Self-Stabilizing Leader Election in Highly Dynamic Networks

Karine Altisen¹ Stéphane Devismes² Anaïs Durand ³ Colette Johnen⁴ Franck Petit⁵

¹ VERIMAG, UGA, Grenoble
 ² MIS, UPJV, Amiens
 ³ LIMOS, Univ. Clermont, Clermont Ferrand
 ⁴ LaBRI, Univ. Bordeaux
 ⁵ LIP6, Sorbonne Université, Paris

November 9th 2021, Fontainebleau

Self-stabilization in Highly Dynamic Networks?

where **topological changes** are not : { transient an anomaly
 but
 {
 intermittent inherent
 }
}

To tolerate both transient faults and high dynamics

Case Study: Leader Election

Self-stabilizing leader election in highly dynamic message-passing systems

Finding conditions under which self-stabilizing leader election can be achieved.

We look for self-stabilizing algorithm for general classes of dynamic networks

(e.g., we do not enforce the network to be in a particular topology at a given time)

- Finding the limits where self-stabilizing leader election becomes impossible?
- Studying **lower bounds** on the convergence time

n identified processes: $\forall p \in V$, id(p) is the unique identifier of p

n identified processes: $\forall p \in V$, id(p) is the unique identifier of p

Let *IDSET* be the definition domain of identifiers (|IDSET| > n) $\forall v \in IDSET$,

- v is a real ID if $\exists p \in V$, id(p) = v
- *v* is a **fake ID** otherwise

n identified processes: $\forall p \in V$, id(p) is the unique identifier of p

Let *IDSET* be the definition domain of identifiers (|IDSET| > n) $\forall v \in IDSET$,

- v is a real ID if $\exists p \in V$, id(p) = v
- *v* is a **fake ID** otherwise

Every process p computes the identifier of the leader in lid(p)Initially, lid(p) may contain a fake ID

GOAL: converge to a configuration from which all *lid* variables constantly designates **the same real ID**

Synchronous Rounds:

Dynamics modeled with a Dynamic Graph (DG)

[Xuan et. al., 03], [Casteigts et. al., 13]

1, (d, c)

1, (d, c); 2, (c, b)

1, (d, c); 2, (c, b)

1, (d, c); 2, (c, b); 4, (b, a) = Journey from d to a of length 4.

Sources and Sinks

Source: can infinitely often reach any other through a journey

Source: can infinitely often reach any other through a journey

 $\label{eq:Quasi-Timely Source: can infinitely often reach any other $$ through a journey of length \leq \Delta$ $$$

Sources and Sinks

Source: can infinitely often reach any other through a journey

 $\label{eq:Quasi-Timely Source: can infinitely often reach any other $$ through a journey of length $\leq \Delta$ $$$

Timely Source: can always reach any other

through a journey of length $\leq \Delta$

Sources and Sinks

Source: can infinitely often reach any other through a journey

 $\label{eq:Quasi-Timely Source: can infinitely often reach any other \\ through a journey of length \leq \Delta$

Timely Source: can always reach any other

through a journey of length $\leq \Delta$

Sink: can infinitely often be reached by any other through a journey

Timely Sink: can always be reached by any other through a journey of length $\leq \Delta$

Classes where All processes are Sources (and so Sinks)

[ICDCN'21]

$\mathcal{J}_{*,*}$: All processes are sources

- $\mathcal{J}^{\mathcal{Q}}_{*,*}(\Delta)$: All processes are **quasi-timely sources**
- $\mathcal{J}_{*,*}^{\mathcal{B}}(\Delta)$: All processes are **timely sources**

Generalization: Classes with at least One Source or One Sink

[PODC'21]

