Spanner problems in temporal graphs

Arnaud Casteigts
LaBRI, Université de Bordeaux

November 9, 2021

Based on joint works with:

Temporal graphs

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)
$\mathcal{G}=(V, E, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges (here, discrete)

Temporal graphs

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)
$\mathcal{G}=(V, E, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges (here, discrete)

Temporal paths

- Ex: $\langle(a, c, 3),(c, d, 4),(d, e, 4)\rangle$
(non-decreasing)
- Ex: $\langle(a, c, 3),(c, d, 4),(d, e, 5)\rangle$
(increasing)

Temporal graphs

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)
$\mathcal{G}=(V, E, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges (here, discrete)

Temporal paths

- Ex: $\langle(a, c, 3),(c, d, 4),(d, e, 4)\rangle$
(non-decreasing)
- Ex: $\langle(a, c, 3),(c, d, 4),(d, e, 5)\rangle$
(increasing)

Temporal graphs

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)
$\mathcal{G}=(V, E, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges (here, discrete)

Temporal paths

- Ex: $\langle(a, c, 3),(c, d, 4),(d, e, 4)\rangle$
(non-decreasing)
- Ex: $\langle(a, c, 3),(c, d, 4),(d, e, 5)\rangle$
(increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Temporal graphs

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)
$\mathcal{G}=(V, E, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges (here, discrete)

Temporal paths

- Ex: $\langle(a, c, 3),(c, d, 4),(d, e, 4)\rangle$
(non-decreasing)
- Ex: $\langle(a, c, 3),(c, d, 4),(d, e, 5)\rangle$
(increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Temporal graphs

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)
$\mathcal{G}=(V, E, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges (here, discrete)

Temporal paths

- Ex: $\langle(a, c, 3),(c, d, 4),(d, e, 4)\rangle$
(non-decreasing)
- Ex: $\langle(a, c, 3),(c, d, 4),(d, e, 5)\rangle$
(increasing)

Temporal connectivity: all vertices can reach each other through temporal paths
Remark: reachability is non-transitive in general!

Temporal spanners

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (in number of time labels)

Temporal spanners

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (in number of time labels)

Temporal spanners

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (in number of time labels)

Temporal spanners

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (in number of time labels)

Can we do better?

- $2 n-4$ labels needed, even if you choose the values! (Bumby'79, gossip theory)

Temporal spanners

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (in number of time labels)

Can we do better?

- $2 n-4$ labels needed, even if you choose the values! (Bumby'79, gossip theory)

Do spanners of size $2 n-4$ always exist?

Temporal spanners

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (in number of time labels)

Can we do better?

- $2 n-4$ labels needed, even if you choose the values! (Bumby'79, gossip theory)

Do spanners of size $2 n-4$ always exist?

- $\Omega(n \log n)$ in some cases
(Kleinberg, Kempe, Kumar, 2000)

Temporal spanners

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (in number of time labels)

Can we do better?

- $2 n-4$ labels needed, even if you choose the values! (Bumby'79, gossip theory)

Do spanners of size $2 n-4$ always exist?

- $\Omega(n \log n)$ in some cases
(Kleinberg, Kempe, Kumar, 2000)
- $\Omega\left(n^{2}\right)$ in some cases!
(Axiotis, Fotakis, 2016)

Temporal spanners

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (in number of time labels)

Can we do better?

- $2 n-4$ labels needed, even if you choose the values! (Bumby'79, gossip theory)

Do spanners of size $2 n-4$ always exist?

- $\Omega(n \log n)$ in some cases
(Kleinberg, Kempe, Kumar, 2000)
- $\Omega\left(n^{2}\right)$ in some cases!
(Axiotis, Fotakis, 2016)
How about complexity?
- Computing minimum-size spanner is APX-hard
(Akrida et al., 2017)

What about the positive side?

Recall the bad news:

- $\Omega(n \log n)$ - easy
- $\Omega\left(n^{2}\right)$ - rather unexpected

What about the positive side?

Recall the bad news:

- $\Omega(n \log n)$ - easy
- $\Omega\left(n^{2}\right)$ - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019):

- Spanners of size $O(n \log n)$ always exist in complete temporal graphs

What about the positive side?

