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Challenge

Self-stabilization in Highly Dynamic Networks ?

where topological changes are not :

transient intermittent
but .
an anomaly inherent

To tolerate both transient faults and high dynamics

Case Study: Leader Election
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Self-stabilizing leader election in highly dynamic message-passing systems

m Finding conditions under which self-stabilizing leader election can
be achieved.

We look for

self-stabilizing algorithm for
general classes of dynamic networks

(e.g., we do not enforce the network to be in a particular topology at a given time)

m Finding the limits where self-stabilizing leader election becomes
impossible?

m Studying lower bounds on the convergence time
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Leader Election

n identified processes: Vp € V, id(p) is the unique identifier of p
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Leader Election

n identified processes: Vp € V, id(p) is the unique identifier of p

Let IDSET be the definition domain of identifiers (|/DSET| > n)

Vv € IDSET,
mvisareal IDifIpe V, id(p)=v
m v is a fake ID otherwise
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Leader Election

n identified processes: Vp € V, id(p) is the unique identifier of p

Let IDSET be the definition domain of identifiers (|/DSET| > n)

Vv € IDSET,
mvisareal IDifIpe V, id(p)=v

m v is a fake ID otherwise

Every process p computes the identifier of the leader in /id(p)
Initially, /id(p) may contain a fake ID

GOAL: converge to a configuration from which all /id variables
constantly designates the same real ID
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Computation Model

m Synchronous Rounds: @ @

m Dynamics modeled with a Dynamic Graph (DG)
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Can transmit information to ?
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Can transmit information to ?
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Can transmit information to ?
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Can transmit information to ?
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1,(d,c); 2,(c,b); 4,(b,a) = Journey from () to (o1 of length 4.
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Sources and Sinks

Source: can infinitely often reach any other
through a journey
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Sources and Sinks

Source: can infinitely often reach any other
through a journey

Quasi-Timely Source: can infinitely often reach any other
through a journey of length < A
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Sources and Sinks

Source: can infinitely often reach any other
through a journey

Quasi-Timely Source: can infinitely often reach any other
through a journey of length < A

Timely Source: can always reach any other
through a journey of length < A
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Sources and Sinks

Source: can infinitely often reach any other
through a journey

Quasi-Timely Source: can infinitely often reach any other
through a journey of length < A

Timely Source: can always reach any other
through a journey of length < A

Sink: can infinitely often be reached by any other
through a journey

Quasi-Timely Sink: can infinitely often be reached by any other
through a journey of length < A

Timely Sink: can always be reached by any other
through a journey of length < A
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Altisen et al.

Classes where All processes are Sources (and so Sinks)

T All processes are sources

JE(A):  All processes are quasi-timely sources

*, %

JB.(A): Al processes are timely sources

*,k
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Generalization: Classes with at least One Source or One

Sink

T x: At least one Source
Jl?*(A): At least one Quasi-Timely Source

jff"*(A): At least one Timely Source

T At least one Sink
J%(A): At least one Quasi-Timely Sink

JB(A): At least one Timely Sink
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Hierarchy
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Main Results
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Self-stabilization €3
Pseudo-stabilization &
Convergence Time Unboundable €

Self-stabilization €
Pseudo-stabilization €3

Self-stabilization @
Convergence Time Boundable only in JE* .
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Self- vs. Pseudo-stabilization: "cannot" vs. "does not"

m Self-stabilization:

arbitrary
initial config.

legitimate

config.

m Pseudo-stabilization:

arbitrary
initial config.
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Altisen et a

Classes where

All Processes
are Sources

TCh(A) C TCe(A) C TCR
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Self-stabilizing Leader Election in TCP(A), TC2(A), and

TC*

Class TCP(A) with A € IN* (Bounded Temporal Diameter):
B A known
B Stabilization Time: at most 3A rounds

B Memory Requirement: O(log n + log A) bits per node

Class 7C2(A) with A € IN* (Quasi Bounded Temporal Diameter):
B A and n known

B Memory Requirement: O(n(log n + log A)) bits per node

Class 7C™(Recurrent Temporal Connectivity):
B n known

B Memory Requirement: infinite

For 7C2(A)and TC%, the convergence time cannot be bounded and
knowledge of n is mandatory !
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n required in TC2(A) and TC®: size-ambiguity (1/3)

Let p1, p2, p3, pa, ps, and ps be a set of processes.
The identifier of p; is i.
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n required in TC2(A) and TC®: size-ambiguity (1/3)

Let p1, p2, p3, pa, ps, and ps be a set of processes.
The identifier of p; is i.

