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Context

How would the relaxation of the sequential specification of different
concurrent objects affect their complexity?
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• Linearizable shared objects are fundamental building blocks 
for distributed algorithms (e.g. Counter, Max Register, Stack etc.).

• The implementations of linearizable shared objects are expensive. (e.g. [Attiya, 
and Welch, TOCS '94])

• Relaxing the semantics of shared objects to improve the complexity of their
implementations.
• k-additive, [Aspnes, Attiya, and Censor-Hillel, J. ACM '12]
• k-multiplicative, [Aspnes, Censor-Hillel, Attiya, and Hendler, SIAM J. Comput '16]
• k-out-of-order, stuttering, [Henzinger, Kirsch, Payer, Sezgin, and Sokolova, POPL '13]



Context
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• K-additive, [Aspnes, Attiya, 

and Censor-Hillel, J. ACM '12]

• K-multiplicative, [Aspnes, Censor-
Hillel, Attiya, and Hendler, SIAM J. 
Comput '16]

F(X) = X ± i where (i≤k)

F(X) = (X × i) OR (X ÷ i) 
where (i≤k)



Max Register Object (sequential specification)
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• Write(v): writes the value v to the register, if v is larger than all previous values 
written to the register.

• Read(): returns the maximum value written to the register.

• An m-bounded max register can only execute Write(v) operations where v<m.

• Relaxation of the exact max register object into a k-multiplicative-accurate max 
register.

• Relaxed Read() returns a value within a k multiplicative factor from the value 
returned by the exact max register.



Counter Object (sequential specification)
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• CounterIncrement: increases the value of the counter by 1.

• CounterRead: returns the number of previous calls to CounterIncrement.

• Relaxation of the exact counter object into a k-multiplicative-accurate counter.

• Relaxed CounterRead returns a value within a k multiplicative factor from the 
number of previous calls to CounterIncrement.



Model & Correctness

4

• n asynchronous deterministic processes with unique IDs that are prone to 
crashing (fail-stop).

• Processes communicate using read/write and test&set primitives via shared
memory access.



Model & Correctness
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• Linearizability: high-
level operations appear atomic and 
the linearization respects real-time 
order. [Herlihy and Wing, TOPLAS '90]

p1

p2

• n asynchronous deterministic processes with unique IDs that are prone to 
crashing (fail-stop).

• Processes communicate using read/write and test&set primitives via shared
memory access.



Model & Correctness

4

• n asynchronous deterministic processes with unique IDs that are prone to 
crashing (fail-stop).

• Processes communicate using read/write and test&set primitives via shared
memory access.

• Wait-Freedom: all high-level operations
finish in a finite number of low-
level operations for any
interleaving. [Herlihy , TOPLAS '91]

p1

p2



Related Word (Max Register)
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Worst case (step)

Lower bound Upper bound

Exact m-
bounded

Max Register

Ω(log2m)
[Aspnes et al., SIAM J. 

Comput '16]

O(log2m)
[Aspnes et al., SIAM J. 

Comput '16]

Amortized (step)

Upper bound

Exact unbounded
Max Register

O(log2n)
[Baig et al., DISC '19]



Related Word (Counter)
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Worst case (step) Amortized (step)

Lower bound Upper bound Upper bound

Exact Counter Ω(n)
[Jayanti et al., PODC '96]

O(n)
[Inoue et al., IDWA '94]

O(log2n)
[Baig et al., DISC '19]Polylogarithmic for 

bounded executions.
[Aspnes et al., JACM '12]



Related Word (Counter)
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Worst case (step) Amortized (step)

Lower bound Upper bound Upper bound

Exact Counter Ω(n)
[Jayanti et al., PODC '96]

O(n)
[Inoue et al., IDWA '94]

O(log2n)
[Baig et al., DISC '19]Polylogarithmic for 

bounded executions.
[Aspnes et al., JACM '12]

Relaxation of the sequential
specification

• Lower bound on amortized and worst case 
complexity?

• Upper bound on amortized complexity?



Contributions (Max Register)
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• By extension to [Aspnes et al., SIAM J. Comput '16], we prove a lower bound of 
Ω(min(n,log2logkm)) on the worst case step complexity of any n-process solo 
terminating implementation of a k-multiplicative-accurate m-bounded max 
register from read/write and conditional primitive operations.

