Robustness of distances and diameter in an aging network

Timothée Corsini
joint work with A. Casteigts, H. Hocquard and A. Labourel
ANR Descartes

November 10th 2021

Motivation : temporal graphs

Temporal graph

A temporal graph is a graph that changes with time.
\rightarrow Can represent interactions : epidemiology, social networks, connected objects...

Snapshot $t=1$

Motivation : temporal graphs

Temporal graph

A temporal graph is a graph that changes with time.
\rightarrow Can represent interactions : epidemiology, social networks, connected objects...

${ }^{\bullet}$
Snapshot $t=2$

Motivation : temporal graphs

Temporal graph

A temporal graph is a graph that changes with time.
\rightarrow Can represent interactions : epidemiology, social networks, connected objects...

b

Snapshot $t=3$

Motivation : temporal graphs

Temporal graph

A temporal graph is a graph that changes with time.
\rightarrow Can represent interactions : epidemiology, social networks, connected objects...

Motivation : temporal graphs

Temporal graph

A temporal graph is a graph that changes with time.
\rightarrow Can represent interactions : epidemiology, social networks, connected objects...

Motivation : temporal graphs

Temporal graph

A temporal graph is a graph that changes with time.
\rightarrow Can represent interactions : epidemiology, social networks, connected objects...

footprint of the temporal graph

Temporal connectivity

Journey

A journey (or temporal path) is a path whose edges, additionnaly, use increasing times.
\rightarrow the increase in time can either be strict or not

Temporal connectivity

Journey

A journey (or temporal path) is a path whose edges, additionnaly, use increasing times.
\rightarrow the increase in time can either be strict or not

Journey from e to a but not a strict journey.

Temporal connectivity

Journey

A journey (or temporal path) is a path whose edges, additionnaly, use increasing times.
\rightarrow the increase in time can either be strict or not

Journey from c to e but not from e to c.

Temporal connectivity

Journey

A journey (or temporal path) is a path whose edges, additionnaly, use increasing times.
\rightarrow the increase in time can either be strict or not

Not temporally connected.

Temporal connectivity

G is temporally connected if for every ordered pair of vertices (u, v), there is a journey from u to v. If so, we note $G \in \mathcal{T C}$.

Temporal connectivity

Journey

A journey (or temporal path) is a path whose edges, additionnaly, use increasing times.
\rightarrow the increase in time can either be strict or not

Temporal connectivity

G is temporally connected if for every ordered pair of vertices (u, v), there is a journey from u to v. If so, we note $G \in \mathcal{T C}$.

Eventual footprint

Eventual footprint in temporal graphs

Connected eventual footprint $\Longrightarrow G \in \mathcal{T} \mathcal{C}^{\mathcal{R}}$.

Eventual footprint

Eventual footprint in temporal graphs

Connected eventual footprint $\Longrightarrow G \in \mathcal{T} \mathcal{C}^{\mathcal{R}}$.

Eventual footprint

Eventual footprint in temporal graphs

Connected eventual footprint $\Longrightarrow G \in \mathcal{T} \mathcal{C}^{\mathcal{R}}$.

Eventual footprint

Eventual footprint in temporal graphs

Connected eventual footprint $\Longrightarrow G \in \mathcal{T} \mathcal{C}^{\mathcal{R}}$.

Eventual footprint

Eventual footprint in temporal graphs

Connected eventual footprint $\Longrightarrow G \in \mathcal{T} \mathcal{C}^{\mathcal{R}}$.

Eventual footprint

Eventual footprint in temporal graphs

What happens if the eventual footprint is unknown? What kind of properties are preserved?

Eventual footprint

Eventual footprint in temporal graphs

Connected eventual footprint $\Longrightarrow G \in \mathcal{T} \mathcal{C}^{\mathcal{R}}$.

What happens if the eventual footprint is unknown? What kind of properties are preserved?

Robustness

Robustness [A. Casteigts, S. Dubois, F. Petit, J. M. Robson, 2020]

A property P is robust in G if and only if it is satisfied in every connected spanning subgraph of G (including G itself).

Similar definitions :

- Hereditary : if the property holds in any induced subgraph;
- Monotone : if the property holds in any subgraph.

Robustness

Robustness [A. Casteigts, S. Dubois, F. Petit, J. M. Robson, 2020]

A property P is robust in G if and only if it is satisfied in every connected spanning subgraph of G (including G itself).

Similar definitions :

- Hereditary : if the property holds in any induced subgraph;
- Monotone : if the property holds in any subgraph.

Robustness

Robustness [A. Casteigts, S. Dubois, F. Petit, J. M. Robson, 2020]

A property P is robust in G if and only if it is satisfied in every connected spanning subgraph of G (including G itself).

