Robustness of distances and diameter in an aging network

Timothée Corsini joint work with A. Casteigts, H. Hocquard and A. Labourel

ANR Descartes

November 10th 2021

A temporal graph is a graph that changes with time.

 \rightarrow Can represent interactions : epidemiology, social networks, connected objects...

A temporal graph is a graph that changes with time.

 \rightarrow Can represent interactions : epidemiology, social networks, connected objects...

A temporal graph is a graph that changes with time.

 \rightarrow Can represent interactions : epidemiology, social networks, connected objects...

A temporal graph is a graph that changes with time.

ightarrow Can represent interactions : epidemiology, social networks, connected objects...

A temporal graph is a graph that changes with time.

 \rightarrow Can represent interactions : epidemiology, social networks, connected objects...

A temporal graph is a graph that changes with time.

 \rightarrow Can represent interactions : epidemiology, social networks, connected objects...

footprint of the temporal graph

A journey (or temporal path) is a path whose edges, additionnaly, use increasing times.

 \rightarrow the increase in time can either be strict or not

A journey (or temporal path) is a path whose edges, additionnaly, use increasing times.

 \rightarrow the increase in time can either be strict or not

Journey from *e* to *a* but not a strict journey.

A journey (or temporal path) is a path whose edges, additionnaly, use increasing times.

 \rightarrow the increase in time can either be strict or not

Journey from c to e but not from e to c.

A journey (or temporal path) is a path whose edges, additionnaly, use increasing times.

ightarrow the increase in time can either be strict or not

Not temporally connected.

Temporal connectivity

G is temporally connected if for every ordered pair of vertices (u,v), there is a journey from *u* to *v*. If so, we note $G \in TC$.

A journey (or temporal path) is a path whose edges, additionnaly, use increasing times.

ightarrow the increase in time can either be strict or not

Temporally connected.

Temporal connectivity

G is temporally connected if for every ordered pair of vertices (u,v), there is a journey from *u* to *v*. If so, we note $G \in TC$.

Timothée Corsini

Robustness of distances and diameter

What kind of properties are preserved?

Timothée Corsini

Robustness of distances and diameter

A property P is robust in G if and only if it is satisfied in every connected spanning subgraph of G (including G itself).

- Hereditary : if the property holds in any induced subgraph ;
- Monotone : if the property holds in any subgraph.

A property P is robust in G if and only if it is satisfied in every connected spanning subgraph of G (including G itself).

- Hereditary : if the property holds in any induced subgraph ;
- Monotone : if the property holds in any subgraph.

A property P is robust in G if and only if it is satisfied in every connected spanning subgraph of G (including G itself).

- Hereditary : if the property holds in any induced subgraph ;
- Monotone : if the property holds in any subgraph.

A property P is robust in G if and only if it is satisfied in every connected spanning subgraph of G (including G itself).

- Hereditary : if the property holds in any induced subgraph ;
- Monotone : if the property holds in any subgraph.

A property P is robust in G if and only if it is satisfied in every connected spanning subgraph of G (including G itself).

- Hereditary : if the property holds in any induced subgraph ;
- Monotone : if the property holds in any subgraph.

A property P is robust in G if and only if it is satisfied in every connected spanning subgraph of G (including G itself).

- Hereditary : if the property holds in any induced subgraph ;
- Monotone : if the property holds in any subgraph.

A property P is robust in G if and only if it is satisfied in every connected spanning subgraph of G (including G itself).

- Hereditary : if the property holds in any induced subgraph ;
- Monotone : if the property holds in any subgraph.

Part 1 : Robustness of the diameter

Consider an aging network :

Problem

Is diam(G) = k robust?

Is the diameter robust ?

Is the diameter robust ?

Is the diameter robust ?

Is the diameter robust?

Is the diameter robust?

diam(G) robust \iff it is equal to the longest path.

