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Challenge

Self-stabilization in Highly Dynamic Networks ?

where topological changes are not :{
transient
an anomaly but

{
intermittent
inherent

To tolerate both transient faults and high dynamics

Case Study: Leader Election
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Objectives
Self-stabilizing leader election in highly dynamic message-passing systems

� Finding conditions under which self-stabilizing leader election can
be achieved.

We look for
self-stabilizing algorithm for

general classes of dynamic networks
(e.g., we do not enforce the network to be in a particular topology at a given time)

� Finding the limits where self-stabilizing leader election becomes
impossible?

� Studying lower bounds on the convergence time
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Leader Election

n identified processes: ∀p ∈ V , id(p) is the unique identifier of p

Let IDSET be the definition domain of identifiers (|IDSET | > n)

∀v ∈ IDSET ,
� v is a real ID if ∃p ∈ V , id(p) = v
� v is a fake ID otherwise

Every process p computes the identifier of the leader in lid(p)
Initially, lid(p) may contain a fake ID

GOAL: converge to a configuration from which all lid variables
constantly designates the same real ID
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Computation Model

� Synchronous Rounds:

� Dynamics modeled with a Dynamic Graph (DG)
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[Xuan et. al., 03], [Casteigts et. al., 13]

Altisen et al. Self-Stabilizing Leader Election in Highly Dynamic Networks
4/31



Journey

Can d transmit information to a ?

G1

a
b

c

d

e f

G2

a
b

c

d

e f

G3

a
b

c

d

e f

G4

a
b

c

d

e f

. . .

Altisen et al. Self-Stabilizing Leader Election in Highly Dynamic Networks
5/31



Journey

Can d transmit information to a ?

G1

a
b

c

d

e f

G2

a
b

c

d

e f

G3

a
b

c

d

e f

G4

a
b

c

d

e f

. . .

1, (d , c)

Altisen et al. Self-Stabilizing Leader Election in Highly Dynamic Networks
5/31



Journey

Can d transmit information to a ?

G1

a
b

c

d

e f

G2

a
b

c

d

e f

G3

a
b

c

d

e f

G4

a
b

c

d

e f

. . .

1, (d , c); 2, (c, b)

Altisen et al. Self-Stabilizing Leader Election in Highly Dynamic Networks
5/31



Journey

Can d transmit information to a ?

G1

a
b

c

d

e f

G2

a
b

c

d

e f

G3

a
b

c

d

e f

G4

a
b

c

d

e f

. . .

1, (d , c); 2, (c, b)

Altisen et al. Self-Stabilizing Leader Election in Highly Dynamic Networks
5/31



Journey
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1, (d , c); 2, (c, b); 4, (b, a) = Journey from d to a of length 4.
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Sources and Sinks

Source: can infinitely often reach any other
through a journey

Quasi-Timely Source: can infinitely often reach any other
through a journey of length ≤ ∆

Timely Source: can always reach any other
through a journey of length ≤ ∆

Sink: can infinitely often be reached by any other
through a journey

Quasi-Timely Sink: can infinitely often be reached by any other
through a journey of length ≤ ∆

Timely Sink: can always be reached by any other
through a journey of length ≤ ∆
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Classes where All processes are Sources (and so Sinks)
[ICDCN’21]

J∗,∗: All processes are sources

JQ∗,∗(∆): All processes are quasi-timely sources

J B∗,∗(∆): All processes are timely sources
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Generalization: Classes with at least One Source or One
Sink
[PODC’21]

J1,∗: At least one Source

JQ1,∗(∆): At least one Quasi-Timely Source

J B1,∗(∆): At least one Timely Source

J∗,1: At least one Sink

JQ∗,1(∆): At least one Quasi-Timely Sink

J B∗,1(∆): At least one Timely Sink
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Hierarchy

J B1,∗

JQ1,∗

J1,∗

J B∗,1

JQ∗,1

J∗,1

J B∗,∗

JQ∗,∗

J∗,∗

J B∗,∗ JQ∗,∗ J∗,∗

J B1,∗ JQ1,∗ J1,∗

J B∗,1 JQ∗,1 J∗,1

A→ B means that A ⊂ B
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Main Results

J B1,∗

JQ1,∗

J1,∗

J B∗,1

JQ∗,1

J∗,1

J B∗,∗

JQ∗,∗

J∗,∗

Self-stabilization
Convergence Time Boundable only in J B∗,∗

Self-stabilization
Pseudo-stabilization

Self-stabilization
Pseudo-stabilization

Convergence Time Unboundable
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Self- vs. Pseudo-stabilization: "cannot" vs. "does not"

� Self-stabilization:

. . .

. . .

arbitrary
initial config.

legitimate
config.

� Pseudo-stabilization:

. . .