Assume an algorithm A that “knows” the number of processes n in
the system.
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n required in TC2(A) and TC®: size-ambiguity (1/3)

Let p1, p2, p3, pa, ps, and ps be a set of processes.
The identifier of p; is i.

Assume an algorithm A that "knows” the number of processes n in
the system.

If A runs on p1, p2, p3, pa, ps, and pe:
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n required in TC2(A) and TC®: size-ambiguity (1/3)

Let p1, p2, p3, pa, ps, and ps be a set of processes.
The identifier of p; is i.

Assume an algorithm A that "knows” the number of processes n in
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n required in TC2(A) and TC®: size-ambiguity (1/3)

Let p1, p2, p3, pa, ps, and ps be a set of processes.
The identifier of p; is i.

Assume an algorithm A that "knows” the number of processes n in
the system.

If A runs on p1, p2, p3, pa, ps, and pe: If A runs on pi1, p2, p3, and pa:

¢ & &
¢ ¢ @&

It is not size-ambiguous!
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n required in TC2(A) and TC®: size-ambiguity (2/3)

Let p1, p2, p3, pa, ps, and ps be a set of processes.
The identifier of p; is i.

Assume an algorithm A that “knows” the parity of number of
processes n in the system.
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n required in TC2(A) and TC®: size-ambiguity (2/3)

Let p1, p2, p3, pa, ps, and ps be a set of processes.
The identifier of p; is i.

Assume an algorithm A that "knows” the parity of number of
processes n in the system.

If A runs on p1, p2, p3, pa, ps, and pe:
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n required in TC2(A) and TC®: size-ambiguity (2/3)

Let p1, p2, p3, pa, ps, and ps be a set of processes.

The identifier of p; is i.

Assume an algorithm A that "knows” the parity of number of

processes n in the system.

If A runs on p1, p2, p3, pa, ps, and pe:

¢ & @
¢ ¢ @

If A runs on pi1, p2, p3, and pa:
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n required in TC2(A) and TC®: size-ambiguity (2/3)

Let p1, p2, p3, pa, ps, and ps be a set of processes.
The identifier of p; is i.

Assume an algorithm A that "knows” the parity of number of
processes n in the system.

If A runs on p1, p2, p3, pa, ps, and pe: If A runs on pi1, p2, p3, and pa:

¢ & @ ¢ @
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It is size-ambiguous!
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n required in TC2(A) and TC®: size-ambiguity (3/3)

Let p1, p2, p3, pa, ps, and ps be a set of processes.
The identifier of p; is i.

Assume an algorithm A that “knows” the bound K =9 of number
of processes n in the system.

Self-Stabilizing Leader Election in Highly Dynamic Networks @



n required in TC2(A) and TC®: size-ambiguity (3/3)

Let p1, p2, p3, pa, ps, and ps be a set of processes.
The identifier of p; is i.

Assume an algorithm A that “knows” the bound K =9 of number
of processes n in the system.

If A runs on p1, p2, p3, pa, ps, and pe:
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n required in TC2(A) and TC®: size-ambiguity (3/3)

Let p1, p2, p3, pa, ps, and ps be a set of processes.
The identifier of p; is i.

Assume an algorithm A that “knows” the bound K =9 of number
of processes n in the system.
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n required in TC2(A) and TC®: size-ambiguity (3/3)

Let p1, p2, p3, pa, ps, and ps be a set of processes.
The identifier of p; is i.

Assume an algorithm A that “knows” the bound K =9 of number
of processes n in the system.

If A runs on p1, p2, p3, pa, ps, and pe: If A runs on pi1, p2, p3, and pa:

¢ & & ¢ @
¢ ¢ ¢ ¢

It is size-ambiguous!
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Size-ambiguity (definition)

Let V be a set of processes and k € IN.

A'is (k, V)-ambiguous if 0 < k < |V/| and for every U C V such that
|U| = k, A can be run on U and for every p € U, p has the same set of
states whether A runs on U or V.

