Spanner problems in temporal graphs

Arnaud Casteigts

LaBRI, Université de Bordeaux

November 9, 2021

Based on joint works with:

Jason Schoeters Joseph Peters Michael Raskin ~ Malte Renken Viktor Zamaraev

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V, E,)\), where \ : E — 2N assigns presence times to edges (here, discrete)

e
2 45
Example: c 14 d
35 1,2,9
a b

57

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V, E,)\), where \ : E — 2N assigns presence times to edges (here, discrete)

e
2 4,5
Example: c 14 d
35 1,2,9
a 57 b
Temporal paths
> Ex: ((a,c,3),(c,d,4), (d,e,4)) (non-decreasing)

> Ex: ((a,¢c,3),(c,d,4),(d, e, 5)) (increasing)

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V, E,)\), where \ : E — 2N assigns presence times to edges (here, discrete)

e
2 '\4,5
Example: c 14 d
35 1,2,9
a 57 b
Temporal paths
> Ex: ((a,c,3),(c,d,4), (d,e,4)) (non-decreasing)

> Ex: ((a,¢c,3),(c,d,4),(d, e, 5)) (increasing)

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V, E,)\), where \ : E — 2N assigns presence times to edges (here, discrete)

e
2 '\4,5
Example: c 14 d
3,5 { 12,9
a 5,7 b
Temporal paths

> Ex: ((a,c,3),(c,d,4), (d,e,4)) (non-decreasing)
> Ex: ((a,¢c,3),(c,d,4),(d, e, 5)) (increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V, E,)\), where \ : E — 2N assigns presence times to edges (here, discrete)

2 ’\4,5
Example: c 14 d
35 { 1,2,9

as—57 b
Temporal paths
> Ex: ((a,c,3),(c,d,4), (d,e,4)) (non-decreasing)
> Ex: ((a,¢c,3),(c,d,4),(d, e, 5)) (increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V, E,)\), where \ : E — 2N assigns presence times to edges (here, discrete)

e
2 '\4,5
Example: c 14 d
3,5 { 12,9
a 5,7 b
Temporal paths

> Ex: ((a,c,3),(c,d,4), (d,e,4)) (non-decreasing)
> Ex: ((a,¢c,3),(c,d,4),(d, e, 5)) (increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Remark: reachability is non-transitive in general!

Temporal spanners

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C g that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (in number of time labels)

Temporal spanners

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C g that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (in number of time labels)

Temporal spanners

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C g that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (in number of time labels)

Temporal spanners

Input: a graph G that is temporally connected (G € T'C)

Output: a graph G’ C g that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (in number of time labels)

b
2| o BN
' ' 27 3
a< 1.4 >° ae” 14 ec
4\J/1,6 — l
d size 5

Can we do better?
> 2n — 4 labels needed, even if you choose the values!

(Bumby’79, gossip theory)

Temporal spanners

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C g that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (in number of time labels)

Can we do better?
> 2n — 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n — 4 always exist?

Temporal spanners

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C g that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (in number of time labels)

Can we do better?
> 2n — 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n — 4 always exist?
> Q(nlogn)in some cases (Kleinberg, Kempe, Kumar, 2000)

Temporal spanners

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C g that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (in number of time labels)

Can we do better?
> 2n — 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n — 4 always exist?
> Q(nlogn)in some cases (Kleinberg, Kempe, Kumar, 2000)
> Q(n?)in some cases! (Axiotis, Fotakis, 2016)

Temporal spanners

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C g that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (in number of time labels)

Can we do better?

> 2n — 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n — 4 always exist?

> Q(nlogn)in some cases (Kleinberg, Kempe, Kumar, 2000)
> Q(n?)in some cases! (Axiotis, Fotakis, 2016)

How about complexity?

» Computing minimum-size spanner is APX-hard (Akrida et al., 2017)

What about the positive side?

Recall the bad news:

> Q(nlogn) - easy

> Q(n?) - rather unexpected

What about the positive side?

Recall the bad news:

> Q(nlogn) - easy

> Q(n?) - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019):

» Spanners of size O(nlogn) always exist
in complete temporal graphs

What about the positive side?

Recall the bad news:

> Q(nlogn) - easy

> Q(n?) - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019): /9/ \ 0.
> Spanners of size O(nlog n) always exist \ i /
in complete temporal graphs 5 /7<(

/

Good news 2: (C., Raskin, Renken, Zamaraev, FOCS 2021):

» Nearly optimal spanners (of size 2n + o(n)) almost surely exist in
random temporal graphs, as soon as the graph is temporally connected

What about the positive side?