. . .

arbitrary
initial config.
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Classes where
All Processes
are Sources

T CB(∆) ⊆ T CQ(∆) ⊆ T CR
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Self-stabilizing Leader Election in T CB(∆), T CQ(∆), and
T CR

Class T CB(∆) with ∆ ∈ N∗ (Bounded Temporal Diameter):
� ∆ known
� Stabilization Time: at most 3∆ rounds
� Memory Requirement: O(log n + log ∆) bits per node

Class T CQ(∆) with ∆ ∈ N∗ (Quasi Bounded Temporal Diameter):
� ∆ and n known
� Memory Requirement: O(n(log n + log ∆)) bits per node

Class T CR(Recurrent Temporal Connectivity):
� n known
� Memory Requirement: infinite

For T CQ(∆)and T CR, the convergence time cannot be bounded and
knowledge of n is mandatory !
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n required in T CQ(∆) and T CR: size-ambiguity (1/3)

Let p1, p2, p3, p4, p5, and p6 be a set of processes.
The identifier of pi is i .

Assume an algorithm A that “knows” the number of processes n in
the system.

If A runs on p1, p2, p3, p4, p5, and p6: If A runs on p1, p2, p3, and p4:

It is not size-ambiguous!

Altisen et al. Self-Stabilizing Leader Election in Highly Dynamic Networks
14/31



n required in T CQ(∆) and T CR: size-ambiguity (1/3)

Let p1, p2, p3, p4, p5, and p6 be a set of processes.
The identifier of pi is i .

Assume an algorithm A that “knows” the number of processes n in
the system.

If A runs on p1, p2, p3, p4, p5, and p6: If A runs on p1, p2, p3, and p4:

It is not size-ambiguous!

Altisen et al. Self-Stabilizing Leader Election in Highly Dynamic Networks
14/31



n required in T CQ(∆) and T CR: size-ambiguity (1/3)

Let p1, p2, p3, p4, p5, and p6 be a set of processes.
The identifier of pi is i .

Assume an algorithm A that “knows” the number of processes n in
the system.

If A runs on p1, p2, p3, p4, p5, and p6:

1

4

2

5

6 6

6 6

3

6

6

6

If A runs on p1, p2, p3, and p4:

It is not size-ambiguous!

Altisen et al. Self-Stabilizing Leader Election in Highly Dynamic Networks
14/31



n required in T CQ(∆) and T CR: size-ambiguity (1/3)

Let p1, p2, p3, p4, p5, and p6 be a set of processes.
The identifier of pi is i .

Assume an algorithm A that “knows” the number of processes n in
the system.

If A runs on p1, p2, p3, p4, p5, and p6:

1

4

2

5

6 6

6 6

3

6

6

6

If A runs on p1, p2, p3, and p4:

1

4

2

5

4 4

4 4

It is not size-ambiguous!

Altisen et al. Self-Stabilizing Leader Election in Highly Dynamic Networks
14/31



n required in T CQ(∆) and T CR: size-ambiguity (1/3)

Let p1, p2, p3, p4, p5, and p6 be a set of processes.
The identifier of pi is i .

Assume an algorithm A that “knows” the number of processes n in
the system.

If A runs on p1, p2, p3, p4, p5, and p6:

1

4

2

5

6 6

6 6

3

6

6

6

If A runs on p1, p2, p3, and p4:

1

4

2

5

4 4

4 4

It is not size-ambiguous!

Altisen et al. Self-Stabilizing Leader Election in Highly Dynamic Networks
14/31



n required in T CQ(∆) and T CR: size-ambiguity (2/3)

Let p1, p2, p3, p4, p5, and p6 be a set of processes.
The identifier of pi is i .

Assume an algorithm A that “knows” the parity of number of
processes n in the system.

If A runs on p1, p2, p3, p4, p5, and p6: If A runs on p1, p2, p3, and p4:

It is size-ambiguous!
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n required in T CQ(∆) and T CR: size-ambiguity (3/3)

Let p1, p2, p3, p4, p5, and p6 be a set of processes.
The identifier of pi is i .

Assume an algorithm A that “knows” the bound K = 9 of number
of processes n in the system.

If A runs on p1, p2, p3, p4, p5, and p6: If A runs on p1, p2, p3, and p4:

It is size-ambiguous!
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Size-ambiguity (definition)

Let V be a set of processes and k ∈ N.

A is (k, V )-ambiguous if 0 < k < |V | and for every U ⊂ V such that
|U| = k, A can be run on U and for every p ∈ U, p has the same set of
states whether A runs on U or V .

A is size-ambiguous if there exists V and k such that A is
(k, V )-ambiguous.