Reminder : deciding if G has an hamiltonian path is NP-complete. Proof : reducing the hamiltonian path problem to the robustness of the diameter.

Let G be any graph of order n.

Reminder : deciding if G has an hamiltonian path is NP-complete. Proof : reducing the hamiltonian path problem to the robustness of the diameter.

A path P_{2n-1} .

The graph H.

If the diameter is not robust, there is a longer path crossing G.

Otherwise, the diameter is robust.

Repeat for each vertex of G.

G has an hamiltonian path \iff one of the graphs H doesn't have a robust diameter.

G has an hamiltonian path \iff one of the graphs H doesn't have a robust diameter. Robust diameter is co-NP-hard.

8/20

Part 2 : Robustness of the distance

Consider an aging network with two *important* vertices :

Problem

Let u, v be 2 vertices of a connected graph G, dist(u, v) = d, is dist(u, v) = d robust?

10/20

dist(u, v) robust \iff it is equal to the length of the longest path between u and v.

Which graphs have this property?

Lemma 1

dist(u, v) is robust in G if and only if it is robust in the graph H induced by all paths from u to v.

Lemma 1

dist(u, v) is robust in G if and only if it is robust in the graph H induced by all paths from u to v.

 \rightarrow what is the nature of *H*?

Multiple definitions :

- Composition of series-parallel graphs;
- Output Subdivision of edges;
- Ear decomposition.

s

Can be used to model series and parallel electric circuits.

Can be recognised in linear time! [K. Takamizawa, T. Nishizeki, N. Saito, 1982]

13/20

Lemma 2 : robustness requires TTSP

Let G be a multigraph with every vertex w on a path from u to v. If dist(u, v) is robust, then G is a TTSP.

Lemma 2 : robustness requires TTSP

Let G be a multigraph with every vertex w on a path from u to v. If dist(u, v) is robust, then G is a TTSP.

Suppose that G is not a TTSP. After the application of P and S, G should have the following properties :

- G is not K₂;
- each vertex of G (except u and v) have a degree ≥ 3 ;
- G has more than 3 vertices.

The diamond problem

Lemma 2 : robustness requires TTSP

Let G be a multigraph with every vertex w on a path from u to v. If dist(u, v) is robust, then G is a TTSP.

Suppose that G is not a TTSP. After the application of P and S, G should have the following properties :

- G is not K_2 ;
- each vertex of G (except u and v) have a degree ≥ 3 ;
- G has more than 3 vertices.

Lemma 2 : robustness requires TTSP

Let G be a multigraph with every vertex w on a path from u to v. If dist(u, v) is robust, then G is a TTSP.

Suppose that G is not a TTSP. After the application of P and S, G should have the following properties :

- G is not K₂;
- each vertex of G (except u and v) have a degree ≥ 3 ;
- G has more than 3 vertices.

Lemma 2 : robustness requires TTSP

Let G be a multigraph with every vertex w on a path from u to v. If dist(u, v) is robust, then G is a TTSP.

Suppose that G is not a TTSP. After the application of P and S, G should have the following properties :

- G is not K₂;
- each vertex of G (except u and v) have a degree ≥ 3 ;
- G has more than 3 vertices.

 $\mathsf{TTSP} \iff \mathsf{forbidden} \ \mathsf{rooted-minor} \ \mathsf{diamond}.$

All graphs with robust distance are TTSP, but not all TTSPs have a robust distance.

TTSP of fixed length

TTSP of fixed length

Apply the operations P_f and S_f until K_2 is obtained.

TTSP of fixed length

Apply the operations P_f and S_f until K_2 is obtained.

TTSP of fixed length

Apply the operations P_f and S_f until K_2 is obtained.

TTSP of fixed length

Let G be a multigraph. By putting a weight of 1 on each edge, if G can be reduced with the operations P_f and S_f to K_2 then it is a TTSP of fixed length between the two remaining vertices.