Recall the bad news:

> Q(nlogn) - easy

> Q(n?) - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019): /9/ \ 0.
> Spanners of size O(nlog n) always exist \ i /
in complete temporal graphs 5 /7<(

/

Good news 2: (C., Raskin, Renken, Zamaraev, FOCS 2021):

» Nearly optimal spanners (of size 2n + o(n)) almost surely exist in
random temporal graphs, as soon as the graph is temporally connected

» (Beyond spanners) Interesting thresholds on temporal reachability

Before we start... an easier model

Simple Temporal Graphs (STGs):
1. A single presence time per edge (A : E — N)
2. Adjacent edges have different times (\ is locally injective)

Before we start... an easier model

Simple Temporal Graphs (STGs): 2/\5
1. A single presence time per edge (A : E — N) % ; %
2. Adjacent edges have different times (\ is locally injective)

Generality for spanners:
» Most negative results still apply
> Positive results extend to general case
» No distinction between strict and non-strict temporal paths

Before we start... an easier model

Simple Temporal Graphs (STGs): 2/\5
1. A single presence time per edge (A : E — N) % ; %
2. Adjacent edges have different times (\ is locally injective)

Generality for spanners:

» Most negative results still apply
> Positive results extend to general case
» No distinction between strict and non-strict temporal paths

Further motivations:

> Distributed models by pairwise interactions,
e.g. population protocols or gossip models (without repetition)

» Topics in edge-ordered graphs

Good news 1:

Temporal cliques admit sparse spanners

Two promising techniques...

Pivotability
Node v and time ¢ such that:
» all nodes can reach v before ¢
» v can reach all nodes after ¢
Then in-tree U out-tree is a spanner of size 2n — 2

Two promising techniques...

Pivotability
Node v and time ¢ such that:
» all nodes can reach v before ¢
» v can reach all nodes after ¢
Then in-tree U out-tree is a spanner of size 2n — 2

Dismountability
Three nodes u, v, w such that:
> uv =min-edge (v)
> uw =max-edge (w)
Then spanner (G) = spanner (G[V\u]) + uv + uw

Two promising techniques...

Pivotability
Node v and time ¢ such that:
» all nodes can reach v before ¢
» v can reach all nodes after ¢
Then in-tree U out-tree is a spanner of size 2n — 2

Dismountability
Three nodes u, v, w such that:
» wv =min-edge (v)

> uw =max-edge (w)

Then spanner (G) = spanner (G[V\u]) + uv + uw

Recursively, g/'\ ‘ /OL
v ; Z
o 7 1 \ 0 @ m— o ﬁ// % o o
\L .

§ D >

o 5 o o) o o O=——j=—0

spanner of size 2n — 3.

Two promising techniques...

Pivotability
Node v and time ¢ such that:
» all nodes can reach v before ¢
» v can reach all nodes after ¢
Then in-tree U out-tree is a spanner of size 2n — 2

Dismountability
Three nodes u, v, w such that:
» wv =min-edge (v)

> uw =max-edge (w)

Then spanner (G) = spanner (G[V\u]) + uv + uw

Recursively, ‘ \
y /9/_s i // . /_/&3;/
A . >

o 5 o o) o o O=——j=—0

7

spanner of size 2n — 3.

... but unfortunately
Both techniques fail in some cliques!

Transitive delegations (“fireworks”)

Transitive delegations (“fireworks”)

Principle:
»> Min edges — “directed” forest
» Transitive delegations towards emitters (sinks)
» Spanner = min edges + all edges of emitters

Transitive delegations (“fireworks”)

Principle:
»> Min edges — “directed” forest
» Transitive delegations towards emitters (sinks)
» Spanner = min edges + all edges of emitters

Wait a minute... possibly too many emitters!

Transitive delegations (“fireworks”)

Principle:
» Min edges — “directed” forest
> Transitive delegations towards emitters (sinks)
» Spanner = min edges + all edges of emitters

Wait a minute... possibly too many emitters!

— Transformation of the forest:
» At most n/2 emitters

Transitive delegations (“fireworks”)

Principle:
» Min edges — “directed” forest
> Transitive delegations towards emitters (sinks)
» Spanner = min edges + all edges of emitters

Wait a minute... possibly too many emitters!

— Transformation of the forest:
» At most n/2 emitters

Theorem: 3 spanners of size 2 () + O(n)

Transitive delegations (“fireworks”)

Principle:
»> Min edges — “directed” forest
» Transitive delegations towards emitters (sinks)
» Spanner = min edges + all edges of emitters

Wait a minute... possibly too many emitters!