A is size-ambiguous ≈ “A has a partial knowledge of n”
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n required in T CQ(∆) and T CR: the result

Let A be any self-stabilizing leader election algorithm for T CQ(∆) (∆ ≥ 2), V be a
set of processes, L be a set of legitimate configurations of A for V , and k ∈ N.

L is closed in T CQ(∆): if γ′ reachable from γ ∈ L by A in T CQ(∆), γ′ ∈ L too.

� If A is (k,V )-ambiguous, then L is not closed in T CQ(∆). (also holds for T CB(∆))

� ∃ a set of legitimate configurations of A for V which is closed in T CQ(∆).

Theorem 1
No self-stabilizing leader election algorithm for T CQ(∆), with ∆ ≥ 2, can be
size-ambiguous.

Corollary 2
No self-stabilizing leader election algorithm for T CR can be size-ambiguous.
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Other Classes:
Focus on J B1,∗(∆)

At least one a priori unknown process (a timely source)
can always reach any other

through a journey of length ≤ ∆
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Impossibility of Self-stabilizing Leader Election in J B1,∗(∆)
Preliminary Result

In situation A, one process eventually changes its leader output.

A
p1

p2

p3

pi

pn

pi

pi

pi

pi

pi

B
p1

p2

p3

px

pn

pi

pi

pi

pi

pi

Proof:
� All processes except pi (resp. px ) are connected to any other at any time

⇒ ∈ J B1,∗(∆)
� ∀j /∈ {i , x}, the executions of pj in A and B are indistinguishable

⇒ if pj elects pi in A, then pj elects pi in B ⇒
⇒ pj eventually changes its leader
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Impossibility of Self-stabilizing Leader Election in J B1,∗(∆)

Assume a self-stabilizing algorithm exists

A
p1

p2

p3

pi

pn

pi

pi

pi

pi

pi

1 Starting from any legitimate configuration, lid variables should be constant
2 Now, from any legitimate configuration, situation A is possible

Preliminary result ⇒ one process eventually changes its leader
Contradiction
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Pseudo-stabilizing Leader Election Algorithm for J B1,∗(∆)
Goal: Electing a "stable" process

Stable Process: eventually, all other processes receive (maybe
indirectly) information about it at least every ∆ rounds

At each round, each process initiates a flooding (relayed ∆ times)
→ ∃ stable processes: each source is stable!

How to evaluate stability? suspicion counter
A process increments its suspicion counter each time it is accused to be
NOT stable by some process
After the 1st round, suspicion counters are monotically
non-decreasing
(a counter may be reset during the first round due to initial inconsistency)

Elected Leader: a process with the minimum suspicion counter value
(we use identifiers to break ties)

Altisen et al. Self-Stabilizing Leader Election in Highly Dynamic Networks
22/31



Pseudo-stabilizing Leader Election Algorithm for J B1,∗(∆)
Goal: Electing a "stable" process

Stable Process: eventually, all other processes receive (maybe
indirectly) information about it at least every ∆ rounds

At each round, each process initiates a flooding (relayed ∆ times)
→ ∃ stable processes: each source is stable!

How to evaluate stability? suspicion counter
A process increments its suspicion counter each time it is accused to be
NOT stable by some process
After the 1st round, suspicion counters are monotically
non-decreasing
(a counter may be reset during the first round due to initial inconsistency)

Elected Leader: a process with the minimum suspicion counter value
(we use identifiers to break ties)

Altisen et al. Self-Stabilizing Leader Election in Highly Dynamic Networks
22/31



Pseudo-stabilizing Leader Election Algorithm for J B1,∗(∆)
Goal: Electing a "stable" process

Stable Process: eventually, all other processes receive (maybe
indirectly) information about it at least every ∆ rounds

At each round, each process initiates a flooding (relayed ∆ times)
→ ∃ stable processes: each source is stable!

How to evaluate stability?

suspicion counter
A process increments its suspicion counter each time it is accused to be
NOT stable by some process
After the 1st round, suspicion counters are monotically
non-decreasing
(a counter may be reset during the first round due to initial inconsistency)

Elected Leader: a process with the minimum suspicion counter value
(we use identifiers to break ties)

Altisen et al. Self-Stabilizing Leader Election in Highly Dynamic Networks
22/31



Pseudo-stabilizing Leader Election Algorithm for J B1,∗(∆)
Goal: Electing a "stable" process

Stable Process: eventually, all other processes receive (maybe
indirectly) information about it at least every ∆ rounds

At each round, each process initiates a flooding (relayed ∆ times)
→ ∃ stable processes: each source is stable!