A is size-ambiguous if there exists V and k such that A is
(k, V')-ambiguous.
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Size-ambiguity (definition)

Let V be a set of processes and k € IN.

A'is (k, V)-ambiguous if 0 < k < |V/| and for every U C V such that
|U| = k, A can be run on U and for every p € U, p has the same set of
states whether A runs on U or V.

A is size-ambiguous if there exists V and k such that A is
(k, V')-ambiguous.

A is size-ambiguous =~ “A has a partial knowledge of n"
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n required in TC2(A)

Let A be any self-stabilizing leader election algorithm for TC2(A) (A > 2), V be a
set of processes, L be a set of legitimate configurations of A for V, and k € IN.

L is closed in TC2(A): if 4 reachable from v € £ by A in TC2(A), v € L too.

B If Ais (k,V)-ambiguous, then L is not closed in TC<(A). (also holds for TCB(A))
B 3 a set of legitimate configurations of A for V which is closed in TC<(A).
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n required in 7C%(A) and 7C*:

Let A be any self-stabilizing leader election algorithm for TC2(A) (A > 2), V be a
set of processes, L be a set of legitimate configurations of A for V, and k € IN.

L is closed in TC2(A): if 4 reachable from v € £ by A in TC2(A), v € L too.

B If Ais (k,V)-ambiguous, then L is not closed in TC<(A). (also holds for TCB(A))
B 3 a set of legitimate configurations of A for V which is closed in TC<(A).

No self-stabilizing leader election algorithm for TC2(A), with A > 2, can be
size-ambiguous.

Corollary 2

No self-stabilizing leader election algorithm for TC™ can be size-ambiguous.
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Other Classes:

Focus on J.(A)

At least one a priori unknown process (a timely source)
can always reach any other
through a journey of length < A
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Impossibility of Self-stabilizing Leader Election in J°.(A)

Preliminary Result

In situation A, one process eventually changes its leader output.

A B
v v X
> @ ¢« Y. ¥
Proof:
B All processes except p; (resp. px) are connected to any other at any time

= € jll,;*(A)
m V) ¢ {i,x}, the executions of p; in A and B are indistinguishable

= if p; elects p; in A, then p; elects p; in B = €3
= p; eventually changes its leader @
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Impossibility of Self-stabilizing Leader Election in J°.(A)

Assume a self-stabilizing algorithm exists

Starting from any legitimate configuration, /id variables should be constant
Now, from any legitimate configuration, situation A is possible

Preliminary result = one process eventually changes its leader
Contradiction
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Impossibility of Self-stabilizing Leader Election in J°.(A)

Assume a self-stabilizing algorithm exists

Starting from any legitimate configuration, /id variables should be constant
Now, from any legitimate configuration, situation A is possible

Preliminary result = one process eventually changes its leader
Contradiction
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Pseudo-stabilizing Leader Election Algorithm for J5 (A)

Goal: Electing a "stable" process

Stable Process: eventually, all other processes receive (maybe
indirectly) information about it at least every A rounds
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Pseudo-stabilizing Leader Election Algorithm for J5 (A)

Goal: Electing a "stable" process

Stable Process: eventually, all other processes receive (maybe
indirectly) information about it at least every A rounds

At each round, each process initiates a flooding (relayed A times)
— J stable processes: each source is stable!
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Pseudo-stabilizing Leader Election Algorithm for J5 (A)

Goal: Electing a "stable" process

Stable Process: eventually, all other processes receive (maybe
indirectly) information about it at least every A rounds

At each round, each process initiates a flooding (relayed A times)
— J stable processes: each source is stable!

How to evaluate stability?
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Pseudo-stabilizing Leader Election Algorithm for J7°,(A)

Goal: Electing a "stable" process

Stable Process: eventually, all other processes receive (maybe
indirectly) information about it at least every A rounds

At each round, each process initiates a flooding (relayed A times)
— J stable processes: each source is stable!