Recall the bad news:

- $\Omega(n \log n)$ - easy
- $\Omega\left(n^{2}\right)$ - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019):

- Spanners of size $O(n \log n)$ always exist in complete temporal graphs

Good news 2: (C., Raskin, Renken, Zamaraev, FOCS 2021):

- Nearly optimal spanners (of size $2 n+o(n)$) almost surely exist in random temporal graphs, as soon as the graph is temporally connected

What about the positive side?

Recall the bad news:

- $\Omega(n \log n)$ - easy
- $\Omega\left(n^{2}\right)$ - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019):

- Spanners of size $O(n \log n)$ always exist in complete temporal graphs

Good news 2: (C., Raskin, Renken, Zamaraev, FOCS 2021):

- Nearly optimal spanners (of size $2 n+o(n)$) almost surely exist in random temporal graphs, as soon as the graph is temporally connected
- (Beyond spanners) Interesting thresholds on temporal reachability

Before we start... an easier model

Simple Temporal Graphs (STGs):

1. A single presence time per edge $(\lambda: E \rightarrow \mathbb{N})$
2. Adjacent edges have different times (λ is locally injective)

Before we start... an easier model

Simple Temporal Graphs (STGs):

1. A single presence time per edge $(\lambda: E \rightarrow \mathbb{N})$
2. Adjacent edges have different times (λ is locally injective)

Generality for spanners:

- Most negative results still apply
- Positive results extend to general case
- No distinction between strict and non-strict temporal paths

Before we start... an easier model

Simple Temporal Graphs (STGs):

1. A single presence time per edge $(\lambda: E \rightarrow \mathbb{N})$
2. Adjacent edges have different times (λ is locally injective)

Generality for spanners:

- Most negative results still apply
- Positive results extend to general case
- No distinction between strict and non-strict temporal paths

Further motivations:

- Distributed models by pairwise interactions, e.g. population protocols or gossip models (without repetition)
- Topics in edge-ordered graphs

Good news 1:

Temporal cliques admit sparse spanners

Two promising techniques...

Pivotability

Node v and time t such that:

- all nodes can reach v before t
- v can reach all nodes after t

Then in-tree \cup out-tree is a spanner of size $2 n-2$

Two promising techniques...

Pivotability

Node v and time t such that:

- all nodes can reach v before t
- v can reach all nodes after t

Then in-tree \cup out-tree is a spanner of size $2 n-2$

Dismountability
Three nodes u, v, w such that:

- $u v=\min -$ edge (v)
- $u w=\max -\operatorname{dge}(w)$

Then spanner $(\mathcal{G}):=\operatorname{spanner}(\mathcal{G}[V \backslash u])+u v+u w$

Two promising techniques...

Pivotability

Node v and time t such that:

- all nodes can reach v before t
- v can reach all nodes after t

Then in-tree \cup out-tree is a spanner of size $2 n-2$

Dismountability
Three nodes u, v, w such that:

- $u v=\min -\operatorname{edge}(v)$
- $u w=\max -\operatorname{edge}(w)$

Then spanner $(\mathcal{G}):=\operatorname{spanner}(\mathcal{G}[V \backslash u])+u v+u w$

Recursively,

\longrightarrow

spanner of size $2 n-3$.

Two promising techniques...

Pivotability

Node v and time t such that:

- all nodes can reach v before t
- v can reach all nodes after t

Then in-tree \cup out-tree is a spanner of size $2 n-2$

Dismountability
Three nodes u, v, w such that:

- $u v=\min -\operatorname{edge}(v)$
- $u w=\max -\operatorname{dge}(w)$

Then spanner $(\mathcal{G}):=\operatorname{spanner}(\mathcal{G}[V \backslash u])+u v+u w$

Recursively,

\longrightarrow

spanner of size $2 n-3$.
... but unfortunately
Both techniques fail in some cliques!

Transitive delegations（＂fireworks＂）

Transitive delegations ("fireworks")

Principle:

- Min edges \rightarrow "directed" forest
- Transitive delegations towards emitters (sinks)
- Spanner = min edges + all edges of emitters

Transitive delegations ("fireworks")

Principle:

- Min edges \rightarrow "directed" forest
- Transitive delegations towards emitters (sinks)
- Spanner = min edges + all edges of emitters

Wait a minute... possibly too many emitters!

Transitive delegations ("fireworks")

Principle:

- Min edges \rightarrow "directed" forest
- Transitive delegations towards emitters (sinks)
- Spanner = min edges + all edges of emitters

Wait a minute... possibly too many emitters!