- $\mathcal{J}_{1,*}$: **At least one** Source $\mathcal{J}_{1*}^{\mathcal{Q}}(\Delta)$: **At least one** Quasi-Timely Source $\mathcal{J}_{1*}^{\mathcal{B}}(\Delta)$: **At least one** Timely Source $\mathcal{J}_{*,1}$: At least one Sink $\mathcal{J}^{\mathcal{Q}}_{*1}(\Delta)$: **At least one** Quasi-Timely Sink
 - $\mathcal{J}_{*,1}(\Delta)$. At least one Quasi-Timely Sin
- $\mathcal{J}_{*,1}^{\mathcal{B}}(\Delta)$: At least one Timely Sink

Hierarchy

 $A \rightarrow B$ means that $A \subset B$

Self- vs. Pseudo-stabilization: "cannot" vs. "does not"

Self-stabilization:

Pseudo-stabilization:

Classes where All Processes are Sources

$\mathcal{TC}^{\mathcal{B}}(\Delta) \subseteq \mathcal{TC}^{\mathcal{Q}}(\Delta) \subseteq \mathcal{TC}^{\mathcal{R}}$

Altisen et al.

Self-stabilizing Leader Election in $\mathcal{TC}^{\mathcal{B}}(\Delta)$, $\mathcal{TC}^{\mathcal{Q}}(\Delta)$, and $\mathcal{TC}^{\mathcal{R}}$

Class $\mathcal{TC}^{\mathcal{B}}(\Delta)$ with $\Delta \in \mathbb{N}^*$ (Bounded Temporal Diameter):

- Δ known
- Stabilization Time: at most 3∆ rounds
- Memory Requirement: $O(\log n + \log \Delta)$ bits per node

Class $\mathcal{TC}^{\mathcal{Q}}(\Delta)$ with $\Delta \in \mathbb{N}^*$ (Quasi Bounded Temporal Diameter):

- Δ and n known
- Memory Requirement: $O(n(\log n + \log \Delta))$ bits per node

Class $\mathcal{TC}^{\mathcal{R}}$ (Recurrent Temporal Connectivity):

- n known
- Memory Requirement: infinite

For $\mathcal{TC}^{\mathcal{Q}}(\Delta)$ and $\mathcal{TC}^{\mathcal{R}}$, the convergence time cannot be bounded and knowledge of *n* is mandatory !

Altisen et al.

n required in $\mathcal{TC}^{\mathcal{Q}}(\Delta)$ and $\mathcal{TC}^{\mathcal{R}}$: *size-ambiguity* (1/3)

Let p_1 , p_2 , p_3 , p_4 , p_5 , and p_6 be a set of processes. The identifier of p_i is *i*.

Assume an algorithm \mathcal{A} that "knows" the number of processes n in the system.

Assume an algorithm \mathcal{A} that "knows" the number of processes n in the system.

If A runs on p_1 , p_2 , p_3 , p_4 , p_5 , and p_6 :

n required in $\mathcal{TC}^{\mathcal{Q}}(\Delta)$ and $\mathcal{TC}^{\mathcal{R}}$: size-ambiguity (1/3)

Let p_1 , p_2 , p_3 , p_4 , p_5 , and p_6 be a set of processes. The identifier of p_i is *i*.

Assume an algorithm A that "knows" the number of processes n in the system.

Assume an algorithm \mathcal{A} that "knows" the number of processes n in the system.

Assume an algorithm A that "knows" the parity of number of processes n in the system.

Assume an algorithm A that "knows" the parity of number of processes n in the system.

If A runs on p_1 , p_2 , p_3 , p_4 , p_5 , and p_6 :

n required in $\mathcal{TC}^{\mathcal{Q}}(\Delta)$ and $\mathcal{TC}^{\mathcal{R}}$: *size-ambiguity* (2/3)

Let p_1 , p_2 , p_3 , p_4 , p_5 , and p_6 be a set of processes. The identifier of p_i is *i*.

Assume an algorithm A that "knows" the parity of number of processes n in the system.

If \mathcal{A} runs on p_1 , p_2 , p_3 , p_4 , p_5 , and p_6 :

If \mathcal{A} runs on p_1 , p_2 , p_3 , and p_4 :

Assume an algorithm A that "knows" the parity of number of processes n in the system.