How to evaluate stability? suspicion counter

A process increments its suspicion counter each time it is accused to be
NOT stable by some process

After the 1°t round, suspicion counters are monotically
non-decreasing

(a counter may be reset during the first round due to initial inconsistency)
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Pseudo-stabilizing Leader Election Algorithm for 7}

*

5

Goal: Electing a "stable" process

Stable Process: eventually, all other processes receive (maybe
indirectly) information about it at least every A rounds

At each round, each process initiates a flooding (relayed A times)
— J stable processes: each source is stable!

How to evaluate stability? suspicion counter

A process increments its suspicion counter each time it is accused to be
NOT stable by some process

After the 1°t round, suspicion counters are monotically
non-decreasing

(a counter may be reset during the first round due to initial inconsistency)

Elected Leader: a process with the minimum suspicion counter value

(we use identifiers to break ties)
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Pseudo-stabilizing Leader Election Algorithm for J5 (A)

Locally and Globally Stable Processes

Each process p maintains two maps:

m [ Stable(p): Map of locally stable processes at p
= p itself and processes from which p (directly) receives information
at most A rounds ago.

m GStable(p): Map of globally stable processes
= locally stable at any process (p included)
= must eventually contain at least every stable process
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Pseudo-stabilizing Leader Election Algorithm for J5 (A)

Locally and Globally Stable Processes

Each process p maintains two maps:

m [ Stable(p): Map of locally stable processes at p
= p itself and processes from which p (directly) receives information
at most A rounds ago.

m GStable(p): Map of globally stable processes
= locally stable at any process (p included)

= must eventually contain at least every stable process

I p always considers itself locally & globally stable
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Pseudo-stabilizing Leader Election Algorithm for J5 (A)

Locally and Globally Stable Processes

Values inside [ Stable(p) and GStable(p): triplet < id, susp, ttl >
m /d: identifier
m susp: the suspicion value of id

m (t/: time to live
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Pseudo-stabilizing Leader Election Algorithm for J5 (A)

Locally and Globally Stable Processes

Values inside [ Stable(p) and GStable(p): triplet < id, susp, ttl >
m /d: identifier
m susp: the suspicion value of id

m (t/: time to live

LStable(p) and GStable(p) are appended/updated with received

information

® update in LStable(p): information with the highest ¢t/ is considered
as the freshest one

m update in GStable(p): received information is considered as fresher
and inserted with tt/ = A
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Pseudo-stabilizing Leader Election Algorithm for J5 (A)

Locally and Globally Stable Processes

Values inside [ Stable(p) and GStable(p): triplet < id, susp, ttl >
m /d: identifier
m susp: the suspicion value of id

m (t/: time to live

LStable(p) and GStable(p) are appended/updated with received
information

® update in LStable(p): information with the highest ¢t/ is considered
as the freshest one

m update in GStable(p): received information is considered as fresher
and inserted with tt/ = A

A triplet is removed from a map when its tt/ reaches 0
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Pseudo-stabilizing Leader Election Algorithm for J5 (A)

At Every Round

p initiates a flooding of the triplet
< id(p), LSP = LStable(p), ttl = A >
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Pseudo-stabilizing Leader Election Algorithm for J5 (A)

At Every Round

p initiates a flooding of the triplet
< id(p), LSP = LStable(p), ttl = A >

p updates L Stable(p) and GStable(p) according to received triplets
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Pseudo-stabilizing Leader Election Algorithm for J5 (A)

At Every Round

p initiates a flooding of the triplet
< id(p), LSP = LStable(p), ttl = A >

p updates L Stable(p) and GStable(p) according to received triplets

tt/ variables (except those associated to p) are decremented and
expired triplets are deleted
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Pseudo-stabilizing Leader Election Algorithm for J5 (A)

At Every Round

p initiates a flooding of the triplet
< id(p), LSP = LStable(p), ttl = A >

p updates L Stable(p) and GStable(p) according to received triplets

tt/ variables (except those associated to p) are decremented and
expired triplets are deleted

For each received LSP map, if id(p) is absent from LSP, p
increments its suspicion counter
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Pseudo-stabilizing Leader Election Algorithm for J5 (A)

At Every Round

p initiates a flooding of the triplet
< id(p), LSP = LStable(p), ttl = A >

p updates L Stable(p) and GStable(p) according to received triplets

tt/ variables (except those associated to p) are decremented and
expired triplets are deleted