How to evaluate stability? suspicion counter
A process increments its suspicion counter each time it is accused to be
NOT stable by some process
After the 1st round, suspicion counters are monotically
non-decreasing
(a counter may be reset during the first round due to initial inconsistency)

Elected Leader: a process with the minimum suspicion counter value
(we use identifiers to break ties)

Altisen et al. Self-Stabilizing Leader Election in Highly Dynamic Networks
22/31



Pseudo-stabilizing Leader Election Algorithm for J B1,∗(∆)
Goal: Electing a "stable" process

Stable Process: eventually, all other processes receive (maybe
indirectly) information about it at least every ∆ rounds

At each round, each process initiates a flooding (relayed ∆ times)
→ ∃ stable processes: each source is stable!

How to evaluate stability? suspicion counter
A process increments its suspicion counter each time it is accused to be
NOT stable by some process
After the 1st round, suspicion counters are monotically
non-decreasing
(a counter may be reset during the first round due to initial inconsistency)

Elected Leader: a process with the minimum suspicion counter value
(we use identifiers to break ties)

Altisen et al. Self-Stabilizing Leader Election in Highly Dynamic Networks
22/31



Pseudo-stabilizing Leader Election Algorithm for J B1,∗(∆)
Locally and Globally Stable Processes

Each process p maintains two maps:

� LStable(p): Map of locally stable processes at p
⇒ p itself and processes from which p (directly) receives information
at most ∆ rounds ago.

� GStable(p): Map of globally stable processes
= locally stable at any process (p included)
⇒ must eventually contain at least every stable process

p always considers itself locally & globally stable
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Pseudo-stabilizing Leader Election Algorithm for J B1,∗(∆)
Locally and Globally Stable Processes

Values inside LStable(p) and GStable(p): triplet < id , susp, ttl >

� id : identifier
� susp: the suspicion value of id
� ttl : time to live

LStable(p) and GStable(p) are appended/updated with received
information
� update in LStable(p): information with the highest ttl is considered

as the freshest one
� update in GStable(p): received information is considered as fresher

and inserted with ttl = ∆

A triplet is removed from a map when its ttl reaches 0
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Pseudo-stabilizing Leader Election Algorithm for J B1,∗(∆)
At Every Round

1 p initiates a flooding of the triplet
< id(p), LSP = LStable(p), ttl = ∆ >

2 p updates LStable(p) and GStable(p) according to received triplets

3 ttl variables (except those associated to p) are decremented and
expired triplets are deleted

4 For each received LSP map, if id(p) is absent from LSP, p
increments its suspicion counter

5 p elects q ∈ GStable(p) with lowest suspicion counter
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Pseudo-stabilizing Leader Election Algorithm for J B1,∗(∆)

Pseudo-stabilization

1 "Time To Live" allow to delete fake IDs.

2 Let s be a source.
p 6= s receives < id(s), LSP, ttl > at least every ∆ rounds

→ eventually id(s) ∈ LStable(p) forever, ∀p ∈ V
⇒ the suspicion counter of s is eventually forever constant

→ id(s) ∈ LSP
⇒ eventually id(s) ∈ GStable(p) forever, ∀p ∈ V

3 Let x be a process whose suspicion counter is eventually constant
Eventually id(x) ∈ LStable(s) forever, for every source s

→ id(x) ∈ GStable(p), ∀p ∈ V
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Pseudo-stabilizing Leader Election Algorithm for J B1,∗(∆)

Pseudo-stabilization

4 x infinitely often absent of GStable(p)
=⇒ infinitely often, during ∆ consecutive rounds,

p only receives < −, LSP,− > with id(x) /∈ LSP

Some of those triplets were initiated by sources
→ x also receives these latter
→ x increments its counter infinitely often

5 Eventually:

Processes with eventually const. susp. counter (at least 1) ∈ GStable(p) forever

Suspicion counter of other processes > constant suspicion counters

6 Eventually, ` ∈ GStable(p) with lowest suspicion counter is the same at every p
=⇒ every process elects `, a stable process.
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Conclusion
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Conclusion
Time Complexity

When stabilization is possible, convergence time is, most of the time,
unboundable ...

Notable exception: J B∗,∗(∆)

However, to mitigate this issue, we have speculation
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Conclusion
Speculation

Speculation [Kotla et al., ACM Trans. Comput. Syst., 2009]:
� the system satisfies its requirements for all executions,
� but also exhibits significantly better performances in a subset of more

probable executions.

Idea: worst possible scenarios are often rare in practice.

When the stabilization time cannot be bounded in a class, we
exhibit an important subclass where it can be bounded.

In all cases where stabilization is possible but the convergence time is
unboundable, our algorithms are speculative: when deployed in the
subclass J B∗,∗(∆), the convergence time is in O(∆) rounds.
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Conclusion
Space Complexity

Important open questions:

� Can we solve pseudo-stabilizing leader election in J B1,∗ with a
bounded memory?

� Can we solve self-stabilizing leader election in J∗,∗ with a bounded
memory?
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