A weighed K_2 is obtained, thus G is a TTSP of fixed length.

TTSP of fixed length

Let G be a multigraph. By putting a weight of 1 on each edge, if G can be reduced with the operations P_f and S_f to K_2 then it is a TTSP of fixed length between the two remaining vertices.

G is a TTSP (with *u* and *v*), *G* has a robust distance between *u* and *v* \iff *G* is a TTSP of fixed length between *u* and *v*.

G is a TTSP (with *u* and *v*), *G* has a robust distance between *u* and *v* \iff *G* is a TTSP of fixed length between *u* and *v*.

• We use the operations P_f and S_f ;

G is a TTSP (with *u* and *v*), *G* has a robust distance between *u* and *v* \iff *G* is a TTSP of fixed length between *u* and *v*.

- We use the operations P_f and S_f ;
- Since G is a TTSP, S_f should always be applicable as long as S is applicable;

16/20

G is a TTSP (with *u* and *v*), *G* has a robust distance between *u* and *v* \iff *G* is a TTSP of fixed length between *u* and *v*.

- We use the operations P_f and S_f ;
- Since G is a TTSP, S_f should always be applicable as long as S is applicable;
- If there is a path from u to v of length ℓ in G, there is a path of the same length after the application of P_f and S_f and vice-versa;

G is a TTSP (with *u* and *v*), *G* has a robust distance between *u* and $v \iff G$ is a TTSP of fixed length between *u* and *v*.

- We use the operations P_f and S_f ;
- Since G is a TTSP, S_f should always be applicable as long as S is applicable;
- If there is a path from u to v of length ℓ in G, there is a path of the same length after the application of P_f and S_f and vice-versa;
- P_f cannot be applied on parallel edges \iff there is a longer path from u to v;
- Thus dist(u, v) robust \iff the TTSP is also a TTSP of fixed length.

16/20

• G has a robust distance between u and $v \iff H$ induced by the paths from u to v has a robust distance;

- G has a robust distance between u and $v \iff H$ induced by the paths from u to v has a robust distance;
- *H* has a robust distance \implies *H* is a TTSP;

- G has a robust distance between u and $v \iff H$ induced by the paths from u to v has a robust distance;
- H has a robust distance \implies H is a TTSP;
- if H is a TTSP, H has a robust distance \iff H is a TTSP of fixed length.

17/20

- G has a robust distance between u and $v \iff H$ induced by the paths from u to v has a robust distance;
- H has a robust distance \implies H is a TTSP;
- if H is a TTSP, H has a robust distance \iff H is a TTSP of fixed length.

Therefore :

Theorem

Let G be a connected graph, $u, v \in V(G)$, dist(u,v) is robust \iff the graph induced by the paths from u to v is a TTSP of fixed length between u and v.

- G has a robust distance between u and $v \iff H$ induced by the paths from u to v has a robust distance;
- H has a robust distance \implies H is a TTSP;
- if H is a TTSP, H has a robust distance \iff H is a TTSP of fixed length.

Therefore :

Theorem

Let G be a connected graph, $u, v \in V(G)$, dist(u,v) is robust \iff the graph induced by the paths from u to v is a TTSP of fixed length between u and v.

 \rightarrow Distance robustness can be computed in linear time.

- ullet robust diameter \implies robust distance between the vertices on the periphery ;
- there could be a longer path in the graph!
- all distances are robust $\iff G$ is a tree.

Results :

- robustness of the diameter : co-NP-complete;
- robustness of a distance : linear with the use of series-parallel graphs;
- robustness of the diameter and the distance are mostly unrelated.

Other results :

- robustness of a distance with a multiplicative constant : consider dist(u, v) = d, c a constant value, is the property $dist(u, v) \le c \times d$ robust? Hard for any c > 1.
- vertices with robust distances form equivalent classes : if dist(u, v) and dist(v, w) are robust, then dist(u, w) is also robust.

Thanks for your attention