Assume an algorithm A that "knows" the bound K = 9 of number of processes n in the system.

Assume an algorithm A that "knows" the bound K = 9 of number of processes n in the system.

If A runs on p_1 , p_2 , p_3 , p_4 , p_5 , and p_6 :

Assume an algorithm A that "knows" the bound K = 9 of number of processes n in the system.

If \mathcal{A} runs on p_1 , p_2 , p_3 , p_4 , p_5 , and p_6 :

If \mathcal{A} runs on p_1 , p_2 , p_3 , and p_4 :

Assume an algorithm A that "knows" the bound K = 9 of number of processes n in the system.

Let V be a set of processes and $k \in \mathbb{N}$.

 \mathcal{A} is (k, V)-ambiguous if 0 < k < |V| and for every $U \subset V$ such that |U| = k, \mathcal{A} can be run on U and for every $p \in U$, p has the same set of states whether \mathcal{A} runs on U or V.

 \mathcal{A} is size-ambiguous if there exists V and k such that \mathcal{A} is (k, V)-ambiguous.

Let V be a set of processes and $k \in \mathbb{N}$.

 \mathcal{A} is (k, V)-ambiguous if 0 < k < |V| and for every $U \subset V$ such that |U| = k, \mathcal{A} can be run on U and for every $p \in U$, p has the same set of states whether \mathcal{A} runs on U or V.

 ${\mathcal A}$ is size-ambiguous if there exists V and k such that ${\mathcal A}$ is (k,V)-ambiguous.

 ${\cal A}$ is size-ambiguous \approx " ${\cal A}$ has a partial knowledge of n"

n required in $\mathcal{TC}^{\mathcal{Q}}(\Delta)$ and $\mathcal{TC}^{\mathcal{R}}$: the result

Let \mathcal{A} be any self-stabilizing leader election algorithm for $\mathcal{TC}^{\mathcal{Q}}(\Delta)$ ($\Delta \geq 2$), V be a set of processes, \mathcal{L} be a set of legitimate configurations of \mathcal{A} for V, and $k \in \mathbb{N}$.

 \mathcal{L} is closed in $\mathcal{TC}^{\mathcal{Q}}(\Delta)$: if γ' reachable from $\gamma \in \mathcal{L}$ by \mathcal{A} in $\mathcal{TC}^{\mathcal{Q}}(\Delta)$, $\gamma' \in \mathcal{L}$ too.

- If \mathcal{A} is (k, V)-ambiguous, then \mathcal{L} is **not** closed in $\mathcal{TC}^{\mathcal{Q}}(\Delta)$. (also holds for $\mathcal{TC}^{\mathcal{B}}(\Delta)$)
- ∃ a set of legitimate configurations of \mathcal{A} for V which is closed in $\mathcal{TC}^{\mathcal{Q}}(\Delta)$.

n required in $\mathcal{TC}^{\mathcal{Q}}(\Delta)$ and $\mathcal{TC}^{\mathcal{R}}$: the result

Let \mathcal{A} be any self-stabilizing leader election algorithm for $\mathcal{TC}^{\mathcal{Q}}(\Delta)$ ($\Delta \geq 2$), V be a set of processes, \mathcal{L} be a set of legitimate configurations of \mathcal{A} for V, and $k \in \mathbb{N}$.

 \mathcal{L} is closed in $\mathcal{TC}^{\mathcal{Q}}(\Delta)$: if γ' reachable from $\gamma \in \mathcal{L}$ by \mathcal{A} in $\mathcal{TC}^{\mathcal{Q}}(\Delta)$, $\gamma' \in \mathcal{L}$ too.

- If \mathcal{A} is (k, V)-ambiguous, then \mathcal{L} is **not** closed in $\mathcal{TC}^{\mathcal{Q}}(\Delta)$. (also holds for $\mathcal{TC}^{\mathcal{B}}(\Delta)$)
- ∃ a set of legitimate configurations of \mathcal{A} for V which is closed in $\mathcal{TC}^{\mathcal{Q}}(\Delta)$.