\rightarrow Transformation of the forest:

- At most $n / 2$ emitters

Transitive delegations ("fireworks")

Principle:

- Min edges \rightarrow "directed" forest
- Transitive delegations towards emitters (sinks)
- Spanner = min edges + all edges of emitters

Wait a minute... possibly too many emitters!

\rightarrow Transformation of the forest:

- At most $n / 2$ emitters

Theorem: \exists spanners of size $\frac{3}{4}\binom{n}{2}+O(n)$

Transitive delegations ("fireworks")

Principle:

- Min edges \rightarrow "directed" forest
- Transitive delegations towards emitters (sinks)
- Spanner = min edges + all edges of emitters

Wait a minute... possibly too many emitters!

\rightarrow Transformation of the forest:

- At most $n / 2$ emitters

Theorem: \exists spanners of size $\frac{3}{4}\binom{n}{2}+O(n)$

Note: also works for receptions ("backward fireworks"):
\rightarrow Spanner $=$ max edges + all edges of collectors

Combining both directions

Principle

- Every vertex can reach at least one emitter u through u 's min edge
- Every vertex can be reached by a collector v through v 's max edge
- Every emitter can reach all collectors through direct edges
\rightarrow Spanner $=$ min edges + max edges + edges between emitters and collectors

Theorem:
At most $n / 2$ emitters and $n / 2$ collectors $\Rightarrow \exists$ Spanners of size $\binom{n}{2} / 2+O(n)$
\approx half of the edges

Recurse or sparsify?

Two options:

- Case 1: emitters \cup collectors $\subsetneq V$
- Case 2: emitters \cup collectors $=V$

Recurse or sparsify?

Two options:

- Case 1: emitters \cup collectors $\subsetneq V$
- Case 2: emitters \cup collectors $=V$

Case 1: One vertex v is neither emitter nor collector.
$\rightarrow v$ is " 2 -hop dismountable"
(select 4 edges selected, then recurse in $\mathcal{G}[V-v]$)

Recurse or sparsify?

Two options:

- Case 1: emitters \cup collectors $\subsetneq V$
- Case 2: emitters \cup collectors $=V$

Case 1: One vertex v is neither emitter nor collector.
$\rightarrow v$ is " 2 -hop dismountable"
(select 4 edges selected, then recurse in $\mathcal{G}[V-v]$)

Case 2: emitters \cup collectors $=V$
\rightarrow All vertices are either emitters or collectors (not both)!

Recurse or sparsify?

Two options:

- Case 1: emitters \cup collectors $\subsetneq V$
- Case 2: emitters \cup collectors $=V$

Case 1: One vertex v is neither emitter nor collector.
$\rightarrow v$ is " 2 -hop dismountable"
(select 4 edges selected, then recurse in $\mathcal{G}[V-v]$)

Case 2: emitters \cup collectors $=V$
\rightarrow All vertices are either emitters or collectors (not both)!

Recurse or sparsify?

Two options:

- Case 1: emitters \cup collectors $\subsetneq V$
- Case 2: emitters \cup collectors $=V$

Case 1: One vertex v is neither emitter nor collector.
$\rightarrow v$ is " 2 -hop dismountable"
(select 4 edges selected, then recurse in $\mathcal{G}[V-v]$)

Case 2: emitters \cup collectors $=V$
\rightarrow All vertices are either emitters or collectors (not both)!
A lot of structure to work with:

- Complete bipartite graph \mathcal{H} between emitters and collectors
- Min edges and max edges form two perfect matchings
- W.I.o.g. min edges (max edges) are reciprocal in \mathcal{H}

Recurse or sparsify?