— Transformation of the forest:
» At most n/2 emitters

Theorem: 3 spanners of size 2 () + O(n)

— Spanner = max edges + all edges of collectors

Combining both directions

Principle
> Every vertex can reach at least one emitter u
through w’s min edge

> Every vertex can be reached by a collector v
through v’s max edge

»> Every emitter can reach all collectors
through direct edges

— Spanner = min edges + max edges
+ edges between emitters and collectors

Theorem:

\\>1

(@]

7
3
12
< 0
11
A 7\

~
/

2

./

At most n/2 emitters and n/2 collectors =- | 3 Spanners of size (1) /2 + O(n) ‘

~
~

half of the edges

Recurse or sparsify?

Two options:

» Case 1: emitters U collectors C V'
» Case 2: emitters U collectors = V'

—— e

@
6/ A\?m
/ 13 \ o
7
8 1
2
<“] 0
14
\ 4 °

Recurse or sparsify?

Two options:
» Case 1: emitters U collectors C V'
»> Case 2: emitters U collectors = V/

Case 1: One vertex v is neither emitter nor collector.

— v is “2-hop dismountable”
(select 4 edges selected, then recurse in G[V — v])

—— e

Recurse or sparsify?

Two options: /6/' *\?m
» Case 1: emitters U collectors C V' ° 13 \‘o
7
» Case 2: emitters U collectors = V' T) 3
1 < 0
11
Case 1: One vertex v is neither emitter nor collector. >
14
— v is “2-hop dismountable” ° \ 1 °
P . ™~ -~
(select 4 edges selected, then recurse in G[V — v]) O /Z

Case 2: emitters U collectors = V'

— All vertices are either emitters or collectors (not both)!

Recurse or sparsify?

Two options: e ’"\Tlo
13

» Case 1: emitters U collectors C V'

» Case 2: emitters U collectors = V'

—— e
®
o)

<

Case 1: One vertex v is neither emitter nor collector.

— v is “2-hop dismountable”
(select 4 edges selected, then recurse in G[V — v])

Case 2: emitters U collectors = V'

— All vertices are either emitters or collectors (not both)!

Recurse or sparsify?

Two options: e \?
13

6
» Case 1: emitters U collectors C V' -

» Case 2: emitters U collectors = V'

—— e
®
o)

<

Case 1: One vertex v is neither emitter nor collector.

— v is “2-hop dismountable” o
(select 4 edges selected, then recurse in G[V — v])

Case 2: emitters U collectors = V'

— All vertices are either emitters or collectors (not both)!

A lot of structure to work with:
» Complete bipartite graph H between emitters and collectors
» Min edges and max edges form two perfect matchings
» W.l.o.g. min edges (max edges) are reciprocal in H

Recurse or sparsify?

Two options:

» Case 1: emitters U collectors C V'

» Case 2: emitters U collectors = V'

—— e
®
o)

<

Case 1: One vertex v is neither emitter nor collector.

— v is “2-hop dismountable” o
(select 4 edges selected, then recurse in G[V — v])

Case 2: emitters U collectors = V'

— All vertices are either emitters or collectors (not both)!

A lot of structure to work with:
» Complete bipartite graph H between emitters and collectors
» Min edges and max edges form two perfect matchings
> W.l.o.g. min edges (max edges) are reciprocal in H

New objective:
— Sparsify H while preserving journeys from each emitter to all collectors

Sparsification of the bipartite graph

New objective:
— Sparsify H while preserving journeys from each emitter to all collectors

Technique: Partial delegations among emitters

» Find a 2-hop journey from one emitter to another,
arriving through a “locally small” edge

> Pay extra edges to reach the missed collectors

Sparsification of the bipartite graph

New objective:
— Sparsify H while preserving journeys from each emitter to all collectors
Technique: Partial delegations among emitters

» Find a 2-hop journey from one emitter to another,
arriving through a “locally small” edge

> Pay extra edges to reach the missed collectors
Iterative procedure:

In each step i:
> Half of the emitters partially delegate to other half

» We pay direct edges to missed collectors (penalty)
» Penalty doubles in each step, but # emitters halves
> O(n) edges over O(logn) iterations — O(n log n) edges.