Theorem 1

No self-stabilizing leader election algorithm for $\mathcal{TC}^{\mathcal{Q}}(\Delta)$, with $\Delta \geq 2$, can be size-ambiguous.

Corollary 2

No self-stabilizing leader election algorithm for $\mathcal{TC}^{\mathcal{R}}$ can be size-ambiguous.

Other Classes: Focus on $\mathcal{J}_{1,*}^{\mathcal{B}}(\Delta)$

At least one a priori unknown process (a timely source) can always reach any other through a journey of length $\leq \Delta$

Impossibility of Self-stabilizing Leader Election in $\mathcal{J}_{1,*}^{\mathcal{B}}(\Delta)$

Preliminary Result

In situation \mathcal{A} , one process eventually changes its leader output.

Proof:

- All processes except p_i (resp. p_x) are connected to any other at any time $\Rightarrow \in \mathcal{J}_{1,*}^{\mathcal{B}}(\Delta)$
- $\forall j \notin \{i, x\}$, the executions of p_j in \mathcal{A} and \mathcal{B} are *indistinguishable*

$$\Rightarrow \text{ if } p_j \text{ elects } p_i \text{ in } \mathcal{A}, \text{ then } p_j \text{ elects } p_i \text{ in } \mathcal{B} \Rightarrow \bigotimes$$
$$\Rightarrow p_i \text{ eventually changes its leader}$$

Impossibility of Self-stabilizing Leader Election in $\mathcal{J}_{1,*}^{\mathcal{B}}(\Delta)$

Assume a self-stabilizing algorithm exists

 Starting from any legitimate configuration, *lid* variables should be constant
 Now, from any legitimate configuration, situation A is possible Preliminary result ⇒ one process eventually changes its leader

Contradiction

Impossibility of Self-stabilizing Leader Election in $\mathcal{J}_{1,*}^{\mathcal{B}}(\Delta)$

Assume a self-stabilizing algorithm exists

 Starting from any legitimate configuration, *lid* variables should be constant
 Now, from any legitimate configuration, situation A is possible Preliminary result ⇒ one process eventually changes its leader

Contradiction

Goal: Electing a "stable" process

Stable Process: eventually, all other processes receive (maybe indirectly) information about it at least every Δ rounds

Goal: Electing a "stable" process

Stable Process: eventually, **all other processes** receive (maybe indirectly) information about it at least every Δ rounds

At each round, each process initiates a *flooding* (relayed Δ times) $\rightarrow \exists$ stable processes: each source is stable!

Goal: Electing a "stable" process

Stable Process: eventually, **all other processes** receive (maybe indirectly) information about it at least every Δ rounds

At each round, each process initiates a *flooding* (relayed Δ times) $\rightarrow \exists$ stable processes: each source is stable!

How to evaluate stability?

Goal: Electing a "stable" process

Stable Process: eventually, **all other processes** receive (maybe indirectly) information about it at least every Δ rounds

At each round, each process initiates a *flooding* (relayed \triangle times) $\rightarrow \exists$ stable processes: each source is stable!

How to evaluate stability? suspicion counter

A process increments its suspicion counter each time it is accused to be NOT stable by some process

After the 1st round, suspicion counters are monotically non-decreasing

(a counter may be reset during the first round due to initial inconsistency)

Goal: Electing a "stable" process

Stable Process: eventually, **all other processes** receive (maybe indirectly) information about it at least every Δ rounds

At each round, each process initiates a *flooding* (relayed \triangle times) $\rightarrow \exists$ stable processes: each source is stable!

