sqrt{ } n$.
- By extension to [Attiya, and Hendler, DISC '05], we prove a lower bound of $\boldsymbol{\Omega}\left(\log \mathbf{n} / \mathbf{k}^{\mathbf{2}}\right)$ for $\mathrm{k} \leq \mathrm{V} \mathrm{n} / 2$ on the amortized step complexity of any n -process solo terminating implementation of a k-multiplicative-accurate counter from read/write and conditional primitive operations.
- We prove that the lower bound of $\Omega(n)$ on the worst case step complexity presented by [Jayanti et al., PODC '96], holds for unbounded k-multiplicative accurate counters.

Algorithms

- Intuition:

$$
\text { Object Value } v \underset{\text { Representation }}{\text { k-base }} v=\left(\alpha_{q} \ldots \alpha_{1} \alpha_{0}\right)_{k} \underset{\text { Approximation }}{\square} k^{q+1}
$$

K-multiplicative-accurate Max Register

- Using a (| $\left.\log _{k}(m-1) \mid+1\right)$-bounded exact max register to implement a k-multiplicative-accurate mbounded max register.
- Exponential improvement in complexity from the implementation of the exact max register in [Aspnes et al., SIAM J. Comput '16].

```
Algorithm 2: A \(k\)-multiplicative-accurate \(m\) -
bounded max register
1 Shared variables \(M\) :
    \(\left(\left(\left\lfloor\log _{k}(m-1)\right\rfloor\right)+1\right)\)-bounded max register
    initially 0
2 Function Read()
    \(p \longleftarrow\) M.read ()
    if \(p=0\) then return 0 ;
        else return \(k^{p}\);
    end
```


K-multiplicative-accurate Counter (Counterincrement)

- The shared counter is an
infinite array of bits.

Shared Counter

- Initially, the local counter is set to 0 and the threshold to 1.
.. $0 \quad 0 \quad$. . $0 \quad 0 \quad 0$

K-multiplicative-accurate Counter (CounterIncrement)

- The shared counter is an infinite array of bits.
- Initially, the local counter is set to 0 and the threshold to 1.
- After the first call to CounterIncrement(), the process attemps to set the first bit.

Shared Counter

K-multiplicative-accurate Counter (CounterIncrement)

- The shared counter is an
infinite array of bits.

Shared Counter

- Initially, the local counter is set to 0 and the threshold to 1.
- After the test\&set succeeds, the process resets its local counter and updates the threshold.

K-multiplicative-accurate Counter (CounterIncrement)

- After the first bit, the shared counter is segmented into sets of \mathbf{k} bits.
- After the local counter reaches the new threshold of k, the process attempts to set a bit in the first set.

Shared Counter

K-multiplicative-accurate Counter (Counterincrement)

- After the first bit, the shared counter is segmented into sets of \mathbf{k} bits.
- After the local counter reaches the new threshold of k, the process attempts to set a bit in the first set.
- Until all bits of a set are set, the threshold remains the same.

Shared Counter

K-multiplicative-accurate Counter (CounterIncrement)

- After the first bit, the shared counter is segmented into sets of \mathbf{k} bits.
- After the local counter reaches the new threshold of k, the process attempts to set a bit in the first set.
- Until all bits of a set are set, the threshold remains the same.

Shared Counter

K-multiplicative-accurate Counter (Counterincrement)

- After the first bit, the shared counter is segmented into sets of \mathbf{k} bits.
- After the local counter reaches the new threshold of k, the process attempts to set a bit in the first set.
- Until all bits of a set are set, the threshold remains the same.

Shared Counter

K-multiplicative-accurate Counter (Counterincrement)

- After the first bit, the shared counter is segmented into sets of \mathbf{k} bits.
- After the local counter reaches the new threshold of k, the process attempts to set a bit in the first set.
- Until all bits of a set are set, the threshold remains the same.

Shared Counter

K-multiplicative-accurate Counter (Counterincrement)

- Threshold value may be outdated due to increment operations by other processes.

K-multiplicative-accurate Counter (CounterIncrement)

- Threshold value may be outdated due to increment operations by other processes.
- When an attempt at setting a bit fails, the process updates the threshold but keeps the local counter value.

Shared Counter

K-multiplicative-accurate Counter (CounterIncrement)

- Threshold value may be outdated due to increment operations by other processes.
- When an attempt at setting a bit fails, the process updates the threshold but keeps the local counter value.

Shared Counter
$\begin{array}{llllll}\cdots & 0 & 1 & \\ \text { q }\end{array}$ k

K-multiplicative-accurate Counter (CounterIncrement)

- Threshold value may be outdated due to increment operations by other processes.
- When an attempt at setting a bit fails, the process updates the threshold but keeps the local counter value.
- When the threshold reaches the current state of the

Shared Counter
 shared counter, the process may set a bit.

K-multiplicative-accurate Counter (CounterIncrement)

- Threshold value may be outdated due to increment operations by other processes.
- When an attempt at setting a bit fails, the process updates the threshold but keeps the local counter value.
- When the threshold reaches the current state of the

Shared Counter

 shared counter, the process may set a bit.

K-multiplicative-accurate Counter (CounterRead)

- Searching for the first bit that has not already been set by a process.
- The process only checks the first and last bit of each set.
- Based on the index, the process computes an approximation of the counter value within a k-multiplicative range.

Shared Counter

Function Return $\operatorname{Value}(p, q)$

```
\(r e t \leftarrow 1+p \cdot k^{q+1}\)
if \(q \geq 1\) then
    \(r e t \leftarrow r e t+\sum_{l=1}^{q} k^{l+1}\)
return \(k\). ret
```


Summary

	Worst case (step)		Amortized (step)
	Lower bound	Upper bound	Upper bound
Exact Counter	$\begin{gathered} \Omega(\mathrm{n}) \\ \text { [Jayanti et al., PODC'96] } \end{gathered}$	$\mathrm{O}(\mathrm{n})$ [Inoue et al., IDWA '94] Polylogarithmicfor bounded executions. [Aspnes et al., JACM '12]	$\mathrm{O}\left(\log ^{2} \mathrm{n}\right)$ [Baig et al., DISC '19]
k-multiplicative-accurate Counter	$\Omega(\mathrm{n})$		$\begin{gathered} O(1) \\ \text { For } k \geq V n \\ \Omega\left(\log n / k^{2}\right) \\ \text { When } k \leq V n / 2 \end{gathered}$

Conclusion \& Discussion

	Worst case (step)	
	Lower bound	Upper bound
Exact mbounded Max Register	$\Omega\left(\log _{2} \mathrm{~m}\right)$ [Aspnes et al., SIAM J. Comput '16]	$\mathrm{O}\left(\log _{2} \mathrm{~m}\right)$ [Aspnes et al., SIAM J. Comput '16]
m-bounded k-multiplicativeaccurate Max Register	$\Omega\left(\min \left(\mathrm{n}, \log _{2} \log _{k} \mathrm{~m}\right)\right.$)	$O\left(\min \left(\mathrm{n}, \log _{2} \log _{k} \mathrm{~m}\right)\right)$

Amortized (step)

Upper bound

Exact unbounded Max Register	$\mathrm{O}\left(\log _{2} \mathrm{n}\right)$
[Baig et al., DISC '19]	

Thank you for your attention!

- Presented during ICDCS21
- Ref: https://hal.archives-ouvertes.fr/hal-03202712v2