Sparsification of the bipartite graph

New objective:
— Sparsify H while preserving journeys from each emitter to all collectors
Technique: Partial delegations among emitters

» Find a 2-hop journey from one emitter to another,
arriving through a “locally small” edge

> Pay extra edges to reach the missed collectors
Iterative procedure:

In each step i:
> Half of the emitters partially delegate to other half

> We pay direct edges to missed collectors (penalty)

> Penalty doubles in each step, but # emitters halves

» O(n) edges over O(logn) iterations — O(n logn) edges.
Conclusion (entire algorithm):

— Jspanner of size O(n) + O(nlogn) = O(nlogn). O

Good news 2:
Spanners of size 2n + o(n) almost surely exist

in random temporal graphs

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdds-Reyni graphs, same parameters n and p

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdds-Reyni graphs, same parameters n and p

AnRSTG G ~ G p:
1. Pick a footprint G ~ G, p,

2. Permute the edges randomly
(interpret ranks as times)

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdds-Reyni graphs, same parameters n and p

AnRSTG G ~ G p:
1. Pick a footprint G ~ G, p,

2. Permute the edges randomly b c
(interpret ranks as times)

Ex:n=7p=04 ae o

e

Random Simple Temporal Graphs (RSTGs)
Temporal analog of Erdds-Reyni graphs, same parameters n and p
AnRSTG G ~ G p:

1. Pick a footprint G ~ G, p,

2. Permute the edges randomly b c
(interpret ranks as times)

Ex:n=7p=04 a d

Random Simple Temporal Graphs (RSTGs)
Temporal analog of Erdds-Reyni graphs, same parameters n and p
AnRSTG G ~ G p:

1. Pick a footprint G ~ G, p,

2. Permute the edges randomly
(interpret ranks as times)

Ex:n=7p=04

Random Simple Temporal Graphs (RSTGs)
Temporal analog of Erdds-Reyni graphs, same parameters n and p
AnRSTG G ~ G p:

1. Pick a footprint G ~ G, p,

2. Permute the edges randomly
(interpret ranks as times)

Ex:n=7p=04

Another point of view:
1. Take a complete graph K,
2. Assign random real times in [0, 1] to every edge
3. Restrict your attention to Gjg ;|

— Better for analysis.

Timeline of temporal reachability in G, ,

For sufficiently large n, what happens when p increases?

logn

e

Footprint has
giant component

Footprint connected

Timeline of temporal reachability in G, ,

For sufficiently large n, what happens when p increases?

logn

e

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(~k ~> %)

Timeline of temporal reachability in G, ,

For sufficiently large n, what happens when p increases?

1 logn logn
0 w 2=
I /
Footprint has
giant component
Footprint connected First source
(L~ %)

Most vertex pairs
reach each other
(~k ~> %)

Timeline of temporal reachability in G, ,

For sufficiently large n, what happens when p increases?

1 logn logn
0 w 2=
I /
Footprint has
giant component
Footprint connected First source
(L~ %)

Most vertex pairs
reach each other

(¥~ %) Most vertices

are sources
(~k ~> k)

Timeline of temporal reachability in G, ,

For sufficiently large n, what happens when p increases?

logn 2logn 410gn
n n

e

Footprint has
giant component

Pivotal spanner
) . (size 2n — 2)
Footprint connected First source

(1~ %)

Most vertex pairs
reach each other

(¥~ %) Most vertices

are sources
(~k ~> k)

Timeline of temporal reachability in G, ,

For sufficiently large n, what happens when p increases?

1 logn logn logn logn
I /
Footprint has
giant component
Pivotal spanner
. . (size 2n — 2)
Footprint connected First source Temporal
(1~ %) connectivity
(% ~> %)

Most vertex pairs
reach each other

(¥~ %) Most vertices

are sources
(~k ~> k)

Timeline of temporal reachability in G, ,

For sufficiently large n, what happens when p increases?

logn 2logn 3 logn 410gn
n n n

e

Footprint has
giant component

Pivotal spanner
(size 2n — 2)
Footprint connected First source Temporal
(1~ %) connectivity

(% ~> %)

Most vertex pairs
reach each other

(¥~ %) Most vertices Nearly optimal spanner

are sources (size 2n + o(n))
(~% ~ k)

Timeline of temporal reachability in G, ,

For sufficiently large n, what happens when p increases?

logn 2logn 3 logn 410gn
n n n

e

Footprint has
giant component

Pivotal spanner

) . (size 2n — 2)
Footprint connected First source Temporal
(1~ %) connectivity N
) (¥~ %) Optimal spanner
Most vertex pairs (size 2n — 4)
reach each other
(¥~ %) Most vertices Nearly optimal spanner
are sources (size 2n + o(n))