How to evaluate stability? suspicion counter

A process increments its suspicion counter each time it is accused to be NOT stable by some process

After the 1st round, suspicion counters are monotically non-decreasing

(a counter may be reset during the first round due to initial inconsistency)

Elected Leader: a process with the minimum suspicion counter value

(we use identifiers to break ties)

Locally and Globally Stable Processes

Each process *p* maintains two maps:

- LStable(p): Map of locally stable processes at p
 ⇒ p itself and processes from which p (directly) receives information at most ∆ rounds ago.
- GStable(p): Map of globally stable processes
 = locally stable at any process (p included)
 - \Rightarrow must eventually contain at least every stable process

Locally and Globally Stable Processes

Each process p maintains two maps:

- LStable(p): Map of locally stable processes at p
 ⇒ p itself and processes from which p (directly) receives information at most ∆ rounds ago.
- *GStable*(*p*): Map of *globally stable* processes
 - = locally stable at any process (p included)
 - \Rightarrow must eventually contain at least every stable process

p always considers itself locally & globally stable

Locally and Globally Stable Processes

Values inside *LStable*(*p*) and *GStable*(*p*): triplet < *id*, *susp*, *ttl* >

- *id*: identifier
- *susp*: the suspicion value of *id*
- ttl: time to live

Locally and Globally Stable Processes

Values inside LStable(p) and GStable(p): triplet < id, susp, ttl >

- *id*: identifier
- *susp*: the suspicion value of *id*
- ttl: time to live

LStable(p) and GStable(p) are appended/updated with received information

- update in LStable(p): information with the highest ttl is considered as the freshest one
- update in GStable(p): received information is considered as fresher and inserted with ttl = △

Locally and Globally Stable Processes

Values inside LStable(p) and GStable(p): triplet < id, susp, ttl >

- *id*: identifier
- *susp*: the suspicion value of *id*
- ttl: time to live

LStable(p) and GStable(p) are appended/updated with received information

- update in *LStable(p)*: information with the highest *ttl* is considered as the freshest one
- update in GStable(p): received information is considered as fresher and inserted with ttl = △

A triplet is **removed** from a map when its *ttl* reaches 0

At Every Round

1 *p* initiates a flooding of the triplet $< id(p), LSP = LStable(p), ttl = \Delta >$

At Every Round

1 *p* initiates a flooding of the triplet $< id(p), LSP = LStable(p), ttl = \Delta >$

2 p updates LStable(p) and GStable(p) according to received triplets

At Every Round

- 1 *p* initiates a flooding of the triplet $< id(p), LSP = LStable(p), ttl = \Delta >$
- **2** p updates LStable(p) and GStable(p) according to received triplets
- 3 *ttl* variables (except those associated to *p*) are decremented and expired triplets are deleted

At Every Round

- 1 *p* initiates a flooding of the triplet $< id(p), LSP = LStable(p), ttl = \Delta >$
- **2** p updates *LStable*(p) and *GStable*(p) according to received triplets
- 3 *ttl* variables (except those associated to *p*) are decremented and expired triplets are deleted
- For each received LSP map, if id(p) is absent from LSP, p increments its suspicion counter

At Every Round

- 1 *p* initiates a flooding of the triplet $< id(p), LSP = LStable(p), ttl = \Delta >$
- **2** p updates *LStable*(p) and *GStable*(p) according to received triplets
- 3 *ttl* variables (except those associated to *p*) are decremented and expired triplets are deleted
- For each received LSP map, if id(p) is absent from LSP, p increments its suspicion counter
- **5** p elects $q \in GStable(p)$ with *lowest suspicion counter*

Pseudo-stabilization

1 "Time To Live" allow to delete fake IDs.

Pseudo-stabilization

1 "Time To Live" allow to delete fake IDs.

2 Let s be a source.
 p ≠ s receives < id(s), LSP, ttl > at least every Δ rounds
 → eventually id(s) ∈ LStable(p) forever, ∀p ∈ V
 ⇒ the suspicion counter of s is eventually forever constant
 → id(s) ∈ LSP

 \Rightarrow eventually *id*(*s*) \in *GStable*(*p*) forever, $\forall p \in V$

Pseudo-stabilization

1 "Time To Live" allow to delete fake IDs.