For each received LSP map, if id(p) is absent from LSP, p
increments its suspicion counter

p elects g € GStable(p) with lowest suspicion counter
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Pseudo-stabilizing Leader Election Algorithm for J5 (A)

Pseudo-stabilization

"Time To Live" allow to delete fake IDs.
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Pseudo-stabilizing Leader Election Algorithm for J5 (A)

Pseudo-stabilization

"Time To Live" allow to delete fake IDs.
Let s be a source.
p # s receives < id(s), LSP, tt/ > at least every A rounds

— eventually id(s) € LStable(p) forever, Vp € V
= the suspicion counter of s is eventually forever constant

— id(s) € LSP
= eventually id(s) € GStable(p) forever, Vp € V
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Pseudo-stabilizing Leader Election Algorithm for J5 (A)

Pseudo-stabilization

"Time To Live" allow to delete fake IDs.
Let s be a source.
p # s receives < id(s), LSP, tt/ > at least every A rounds

— eventually id(s) € LStable(p) forever, Vp € V
= the suspicion counter of s is eventually forever constant

— id(s) € LSP
= eventually id(s) € GStable(p) forever, Vp € V
Let x be a process whose suspicion counter is eventually constant

Eventually id(x) € LStable(s) forever, for every source s

— id(x) € GStable(p), Vp € V
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Pseudo-stabilizing Leader Election Algorithm for J7°,(A)

Pseudo-stabilization

x infinitely often absent of GStable(p)
= infinitely often, during A consecutive rounds,
p only receives < —, LSP, — > with id(x) ¢ LSP

Some of those triplets were initiated by sources
— X also receives these latter
— x increments its counter infinitely often
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Pseudo-stabilizing Leader Election Algorithm for 7}

*

Pseudo-stabilization

x infinitely often absent of GStable(p)
= infinitely often, during A consecutive rounds,
p only receives < —, LSP, — > with id(x) ¢ LSP

Some of those triplets were initiated by sources
— X also receives these latter
— x increments its counter infinitely often
Eventually:
Processes with eventually const. susp. counter (at least 1) € GStable(p) forever

Suspicion counter of other processes > constant suspicion counters
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Pseudo-stabilizing Leader Election Algorithm

Pseudo-stabilization

x infinitely often absent of GStable(p)
= infinitely often, during A consecutive rounds,
p only receives < —, LSP, — > with id(x) ¢ LSP

Some of those triplets were initiated by sources
— X also receives these latter
— x increments its counter infinitely often
Eventually:
Processes with eventually const. susp. counter (at least 1) € GStable(p) forever

Suspicion counter of other processes > constant suspicion counters

@ Eventually, £ € GStable(p) with lowest suspicion counter is the same at every p

—> every process elects /, a stable process.
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Conclusion
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Conclusion

Time Complexity

When stabilization is possible, convergence time is, most of the time,
unboundable ...

Notable exception: JE*(A)
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Conclusion

Time Complexity

When stabilization is possible, convergence time is, most of the time,
unboundable ...

Notable exception: JE*(A)

However, to mitigate this issue, we have speculation
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Conclusion

Speculation

Speculation [Kotla et al., ACM Trans. Comput. Syst., 2009]:
B the system satisfies its requirements for all executions,

m but also exhibits significantly better performances in a subset of more
probable executions.

Idea: worst possible scenarios are often rare in practice.

When the stabilization time cannot be bounded in a class, we
exhibit an important subclass where it can be bounded.
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Conclusion

Speculation

Speculation [Kotla et al., ACM Trans. Comput. Syst., 2009]:
B the system satisfies its requirements for all executions,

m but also exhibits significantly better performances in a subset of more
probable executions.

Idea: worst possible scenarios are often rare in practice.

When the stabilization time cannot be bounded in a class, we
exhibit an important subclass where it can be bounded.

In all cases where stabilization is possible but the convergence time is

unboundable, our algorithms are speculative: when deployed in the
subclass 75, (A), the convergence time is in O(A) rounds.
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Conclusion

Space Complexity

Important open questions:

m Can we solve pseudo-stabilizing leader election in Jf?* with a
bounded memory?

m Can we solve self-stabilizing leader election in 7, . with a bounded
memory?

Self-Stabilizing Leader Election in Highly Dynamic Networks @



Thank You for Your Attention
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