Two options:

- Case 1: emitters \cup collectors $\subsetneq V$
- Case 2: emitters \cup collectors $=V$

Case 1: One vertex v is neither emitter nor collector.
$\rightarrow v$ is " 2 -hop dismountable"
(select 4 edges selected, then recurse in $\mathcal{G}[V-v]$)

Case 2: emitters \cup collectors $=V$
\rightarrow All vertices are either emitters or collectors (not both)!
A lot of structure to work with:

- Complete bipartite graph \mathcal{H} between emitters and collectors
- Min edges and max edges form two perfect matchings
- W.I.o.g. min edges (max edges) are reciprocal in \mathcal{H}

New objective:
\rightarrow Sparsify \mathcal{H} while preserving journeys from each emitter to all collectors

Sparsification of the bipartite graph

New objective:
\rightarrow Sparsify \mathcal{H} while preserving journeys from each emitter to all collectors
Technique: Partial delegations among emitters

- Find a 2 -hop journey from one emitter to another, arriving through a "locally small" edge
- Pay extra edges to reach the missed collectors

Sparsification of the bipartite graph

New objective:
\rightarrow Sparsify \mathcal{H} while preserving journeys from each emitter to all collectors
Technique: Partial delegations among emitters

- Find a 2 -hop journey from one emitter to another, arriving through a "locally small" edge
- Pay extra edges to reach the missed collectors

Iterative procedure:
In each step i :

- Half of the emitters partially delegate to other half

- We pay direct edges to missed collectors (penalty)
- Penalty doubles in each step, but \# emitters halves
- $O(n)$ edges over $O(\log n)$ iterations $\rightarrow \boldsymbol{O}(n \log n)$ edges.

Sparsification of the bipartite graph

New objective:
\rightarrow Sparsify \mathcal{H} while preserving journeys from each emitter to all collectors
Technique: Partial delegations among emitters

- Find a 2 -hop journey from one emitter to another, arriving through a "locally small" edge
- Pay extra edges to reach the missed collectors

Iterative procedure:
In each step i :

- Half of the emitters partially delegate to other half

- We pay direct edges to missed collectors (penalty)
- Penalty doubles in each step, but \# emitters halves
- $O(n)$ edges over $O(\log n)$ iterations $\rightarrow \boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ edges.

Conclusion (entire algorithm):

$\rightarrow \quad \exists$ spanner of size $O(n)+O(n \log n)=\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$.

Good news 2:
Spanners of size $2 n+o(n)$ almost surely exist in random temporal graphs

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p
An RSTG $\mathcal{G} \sim \mathcal{G}_{n, p}$:

1. Pick a footprint $G \sim G_{n, p}$
2. Permute the edges randomly (interpret ranks as times)

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p
An RSTG $\mathcal{G} \sim \mathcal{G}_{n, p}$:

1. Pick a footprint $G \sim G_{n, p}$
2. Permute the edges randomly (interpret ranks as times)

$$
\text { Ex: } n=7, p=0.4 \quad a \bullet \quad \stackrel{\bullet}{g} \quad \bullet d
$$

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p
An RSTG $\mathcal{G} \sim \mathcal{G}_{n, p}$:

1. Pick a footprint $G \sim G_{n, p}$
2. Permute the edges randomly (interpret ranks as times)

Ex: $n=7, p=0.4$

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p
An RSTG $\mathcal{G} \sim \mathcal{G}_{n, p}$:

1. Pick a footprint $G \sim G_{n, p}$
2. Permute the edges randomly (interpret ranks as times)

Ex: $n=7, p=0.4$

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p
An RSTG $\mathcal{G} \sim \mathcal{G}_{n, p}$:

1. Pick a footprint $G \sim G_{n, p}$
2. Permute the edges randomly (interpret ranks as times)

Ex: $n=7, p=0.4$

Another point of view:

1. Take a complete graph K_{n}
2. Assign random real times in $[0,1]$ to every edge
3. Restrict your attention to $\mathcal{G}_{[0, p]}$
\rightarrow Better for analysis.

Timeline of temporal reachability in $\mathcal{G}_{n, p}$

For sufficiently large n, what happens when p increases?

Timeline of temporal reachability in $\mathcal{G}_{n, p}$

For sufficiently large n, what happens when p increases?

Timeline of temporal reachability in $\mathcal{G}_{n, p}$

For sufficiently large n, what happens when p increases?

Timeline of temporal reachability in $\mathcal{G}_{n, p}$

For sufficiently large n, what happens when p increases?

Timeline of temporal reachability in $\mathcal{G}_{n, p}$

For sufficiently large n, what happens when p increases?

Timeline of temporal reachability in $\mathcal{G}_{n, p}$

For sufficiently large n, what happens when p increases?

Timeline of temporal reachability in $\mathcal{G}_{n, p}$

For sufficiently large n, what happens when p increases?

Timeline of temporal reachability in $\mathcal{G}_{n, p}$

For sufficiently large n, what happens when p increases?