2 Let s be a source.
 p ≠ s receives < id(s), LSP, ttl > at least every Δ rounds
 → eventually id(s) ∈ LStable(p) forever, ∀p ∈ V
 ⇒ the suspicion counter of s is eventually forever constant
 → id(s) ∈ LSP

 \Rightarrow eventually $id(s) \in GStable(p)$ forever, $\forall p \in V$

3 Let x be a process whose suspicion counter is eventually constant Eventually $id(x) \in LStable(s)$ forever, for every source s

 \rightarrow *id*(*x*) \in *GStable*(*p*), $\forall p \in V$

Pseudo-stabilization

4 x infinitely often absent of GStable(p)

 \Longrightarrow infinitely often, during Δ consecutive rounds,

p only receives < -, LSP, -> with $id(x) \notin LSP$

Some of those triplets were initiated by sources

ightarrow x also receives these latter

 $\rightarrow x$ increments its counter infinitely often

Pseudo-stabilization

4 x infinitely often absent of GStable(p)

 \Longrightarrow infinitely often, during Δ consecutive rounds,

p only receives < -, LSP, -> with $id(x) \notin LSP$

5 Eventually:

Processes with **eventually const.** susp. counter (at least 1) $\in GStable(p)$ forever Suspicion counter of other processes > constant suspicion counters

Pseudo-stabilization

4 x infinitely often absent of GStable(p)

 \Longrightarrow infinitely often, during Δ consecutive rounds,

p only receives < -, LSP, -> with $id(x) \notin LSP$

5 Eventually:

Processes with **eventually const.** susp. counter (at least 1) \in *GStable*(*p*) forever Suspicion counter of other processes > constant suspicion counters

6 Eventually, $\ell \in GStable(p)$ with **lowest suspicion counter** is the same at every $p \implies every \ process \ elects \ \ell$, a stable process.

Conclusion

Time Complexity

When stabilization is possible, *convergence time* is, most of the time, unboundable ...

Notable exception: $\mathcal{J}_{*,*}^{\mathcal{B}}(\Delta)$

Time Complexity

When stabilization is possible, *convergence time* is, most of the time, unboundable ...

Notable exception: $\mathcal{J}_{*,*}^{\mathcal{B}}(\Delta)$

However, to mitigate this issue, we have speculation

Speculation

Speculation [Kotla et al., ACM Trans. Comput. Syst., 2009]:

- the system satisfies its requirements for all executions,
- but also exhibits significantly better performances in a subset of more probable executions.

Idea: worst possible scenarios are often rare in practice.

When the stabilization time cannot be bounded in a class, we exhibit an important subclass where it can be bounded.

Speculation

Speculation [Kotla et al., ACM Trans. Comput. Syst., 2009]:

- the system satisfies its requirements for all executions,
- but also exhibits significantly better performances in a subset of more probable executions.

Idea: worst possible scenarios are often rare in practice.

When the stabilization time cannot be bounded in a class, we exhibit an important subclass where it can be bounded.

In all cases where stabilization is possible but the convergence time is unboundable, our algorithms are speculative: when deployed in *the* subclass $\mathcal{J}_{*,*}^{\mathcal{B}}(\Delta)$, the convergence time is in $O(\Delta)$ rounds.

Space Complexity

Important open questions:

■ Can we solve pseudo-stabilizing leader election in $\mathcal{J}_{1,*}^{\mathcal{B}}$ with a **bounded memory**?

■ Can we solve self-stabilizing leader election in *J*_{*,*} with a bounded memory?

Publications:

- Karine Altisen, Stéphane Devismes, and Anaïs Durand, Colette Johnen, and Franck Petit. Self-stabilizing Systems in Spite of High Dynamics. *ICDCN'21*.
- Karine Altisen, Stéphane Devismes, and Anaïs Durand, Colette Johnen, and Franck Petit. On Implementing Stabilizing Leader Election with Weak Assumptions on Network Dynamics. PODC'21.