(~% ~ k)

Timeline of temporal reachability in G, ,

For sufficiently large n, what happens when p increases?

logn 2logn 3 logn 410gn
n n n

e

Footprint has
giant component

Pivotal spanner

) . (size 2n — 2)
Footprint connected First source Temporal
(1~ %) connectivity N
) (¥~ %) Optimal spanner
Most vertex pairs (size 2n — 4)
reach each other
(¥~ %) Most vertices Nearly optimal spanner
are sources (size 2n + o(n))
(~% ~ k)

All the thresholds are sharp, except x (open problem)
(sharp: 3e(n) = o(1), nottrue at (1 — e(n))p, true at (1 + €(n))p)

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm. 3 6

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm. 3 6

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Analysis

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Analysis

» Consider “growing” a foremost tree in G ~ G,, 1 from a vertex s.

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Analysis

» Consider “growing” a foremost tree in G ~ G,, 1 from a vertex s.

» Once we have reached k vertices, there are k(n — k) potential edges.

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Analysis

» Consider “growing” a foremost tree in G ~ G,, 1 from a vertex s.
» Once we have reached k vertices, there are k(n — k) potential edges.

» The waiting time for one of these to appear is ~ m

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Analysis

» Consider “growing” a foremost tree in G ~ G,, 1 from a vertex s.
» Once we have reached k vertices, there are k(n — k) potential edges.
» The waiting time for one of these to appear is ~ m

: n 1 ~ ologn
—> Expect to reach all vertices at > ;' k) R 25,

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Analysis
» Consider “growing” a foremost tree in G ~ G,, 1 from a vertex s.
» Once we have reached k vertices, there are k(n — k) potential edges.
» The waiting time for one of these to appear is ~ m

: n 1 ~ ologn
—> Expect to reach all vertices at > ;' k) R 25,

> Azuma’s inequality for concentration.

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from w.

Reachability thresholds

>k vk <= Yu, Vv, a.a.5. v € foremost(u) (logn/n)

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from w.

Reachability thresholds
>k vk <= Yu, Vv, a.a.5. v € foremost(u) (logn/n)
> 1k < a.a.s. Ju,Yv,v € foremost(u) (2logn/n)

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from w.

Reachability thresholds
>k vk <= Yu, Vv, a.a.5. v € foremost(u) (logn/n)
> 1k < a.a.s. Ju,Yv,v € foremost(u) (2logn/n)
> ks ok < Yu,a.a.s. Vv, v € foremost(u) (2logn/n)

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from w.

Reachability thresholds

>

>
>
>

~k ok <= Yu, Vv, a.a.5. v € foremost(u)
1~ % <= a.a.s. Ju,Vv,v € foremost(u)
~k s x <= Yu,a.a.s. Vv, v € foremost(u)

* ok <> a.a.s Yu,Yv,v € foremost(u)
LB: (x ~» 1) + (log n/n), each non sink must have at least one new edge.

UB: (* ~»~=x) + (log n/n), each non sink is reached from at least one sink.

(logn/n
(2logn/n
(2logn/n
(3logn/n

)
)
)
)

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from w.

Reachability thresholds

>

>
>
>

~k ok <= Yu, Vv, a.a.5. v € foremost(u)
1~ % <= a.a.s. Ju,Vv,v € foremost(u)
~k s x <= Yu,a.a.s. Vv, v € foremost(u)

* ok <> a.a.s Yu,Yv,v € foremost(u)
LB: (x ~» 1) + (log n/n), each non sink must have at least one new edge.

UB: (* ~»~=x) + (log n/n), each non sink is reached from at least one sink.

Spanners

(logn/n
(2logn/n
(2logn/n
(3logn/n

)
)
)
)

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from w.

Reachability thresholds

>

>
>
>

~k ok <= Yu, Vv, a.a.5. v € foremost(u)
1~ % <= a.a.s. Ju,Vv,v € foremost(u)
~k s x <= Yu,a.a.s. Vv, v € foremost(u)

* ok <> a.a.s Yu,Yv,v € foremost(u)
LB: (x ~» 1) + (log n/n), each non sink must have at least one new edge.

UB: (* ~»~=x) + (log n/n), each non sink is reached from at least one sink.

Spanners

>

Pivotal (~~ 1 ~w %) <= (5 ~> ~x) + (~k ~> %)

(logn/n)
(2logn/n)
(2logn/n)
)

(3logn/n

(4logn/n)

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from w.