Similar definitions:

- Hereditary : if the property holds in any induced subgraph;
- Monotone : if the property holds in any subgraph.

Robustness

Robustness [A. Casteigts, S. Dubois, F. Petit, J. M. Robson, 2020]

A property P is robust in G if and only if it is satisfied in every connected spanning subgraph of G (including G itself).

Similar definitions:

- Hereditary : if the property holds in any induced subgraph;
- Monotone : if the property holds in any subgraph.

Robustness

Robustness [A. Casteigts, S. Dubois, F. Petit, J. M. Robson, 2020]

A property P is robust in G if and only if it is satisfied in every connected spanning subgraph of G (including G itself).

Similar definitions:

- Hereditary : if the property holds in any induced subgraph;
- Monotone : if the property holds in any subgraph.

Robustness

Robustness [A. Casteigts, S. Dubois, F. Petit, J. M. Robson, 2020]

A property P is robust in G if and only if it is satisfied in every connected spanning subgraph of G (including G itself).

Similar definitions :

- Hereditary : if the property holds in any induced subgraph;
- Monotone : if the property holds in any subgraph.

Robustness

Robustness [A. Casteigts, S. Dubois, F. Petit, J. M. Robson, 2020]

A property P is robust in G if and only if it is satisfied in every connected spanning subgraph of G (including G itself).

Similar definitions:

- Hereditary : if the property holds in any induced subgraph;
- Monotone : if the property holds in any subgraph.

Part 1 : Robustness of the diameter

Consider an aging network :

Problem

Is $\operatorname{diam}(G)=k$ robust ?

NO: diam <3

NO: diam $<3 \quad$ YES : diam $=4$

NO: diam <3

YES : $\operatorname{diam}=4$

NO: diam <3

YES:diam = 4

NO: $\operatorname{diam}<8$

$\operatorname{diam}(G)$ robust \Longleftrightarrow it is equal to the longest path.

Robustness of the diameter is co-NP-complete

Reminder : deciding if G has an hamiltonian path is NP-complete.
Proof : reducing the hamiltonian path problem to the robustness of the diameter.

Let G be any graph of order n.

Robustness of the diameter is co-NP-complete

Reminder: deciding if G has an hamiltonian path is NP-complete.
Proof : reducing the hamiltonian path problem to the robustness of the diameter.

A path $P_{2 n-1}$.

Robustness of the diameter is co-NP-complete

Reminder : deciding if G has an hamiltonian path is NP-complete.
Proof : reducing the hamiltonian path problem to the robustness of the diameter.

The graph H.

Robustness of the diameter is co-NP-complete

Reminder : deciding if G has an hamiltonian path is NP-complete.
Proof : reducing the hamiltonian path problem to the robustness of the diameter.

If the diameter is not robust, there is a longer path crossing G.

Robustness of the diameter is co-NP-complete

Reminder : deciding if G has an hamiltonian path is NP-complete.
Proof : reducing the hamiltonian path problem to the robustness of the diameter.

Otherwise, the diameter is robust.

Robustness of the diameter is co-NP-complete

Reminder : deciding if G has an hamiltonian path is NP-complete.
Proof : reducing the hamiltonian path problem to the robustness of the diameter.

Repeat for each vertex of G.

Robustness of the diameter is co-NP-complete

Reminder : deciding if G has an hamiltonian path is NP-complete.
Proof : reducing the hamiltonian path problem to the robustness of the diameter.

G has an hamiltonian path \Longleftrightarrow one of the graphs H doesn't have a robust diameter.

Robustness of the diameter is co-NP-complete

Reminder : deciding if G has an hamiltonian path is NP-complete.
Proof : reducing the hamiltonian path problem to the robustness of the diameter.

G has an hamiltonian path \Longleftrightarrow one of the graphs H doesn't have a robust diameter.
Robust diameter is co-NP-hard.

Part 2 : Robustness of the distance

Consider an aging network with two important vertices :

Problem

Let u, v be 2 vertices of a connected graph $G, \operatorname{dist}(u, v)=d$, is $\operatorname{dist}(u, v)=d$ robust ?

NO

Is the distance robust?

$\operatorname{dist}(u, v)$ robust \Longleftrightarrow it is equal to the length of the longest path between u and v.

Which graphs have this property?

Distance robustness : remove unnecessary parts of the graph

Distance robustness : remove unnecessary parts of the graph

Lemma 1

$\operatorname{dist}(u, v)$ is robust in G if and only if it is robust in the graph H induced by all paths from u to v.

Distance robustness : remove unnecessary parts of the graph

Lemma 1

$\operatorname{dist}(u, v)$ is robust in G if and only if it is robust in the graph H induced by all paths from u to v.
\rightarrow what is the nature of H ?