Timeline of temporal reachability in $\mathcal{G}_{n, p}$

For sufficiently large n, what happens when p increases?

All the thresholds are sharp, except \star (open problem)
(sharp: $\exists \epsilon(n)=o(1)$, not true at $(1-\epsilon(n)) p$, true at $(1+\epsilon(n)) p)$

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Analysis

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Analysis

- Consider "growing" a foremost tree in $\mathcal{G} \sim \mathcal{G}_{n, 1}$ from a vertex s.

Main technical tool：growth of a foremost tree

Foremost tree（from s ）
－Foremost temporal paths from s to all
－＂Prim－like＂algorithm．

Analysis
－Consider＂growing＂a foremost tree in $\mathcal{G} \sim \mathcal{G}_{n, 1}$ from a vertex s ．
－Once we have reached k vertices，there are $k(n-k)$ potential edges．

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Analysis

- Consider "growing" a foremost tree in $\mathcal{G} \sim \mathcal{G}_{n, 1}$ from a vertex s.
- Once we have reached k vertices, there are $k(n-k)$ potential edges.
- The waiting time for one of these to appear is $\approx \frac{1}{k(n-k)}$

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Analysis

- Consider "growing" a foremost tree in $\mathcal{G} \sim \mathcal{G}_{n, 1}$ from a vertex s.
- Once we have reached k vertices, there are $k(n-k)$ potential edges.
- The waiting time for one of these to appear is $\approx \frac{1}{k(n-k)}$
\Longrightarrow Expect to reach all vertices at $\sum_{k=1}^{n} \frac{1}{k(n-k)} \approx 2 \frac{\log n}{n}$.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Analysis

- Consider "growing" a foremost tree in $\mathcal{G} \sim \mathcal{G}_{n, 1}$ from a vertex s.
- Once we have reached k vertices, there are $k(n-k)$ potential edges.
- The waiting time for one of these to appear is $\approx \frac{1}{k(n-k)}$
\Longrightarrow Expect to reach all vertices at $\sum_{k=1}^{n} \frac{1}{k(n-k)} \approx 2 \frac{\log n}{n}$.
- Azuma's inequality for concentration.

Derived arguments

We note foremost（ u ）the set of vertices reached by a foremost tree from u ．
Reachability thresholds
－$\sim * \rightsquigarrow \sim * \Longleftrightarrow \forall u, \forall v$, a．a．s．$v \in \operatorname{foremost}(u)$ $(\log n / n)$

Derived arguments

We note foremost (u) the set of vertices reached by a foremost tree from u.
Reachability thresholds

- $\sim * \rightsquigarrow \sim * \Longleftrightarrow \forall u, \forall v$, a.a.s. $v \in$ foremost (u)
$>1 \rightsquigarrow * \Longleftrightarrow$ a.a.s. $\exists u, \forall v, v \in \operatorname{foremost}(u)$
$(\log n / n)$
$(2 \log n / n)$

Derived arguments

We note foremost (u) the set of vertices reached by a foremost tree from u.
Reachability thresholds

- $\sim * \rightsquigarrow \sim * \Longleftrightarrow \forall u, \forall v$, a.a.s. $v \in$ foremost (u)
$>1 \rightsquigarrow * \Longleftrightarrow$ a.a.s. $\exists u, \forall v, v \in \operatorname{foremost}(u)$
$\triangleright \sim * \rightsquigarrow * \Longleftrightarrow \forall u$, a.a.s. $\forall v, v \in$ foremost (u)
$(\log n / n)$
$(2 \log n / n)$
$(2 \log n / n)$

Derived arguments

We note foremost (u) the set of vertices reached by a foremost tree from u.
Reachability thresholds

- $\sim * \rightsquigarrow \sim * \Longleftrightarrow \forall u, \forall v$, a.a.s. $v \in$ foremost (u)
$>1 \rightsquigarrow * \Longleftrightarrow$ a.a.s. $\exists u, \forall v, v \in \operatorname{foremost}(u)$
$\triangleright \sim * \rightsquigarrow * \Longleftrightarrow \forall u$, a.a.s. $\forall v, v \in$ foremost (u)
$\bullet \rightsquigarrow * \Longleftrightarrow$ a.a.s $\forall u, \forall v, v \in \operatorname{foremost}(u)$
$(\log n / n)$
$(2 \log n / n)$
$(2 \log n / n)$
$(3 \log n / n)$
LB: $(* \rightsquigarrow 1)+(\log n / n)$, each non sink must have at least one new edge.
UB: $(* \rightsquigarrow \sim *)+(\log n / n)$, each non sink is reached from at least one sink.