• We present a wait-free implementation of the k-multiplicative-accurate m-
bounded max register with a worst case step complexity that matches the lower bound.

• We plug-in our bounded max register implementation into the construction given by 
[Baig et al., DISC '19] to obtain an unbounded k-multiplicative-accurate max register
with O(min(n,log2logkm)) amortized complexity.



Contributions (Counter)
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• We present the first deterministic wait-free read/write and test&set based, k-
multiplicative-accurate counter implementation with O(1) amortized complexity for 
k ≥ √n .

• By extension to [Attiya, and Hendler, DISC '05], we prove a lower bound of Ω(log n/k2) for 
k ≤ √n/2 on the amortized step complexity of any n-process solo 
terminating implementation of a k-multiplicative-accurate counter from read/write and 
conditional primitive operations.

• We prove that the lower bound of Ω(n) on the worst case step complexity presented
by [Jayanti et al., PODC '96], holds for unbounded k-multiplicative accurate counters.



Algorithms
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• Intuition:

Object Value v v = (αq...α1α0)k kq+1

k-base

Representation Approximation



K-multiplicative-accurate Max Register
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• Using a (|logk(m-1)| +1)-bounded
exact max register to implement a 
k-multiplicative-accurate m-
bounded max register.

• Exponential improvement in 
complexity from the 
implementation of the exact max 
register in [Aspnes et 
al., SIAM J. Comput '16].



K-multiplicative-accurate Counter (CounterIncrement)
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. . . 0 0 . . . 0 0 0

Shared Counter

k

• The shared counter is an 
infinite array of bits.

• Initially, the local counter is
set to 0 and the threshold to 
1.

0 1Processi

Local Counter Threshold



K-multiplicative-accurate Counter (CounterIncrement)

11

. . . 0 0 . . . 0 0 0

k

• The shared counter is an 
infinite array of bits.

• Initially, the local counter is
set to 0 and the threshold to 
1.

• After the first call to 
CounterIncrement(), the 
process attemps to set the 
first bit.

Shared Counter

1 1Processi

Local Counter Threshold



K-multiplicative-accurate Counter (CounterIncrement)
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. . . 0 0 . . . 0 0 1

k

• The shared counter is an 
infinite array of bits.

• Initially, the local counter is
set to 0 and the threshold to 
1.

• After the test&set succeeds, 
the process resets its local 
counter and updates the 
threshold.

Shared Counter

0 kProcessi

Local Counter Threshold



K-multiplicative-accurate Counter (CounterIncrement)
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. . . 0 0 . . . 0 0 1

k

• After the first bit, the 
shared counter is segmented
into sets of k bits.

• After the local counter
reaches the new threshold of 
k, the process attempts to set 
a bit in the first set.

0 0 0 0 0 0

Shared Counter

k kProcessi

Local Counter Threshold



K-multiplicative-accurate Counter (CounterIncrement)
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. . . 0 0 . . . 0 1 1

k

0 0 0 0 0 1

• After the first bit, the 
shared counter is segmented
into sets of k bits.

• After the local counter
reaches the new threshold of 
k, the process attempts to set 
a bit in the first set.

• Until all bits of a set are set, 
the threshold remains the 
same.

Shared Counter

0 kProcessi

Local Counter Threshold



K-multiplicative-accurate Counter (CounterIncrement)
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. . . 0 0 . . . 0 1 1

k

0 0 0 0 0 1

• After the first bit, the 
shared counter is segmented
into sets of k bits.

• After the local counter
reaches the new threshold of 
k, the process attempts to set 
a bit in the first set.

• Until all bits of a set are set, 
the threshold remains the 
same.

Shared Counter

k kProcessi

Local Counter Threshold



K-multiplicative-accurate Counter (CounterIncrement)
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. . . 0 0 . . . 0 k-1 1

k

0 1 1 1 1 1

• After the first bit, the 
shared counter is segmented
into sets of k bits.

• After the local counter
reaches the new threshold of 
k, the process attempts to set 
a bit in the first set.

• Until all bits of a set are set, 
the threshold remains the 
same.