Series-parallel graphs

Multiple definitions :
(1) Composition of series-parallel graphs;
(2) Subdivision of edges;
(3) Ear decomposition.

Can be used to model series and parallel electric circuits. Can be recognised in linear time! [K. Takamizawa, T. Nishizeki, N. Saito, 1982]

TTSP : definiton

TTSP : definiton

TTSP : definiton

All parallel edges are removed as well as vertices of degree 2 .

TTSP : definiton

All parallel edges are removed as well as vertices of degree 2.

TTSP : definiton

All parallel edges are removed as well as vertices of degree 2.

TTSP : definiton

All parallel edges are removed as well as vertices of degree 2 .

TTSP : definiton

All parallel edges are removed as well as vertices of degree 2 .

TTSP : definiton

All parallel edges are removed as well as vertices of degree 2 .

TTSP : definiton

All parallel edges are removed as well as vertices of degree 2 .

The diamond problem

Lemma 2 : robustness requires TTSP

Let G be a multigraph with every vertex w on a path from u to v. If $\operatorname{dist}(u, v)$ is robust, then G is a TTSP.

The diamond problem

Lemma 2 : robustness requires TTSP

Let G be a multigraph with every vertex w on a path from u to v. If $\operatorname{dist}(u, v)$ is robust, then G is a TTSP.

Suppose that G is not a TTSP. After the application of P and S, G should have the following properties :

- G is not K_{2};
- each vertex of G (except u and v) have a degree ≥ 3;
- G has more than 3 vertices.

The diamond problem

Lemma 2 : robustness requires TTSP

Let G be a multigraph with every vertex w on a path from u to v. If $\operatorname{dist}(u, v)$ is robust, then G is a TTSP.

Suppose that G is not a TTSP. After the application of P and S, G should have the following properties :

- G is not K_{2};
- each vertex of G (except u and v) have a degree ≥ 3;
- G has more than 3 vertices.

The diamond problem

Lemma 2 : robustness requires TTSP

Let G be a multigraph with every vertex w on a path from u to v. If $\operatorname{dist}(u, v)$ is robust, then G is a TTSP.

Suppose that G is not a TTSP. After the application of P and S, G should have the following properties :

- G is not K_{2};
- each vertex of G (except u and v) have a degree ≥ 3;
- G has more than 3 vertices.

TTSP \Longleftrightarrow forbidden rooted-minor diamond.

The diamond problem

Lemma 2 : robustness requires TTSP

Let G be a multigraph with every vertex w on a path from u to v. If $\operatorname{dist}(u, v)$ is robust, then G is a TTSP.

Suppose that G is not a TTSP. After the application of P and S, G should have the following properties :

- G is not K_{2};
- each vertex of G (except u and v) have a degree ≥ 3;
- G has more than 3 vertices.

TTSP \Longleftrightarrow forbidden rooted-minor diamond.
All graphs with robust distance are TTSP, but not all TTSPs have a robust distance.

TTSP of fixed length

TTSP of fixed length

Let G be a multigraph. By putting a weight of 1 on each edge, if G can be reduced with the operations P_{f} and S_{f} to K_{2} then it is a TTSP of fixed length between the two remaining vertices.

TTSP of fixed length

TTSP of fixed length

Let G be a multigraph. By putting a weight of 1 on each edge, if G can be reduced with the operations P_{f} and S_{f} to K_{2} then it is a TTSP of fixed length between the two remaining vertices.

TTSP of fixed length

Apply the operations P_{f} and S_{f} until K_{2} is obtained.

TTSP of fixed length

Let G be a multigraph. By putting a weight of 1 on each edge, if G can be reduced with the operations P_{f} and S_{f} to K_{2} then it is a TTSP of fixed length between the two remaining vertices.

TTSP of fixed length

Apply the operations P_{f} and S_{f} until K_{2} is obtained.

TTSP of fixed length

Let G be a multigraph. By putting a weight of 1 on each edge, if G can be reduced with the operations P_{f} and S_{f} to K_{2} then it is a TTSP of fixed length between the two remaining vertices.

TTSP of fixed length

Apply the operations P_{f} and S_{f} until K_{2} is obtained.

TTSP of fixed length

Let G be a multigraph. By putting a weight of 1 on each edge, if G can be reduced with the operations P_{f} and S_{f} to K_{2} then it is a TTSP of fixed length between the two remaining vertices.

TTSP of fixed length

A weighed K_{2} is obtained, thus G is a TTSP of fixed length.

TTSP of fixed length

Let G be a multigraph. By putting a weight of 1 on each edge, if G can be reduced with the operations P_{f} and S_{f} to K_{2} then it is a TTSP of fixed length between the two remaining vertices.