Derived arguments

We note foremost（ u ）the set of vertices reached by a foremost tree from u ．
Reachability thresholds
－$\sim * \rightsquigarrow \sim * \Longleftrightarrow \forall u, \forall v$, a．a．s．$v \in$ foremost (u)
$>1 \rightsquigarrow * \Longleftrightarrow$ a．a．s．$\exists u, \forall v, v \in \operatorname{foremost}(u)$
－$\sim * \rightsquigarrow * \Longleftrightarrow \forall u$ ，a．a．s．$\forall v, v \in$ foremost (u)
$\bullet \rightsquigarrow \cdots \Longleftrightarrow$ a．a．s $\forall u, \forall v, v \in$ foremost (u)
$(\log n / n)$
$(2 \log n / n)$
$(2 \log n / n)$
$(3 \log n / n)$
LB：$(* \rightsquigarrow 1)+(\log n / n)$ ，each non sink must have at least one new edge．
UB：$(* \rightsquigarrow \sim *)+(\log n / n)$ ，each non sink is reached from at least one sink．
Spanners

Derived arguments

We note foremost (u) the set of vertices reached by a foremost tree from u.
Reachability thresholds

- $\sim * \rightsquigarrow \sim * \Longleftrightarrow \forall u, \forall v$, a.a.s. $v \in$ foremost (u)
$>1 \rightsquigarrow * \Longleftrightarrow$ a.a.s. $\exists u, \forall v, v \in \operatorname{foremost}(u)$
- $\sim * \rightsquigarrow * \Longleftrightarrow \forall u$, a.a.s. $\forall v, v \in$ foremost (u)
$\bullet \rightsquigarrow * \Longleftrightarrow$ a.a.s $\forall u, \forall v, v \in \operatorname{foremost}(u)$
$(\log n / n)$
$(2 \log n / n)$
$(2 \log n / n)$
$(3 \log n / n)$
LB: $(* \rightsquigarrow 1)+(\log n / n)$, each non sink must have at least one new edge.
UB: $(* \rightsquigarrow \sim *)+(\log n / n)$, each non sink is reached from at least one sink.

Spanners

- Pivotal $(* \rightsquigarrow 1 \rightsquigarrow *) \Longleftarrow(* \rightsquigarrow \sim *)+(\sim * \rightsquigarrow *)$

Derived arguments

We note foremost (u) the set of vertices reached by a foremost tree from u.
Reachability thresholds

- $\sim * \rightsquigarrow \sim * \Longleftrightarrow \forall u, \forall v$, a.a.s. $v \in$ foremost (u)
- $1 \rightsquigarrow * \Longleftrightarrow$ a.a.s. $\exists u, \forall v, v \in \operatorname{foremost}(u)$
$\triangleright \sim * \rightsquigarrow * \Longleftrightarrow \forall u$, a.a.s. $\forall v, v \in$ foremost (u)
$\bullet \rightsquigarrow * \Longleftrightarrow$ a.a.s $\forall u, \forall v, v \in \operatorname{foremost}(u)$
$(\log n / n)$
$(2 \log n / n)$
$(2 \log n / n)$
$(3 \log n / n)$
LB: $(* \rightsquigarrow 1)+(\log n / n)$, each non sink must have at least one new edge.
UB: $(* \rightsquigarrow \sim *)+(\log n / n)$, each non sink is reached from at least one sink.

Spanners

- Pivotal $(* \rightsquigarrow 1 \rightsquigarrow *) \Longleftarrow(* \rightsquigarrow \sim *)+(\sim * \rightsquigarrow *)$
- Optimal spanner (size $2 n-4$)
$(4 \log n / n)$
$(4 \log n / n)$
Pivotal square. Sharp?