Shared Counter

k kProcessi

Local Counter Threshold



K-multiplicative-accurate Counter (CounterIncrement)
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. . . 0 0 . . . 0 k 1

k

1 1 1 1 1 1

• After the first bit, the 
shared counter is segmented
into sets of k bits.

• After the local counter
reaches the new threshold of 
k, the process attempts to set 
a bit in the first set.

• Until all bits of a set are set, 
the threshold remains the 
same.

Shared Counter

0 k2Processi

Local Counter Threshold



K-multiplicative-accurate Counter (CounterIncrement)
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. . . 0 0 . . . k k 1

k

0 k2Processi

Local Counter

q

Threshold

Shared Counter
• Threshold value may be

outdated due to 
increment operations by other
processes.

kq kqProcessj

Local Counter Threshold



K-multiplicative-accurate Counter (CounterIncrement)
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. . . 0 1 . . . k k 1

k
q

Shared Counter
• Threshold value may be

outdated due to 
increment operations by other
processes.

• When an attempt at setting a 
bit fails, the process updates 
the threshold but keeps the 
local counter value. k2 k2Processi

Local Counter Threshold

0 kqProcessj

Local Counter Threshold



K-multiplicative-accurate Counter (CounterIncrement)
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. . . 0 1 . . . k k 1

k
q

Shared Counter
• Threshold value may be

outdated due to 
increment operations by other
processes.

• When an attempt at setting a 
bit fails, the process updates 
the threshold but keeps the 
local counter value. k2 k3Processi

Local Counter Threshold

0 kqProcessj

Local Counter Threshold



K-multiplicative-accurate Counter (CounterIncrement)
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. . . 0 1 . . . k k 1

k
q

Shared Counter
• Threshold value may be

outdated due to 
increment operations by other
processes.

• When an attempt at setting a 
bit fails, the process updates 
the threshold but keeps the 
local counter value.

• When the threshold reaches
the current state of the 
shared counter, the process 
may set a bit.

kq kqProcessi

Local Counter Threshold

0 kqProcessj

Local Counter Threshold



K-multiplicative-accurate Counter (CounterIncrement)
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. . . 0 2 . . . k k 1

k
q

• Threshold value may be
outdated due to 
increment operations by other
processes.

• When an attempt at setting a 
bit fails, the process updates 
the threshold but keeps the 
local counter value.

• When the threshold reaches
the current state of the 
shared counter, the process 
may set a bit.

Shared Counter

0 kqProcessi

Local Counter Threshold

0 kqProcessj

Local Counter Threshold



K-multiplicative-accurate Counter (CounterRead)
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. . . 0 α . . . k k 1

k

• Searching for the first bit that 
has not already been set by a 
process.

• The process only checks the 
first and last bit of each set.

• Based on the index, the 
process computes an 
approximation of the counter 
value within a k-multiplicative 
range.

0 0 1 . . . 1 1

Shared Counter

q+1



Summary
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Worst case (step) Amortized (step)

Lower bound Upper bound Upper bound

Exact Counter Ω(n)
[Jayanti et al., PODC '96]

O(n)
[Inoue et al., IDWA '94]

O(log2n)
[Baig et al., DISC '19]Polylogarithmic for 

bounded executions.
[Aspnes et al., JACM '12]

k-multiplicative-accurate
Counter

Ω(n)

O(1)
For k ≥ √n

Ω(log n/k2)
When k ≤ √n/2



Conclusion & Discussion
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Worst case (step)

Lower bound Upper bound

Exact m-
bounded

Max Register

Ω(log2m)
[Aspnes et al., SIAM J. 

Comput '16]

O(log2m)
[Aspnes et al., SIAM J. 

Comput '16]

m-bounded
k-

multiplicative-
accurate

Max Register

Ω(min(n,log2logkm)) O(min(n,log2logkm))

Amortized (step)

Upper bound

Exact unbounded
Max Register

O(log2n)
[Baig et al., DISC '19]

unbounded
k-multiplicative-

accurate
Max Register

O(min(n,log2logkm))



Thank you for your attention!
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• Presented during ICDCS21
• Ref: https://hal.archives-ouvertes.fr/hal-03202712v2

https://hal.archives-ouvertes.fr/hal-03202712v2