TTSP of fixed length have a robust distance

Lemma 3 : TTSP of fixed length and robustness

G is a TTSP (with u and v), G has a robust distance between u and $v \Longleftrightarrow G$ is a TTSP of fixed length between u and v.

TTSP of fixed length have a robust distance

Lemma 3 : TTSP of fixed length and robustness

G is a TTSP (with u and v), G has a robust distance between u and $v \Longleftrightarrow G$ is a TTSP of fixed length between u and v.

- We use the operations P_{f} and S_{f};

TTSP of fixed length have a robust distance

Lemma 3 : TTSP of fixed length and robustness

G is a TTSP (with u and v), G has a robust distance between u and $v \Longleftrightarrow G$ is a TTSP of fixed length between u and v.

- We use the operations P_{f} and S_{f};
- Since G is a TTSP, S_{f} should always be applicable as long as S is applicable;

TTSP of fixed length have a robust distance

Lemma 3 : TTSP of fixed length and robustness

G is a TTSP (with u and v), G has a robust distance between u and $v \Longleftrightarrow G$ is a TTSP of fixed length between u and v.

- We use the operations P_{f} and S_{f};
- Since G is a TTSP, S_{f} should always be applicable as long as S is applicable;
- If there is a path from u to v of length ℓ in G, there is a path of the same length after the application of P_{f} and S_{f} and vice-versa;

TTSP of fixed length have a robust distance

Lemma 3 : TTSP of fixed length and robustness

G is a TTSP (with u and v), G has a robust distance between u and $v \Longleftrightarrow G$ is a TTSP of fixed length between u and v.

- We use the operations P_{f} and S_{f};
- Since G is a TTSP, S_{f} should always be applicable as long as S is applicable;
- If there is a path from u to v of length ℓ in G, there is a path of the same length after the application of P_{f} and S_{f} and vice-versa;
- P_{f} cannot be applied on parrallel edges \Longleftrightarrow there is a longer path from u to v;
- Thus $\operatorname{dist}(u, v)$ robust \Longleftrightarrow the TTSP is also a TTSP of fixed length.

$\Longrightarrow P_{f}$ impossible

Robust distance characterisation

What we proved :

- G has a robust distance between u and $v \Longleftrightarrow H$ induced by the paths from u to v has a robust distance;

Robust distance characterisation

What we proved :

- G has a robust distance between u and $v \Longleftrightarrow H$ induced by the paths from u to v has a robust distance;
- H has a robust distance $\Longrightarrow H$ is a TTSP;

Robust distance characterisation

What we proved :

- G has a robust distance between u and $v \Longleftrightarrow H$ induced by the paths from u to v has a robust distance;
- H has a robust distance $\Longrightarrow H$ is a TTSP;
- if H is a TTSP, H has a robust distance $\Longleftrightarrow H$ is a TTSP of fixed length.

Robust distance characterisation

What we proved :

- G has a robust distance between u and $v \Longleftrightarrow H$ induced by the paths from u to v has a robust distance;
- H has a robust distance $\Longrightarrow H$ is a TTSP;
- if H is a TTSP, H has a robust distance $\Longleftrightarrow H$ is a TTSP of fixed length.

Therefore :

Theorem

Let G be a connected graph, $u, v \in V(G)$, dist $(u . v)$ is robust \Longleftrightarrow the graph induced by the paths from u to v is a TTSP of fixed length between u and v.

Robust distance characterisation

What we proved :

- G has a robust distance between u and $v \Longleftrightarrow H$ induced by the paths from u to v has a robust distance;
- H has a robust distance $\Longrightarrow H$ is a TTSP;
- if H is a TTSP, H has a robust distance $\Longleftrightarrow H$ is a TTSP of fixed length.

Therefore :

Theorem

Let G be a connected graph, $u, v \in V(G)$, dist $(u . v)$ is robust \Longleftrightarrow the graph induced by the paths from u to v is a TTSP of fixed length between u and v.
\rightarrow Distance robustness can be computed in linear time.

Distance robustness and diameter robustness are not the same

- robust diameter \Longrightarrow robust distance between the vertices on the periphery;
- there could be a longer path in the graph!
- all distances are robust $\Longleftrightarrow G$ is a tree.

Conclusion

Results:

- robustness of the diameter: co-NP-complete;
- robustness of a distance : linear with the use of series-parallel graphs;
- robustness of the diameter and the distance are mostly unrelated.

Other results :

- robustness of a distance with a multiplicative constant : consider $\operatorname{dist}(u, v)=d, c$ a constant value, is the property $\operatorname{dist}(u, v) \leq c \times d$ robust? Hard for any $c>1$.
- vertices with robust distances form equivalent classes : if $\operatorname{dist}(u, v)$ and $\operatorname{dist}(v, w)$ are robust, then $\operatorname{dist}(u, w)$ is also robust.

Thanks for your attention