Derived arguments

We note foremost (u) the set of vertices reached by a foremost tree from u.
Reachability thresholds

- $\sim * \rightsquigarrow \sim * \Longleftrightarrow \forall u, \forall v$, a.a.s. $v \in$ foremost (u)
$>1 \rightsquigarrow * \Longleftrightarrow$ a.a.s. $\exists u, \forall v, v \in$ foremost (u)
$\triangleright \sim * \rightsquigarrow * \Longleftrightarrow \forall u$, a.a.s. $\forall v, v \in$ foremost (u)
- $* \rightsquigarrow * \Longleftrightarrow$ a.a.s $\forall u, \forall v, v \in$ foremost (u)
$(\log n / n)$
$(2 \log n / n)$
$(2 \log n / n)$
$(3 \log n / n)$

LB: $(* \rightsquigarrow 1)+(\log n / n)$, each non sink must have at least one new edge.
UB: $(* \rightsquigarrow \sim *)+(\log n / n)$, each non sink is reached from at least one sink.

Spanners

- Pivotal $(* \rightsquigarrow 1 \rightsquigarrow *) \Longleftarrow(* \rightsquigarrow \sim *)+(\sim * \rightsquigarrow *)$
$(4 \log n / n)$
- Optimal spanner (size $2 n-4$)

Pivotal square. Sharp?

- Nearly optimal spanner (size $2 n+o(n)$)
$(3 \log n / n)$
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length $\log n / n$:
- ~* $\rightsquigarrow 1$ (say u)
- missing $\rightsquigarrow u$
- $u \rightsquigarrow$ missing
- missing \rightsquigarrow missing

Random Non-Simple Temporal Graphs

$\mathcal{H}_{n, p}$: Each edge independently appears according to a rate 1 Poisson process stopped at time p.

Theorem

All our thresholds also hold for $\mathcal{H}_{n, p}$.

Open questions (deterministic)

Better spanners for temporal cliques

- Is $O(n \log n)$ optimal for cliques? Is $O(n)$ possible?

Open questions (deterministic)

Better spanners for temporal cliques

- Is $O(n \log n)$ optimal for cliques? Is $O(n)$ possible?

Experiments:	n	sparsest spanner (\# edges)	
	4	4 or 5	exhaustive search
	5	6 or 7	exhaustive search
	6	8 or 9	exhaustive search
	7	10 or 11	exhaustive search
\ldots	\ldots		
	20	36 or 37	millions random instances

$\rightarrow 2 n-4 \leq O P T \leq 2 n-3 ?$

Open questions (deterministic)

Better spanners for temporal cliques

- Is $O(n \log n)$ optimal for cliques? Is $O(n)$ possible?

Experiments:	n	sparsest spanner (\# edges)	
	4	4 or 5	exhaustive search
	5	6 or 7	exhaustive search
	6	8 or 9	exhaustive search
	7	10 or 11	exhaustive search
\ldots	\ldots		
	20	36 or 37	millions random instances

$\rightarrow 2 n-4 \leq O P T \leq 2 n-3 ?$
Relaxing the complete graph assumption

Open questions (deterministic)

Better spanners for temporal cliques

- Is $O(n \log n)$ optimal for cliques? Is $O(n)$ possible?

Experiments:

n	sparsest spanner (\# edges)	
4	4 or 5	exhaustive search
5	6 or 7	exhaustive search
6	8 or 9	exhaustive search
7	10 or 11	exhaustive search
\ldots	\ldots	
20	36 or 37	millions random instances

$\rightarrow 2 n-4 \leq O P T \leq 2 n-3 ?$
Relaxing the complete graph assumption

- Can more general classes of dense graphs be sparsified?
\rightarrow Recall that \exists unsparsifiable graphs of density $\Theta\left(n^{2}\right)$
\rightarrow Is there a family of graphs of density <1 which admits sparse spanners?

Open questions (deterministic)

Better spanners for temporal cliques

- Is $O(n \log n)$ optimal for cliques? Is $O(n)$ possible?

Experiments:

n	sparsest spanner (\# edges)	
4	4 or 5	exhaustive search
5	6 or 7	exhaustive search
6	8 or 9	exhaustive search
7	10 or 11	exhaustive search
\ldots	\ldots	
20	36 or 37	millions random instances

$\rightarrow 2 n-4 \leq O P T \leq 2 n-3 ?$
Relaxing the complete graph assumption

- Can more general classes of dense graphs be sparsified?
\rightarrow Recall that \exists unsparsifiable graphs of density $\Theta\left(n^{2}\right)$
\rightarrow Is there a family of graphs of density <1 which admits sparse spanners?
Thank you!