Reachability thresholds
>k vk <= Yu, Vv, a.a.5. v € foremost(u)
> 1k < a.a.s. Ju,Yv,v € foremost(u)
> ks ok < Yu,a.a.s. Vv, v € foremost(u)
>

* ok <> a.a.s Yu,Yv,v € foremost(u)
LB: (x ~» 1) + (log n/n), each non sink must have at least one new edge.

UB: (* ~»~=x) + (log n/n), each non sink is reached from at least one sink.

Spanners
> Pivotal (s ~ 1~ %) <= (k¢ ~> ~x) + (~k ~ %)

» Optimal spanner (size 2n — 4)
Pivotal square. Sharp ?

(logn/n)
(2logn/n)
(2logn/n)
(3logm/n)

(4logn/n)
(4logn/n)

Derived arguments
We note foremost(u) the set of vertices reached by a foremost tree from w.

Reachability thresholds

>k vk <= Yu, Vv, a.a.5. v € foremost(u) (logn/n)
> 1k < a.a.s. Ju,Yv,v € foremost(u) (2logn/n)
> ks ok < Yu,a.a.s. Vv, v € foremost(u) (2logn/n)
P> ok~ ok < a.a.8 Yu,Vo,v € foremost(u) (3logm/n)
LB: (x ~» 1) + (log n/n), each non sink must have at least one new edge.
UB: (* ~»~=x) + (log n/n), each non sink is reached from at least one sink.
Spanners
> Pivotal (s ~ 1 ~= %) <= (s ~> ~x) + (~k ~> %) (4logn/n)
» Optimal spanner (size 2n — 4) (4logn/n)
Pivotal square. Sharp ?
> Nearly optimal spanner (size 2n + o(n)) (3logn/n)
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length log n/n:
> ~x s 1 (say u) By logn/n
| SRRV VR between 2 log n/n and 3 log n/n.
> missing ~ u between 0 and 2 log n.
> u ~ missing between log n/n and 3log n/n
> missing ~ missing between 0 and 3 logn/n

Random Non-Simple Temporal Graphs

‘Hn,p: Each edge independently appears according to a rate 1 Poisson
process stopped at time p.

7,
qrb‘ 6:6:5

Theorem
All our thresholds also hold for Hr, . 72

Open questions (deterministic)

Better spanners for temporal cliques

> Is O(nlogn) optimal for cliques? Is O(n) possible?

Open questions (deterministic)

Better spanners for temporal cliques

> Is O(nlogn) optimal for cliques? Is O(n) possible?

Experiments:

n | sparsest spanner (# edges)

4 4o0rb exhaustive search

5 6o0r7 exhaustive search

6 8or9 exhaustive search

7 10or11 exhaustive search

20 36 or 37 millions random instances

— 2 —4<OPT<2n—37?

Open questions (deterministic)

Better spanners for temporal cliques

> Is O(nlogn) optimal for cliques? Is O(n) possible?

Experiments:

n | sparsest spanner (# edges)

4 4o0rb exhaustive search

5 6o0r7 exhaustive search

6 8or9 exhaustive search

7 10or11 exhaustive search

20 36 or 37 millions random instances

— 2 —4<OPT<2n—37?

Relaxing the complete graph assumption

Open questions (deterministic)

Better spanners for temporal cliques

> Is O(nlogn) optimal for cliques? Is O(n) possible?

Experiments:

n | sparsest spanner (# edges)

4 4o0rb exhaustive search

5 6o0r7 exhaustive search

6 8or9 exhaustive search

7 10or11 exhaustive search

20 36 or 37 millions random instances

— 2 —4<OPT<2n—37?

Relaxing the complete graph assumption

» Can more general classes of dense graphs be sparsified?

— Recall that 3 unsparsifiable graphs of density ©(n?)

— Is there a family of graphs of density < 1 which admits sparse spanners?

Open questions (deterministic)

Better spanners for temporal cliques

> Is O(nlogn) optimal for cliques? Is O(n) possible?

Experiments:

n | sparsest spanner (# edges)

4 4o0rb exhaustive search

5 6o0r7 exhaustive search

6 8or9 exhaustive search

7 10or11 exhaustive search

20 36 or 37 millions random instances

— 2 —4<OPT<2n—37?

Relaxing the complete graph assumption

» Can more general classes of dense graphs be sparsified?

— Recall that 3 unsparsifiable graphs of density ©(n?)

— Is there a family of graphs of density < 1 which admits sparse spanners?

Thank you!

