
1/18

Spanner problems in temporal graphs

Arnaud Casteigts

LaBRI, Université de Bordeaux

November 9, 2021

Based on joint works with:

|

Jason Schoeters Joseph Peters Michael Raskin Malte Renken Viktor Zamaraev

2/18

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges (here, discrete)

a b

c d

e

Example:

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

I Ex: 〈(a, c, 3), (c, d, 4), (d, e, 4)〉 (non-decreasing)

I Ex: 〈(a, c, 3), (c, d, 4), (d, e, 5)〉 (increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Remark: reachability is non-transitive in general!

2/18

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges (here, discrete)

a b

c d

e

Example:

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

I Ex: 〈(a, c, 3), (c, d, 4), (d, e, 4)〉 (non-decreasing)

I Ex: 〈(a, c, 3), (c, d, 4), (d, e, 5)〉 (increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Remark: reachability is non-transitive in general!

2/18

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges (here, discrete)

a b

c d

e

Example:

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

I Ex: 〈(a, c, 3), (c, d, 4), (d, e, 4)〉 (non-decreasing)

I Ex: 〈(a, c, 3), (c, d, 4), (d, e, 5)〉 (increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Remark: reachability is non-transitive in general!

2/18

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges (here, discrete)

a b

c d

e

Example:

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

I Ex: 〈(a, c, 3), (c, d, 4), (d, e, 4)〉 (non-decreasing)

I Ex: 〈(a, c, 3), (c, d, 4), (d, e, 5)〉 (increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Remark: reachability is non-transitive in general!

2/18

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges (here, discrete)

a b

c d

e

Example:

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

I Ex: 〈(a, c, 3), (c, d, 4), (d, e, 4)〉 (non-decreasing)

I Ex: 〈(a, c, 3), (c, d, 4), (d, e, 5)〉 (increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Remark: reachability is non-transitive in general!

2/18

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges (here, discrete)

a b

c d

e

Example:

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

I Ex: 〈(a, c, 3), (c, d, 4), (d, e, 4)〉 (non-decreasing)

I Ex: 〈(a, c, 3), (c, d, 4), (d, e, 5)〉 (increasing)

Temporal connectivity: all vertices can reach each other through temporal paths

Remark: reachability is non-transitive in general!

3/18

Temporal spanners

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (in number of time labels)

a

b

c

d

2,7 3,5

1,4

1,64

→
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
I 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
I Ω(n logn) in some cases (Kleinberg, Kempe, Kumar, 2000)
I Ω(n2) in some cases! (Axiotis, Fotakis, 2016)

How about complexity?
I Computing minimum-size spanner is APX-hard (Akrida et al., 2017)

3/18

Temporal spanners

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (in number of time labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
I 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
I Ω(n logn) in some cases (Kleinberg, Kempe, Kumar, 2000)
I Ω(n2) in some cases! (Axiotis, Fotakis, 2016)

How about complexity?
I Computing minimum-size spanner is APX-hard (Akrida et al., 2017)

3/18

Temporal spanners

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (in number of time labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
I 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
I Ω(n logn) in some cases (Kleinberg, Kempe, Kumar, 2000)
I Ω(n2) in some cases! (Axiotis, Fotakis, 2016)

How about complexity?
I Computing minimum-size spanner is APX-hard (Akrida et al., 2017)

3/18

Temporal spanners

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (in number of time labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
I 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
I Ω(n logn) in some cases (Kleinberg, Kempe, Kumar, 2000)
I Ω(n2) in some cases! (Axiotis, Fotakis, 2016)

How about complexity?
I Computing minimum-size spanner is APX-hard (Akrida et al., 2017)

3/18

Temporal spanners

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (in number of time labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
I 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?

I Ω(n logn) in some cases (Kleinberg, Kempe, Kumar, 2000)
I Ω(n2) in some cases! (Axiotis, Fotakis, 2016)

How about complexity?
I Computing minimum-size spanner is APX-hard (Akrida et al., 2017)

3/18

Temporal spanners

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (in number of time labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
I 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
I Ω(n logn) in some cases (Kleinberg, Kempe, Kumar, 2000)

I Ω(n2) in some cases! (Axiotis, Fotakis, 2016)

How about complexity?
I Computing minimum-size spanner is APX-hard (Akrida et al., 2017)

3/18

Temporal spanners

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (in number of time labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
I 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
I Ω(n logn) in some cases (Kleinberg, Kempe, Kumar, 2000)
I Ω(n2) in some cases! (Axiotis, Fotakis, 2016)

How about complexity?
I Computing minimum-size spanner is APX-hard (Akrida et al., 2017)

3/18

Temporal spanners

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (in number of time labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
I 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
I Ω(n logn) in some cases (Kleinberg, Kempe, Kumar, 2000)
I Ω(n2) in some cases! (Axiotis, Fotakis, 2016)

How about complexity?
I Computing minimum-size spanner is APX-hard (Akrida et al., 2017)

4/18

What about the positive side?

Recall the bad news:

I Ω(n logn) - easy

I Ω(n2) - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019):
I Spanners of size O(n logn) always exist

in complete temporal graphs

Good news 2: (C., Raskin, Renken, Zamaraev, FOCS 2021):
I Nearly optimal spanners (of size 2n + o(n)) almost surely exist in

random temporal graphs, as soon as the graph is temporally connected
I (Beyond spanners) Interesting thresholds on temporal reachability

4/18

What about the positive side?

Recall the bad news:

I Ω(n logn) - easy

I Ω(n2) - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019):
I Spanners of size O(n logn) always exist

in complete temporal graphs

Good news 2: (C., Raskin, Renken, Zamaraev, FOCS 2021):
I Nearly optimal spanners (of size 2n + o(n)) almost surely exist in

random temporal graphs, as soon as the graph is temporally connected
I (Beyond spanners) Interesting thresholds on temporal reachability

4/18

What about the positive side?

Recall the bad news:

I Ω(n logn) - easy

I Ω(n2) - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019):
I Spanners of size O(n logn) always exist

in complete temporal graphs

Good news 2: (C., Raskin, Renken, Zamaraev, FOCS 2021):
I Nearly optimal spanners (of size 2n + o(n)) almost surely exist in

random temporal graphs, as soon as the graph is temporally connected

I (Beyond spanners) Interesting thresholds on temporal reachability

4/18

What about the positive side?

Recall the bad news:

I Ω(n logn) - easy

I Ω(n2) - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019):
I Spanners of size O(n logn) always exist

in complete temporal graphs

Good news 2: (C., Raskin, Renken, Zamaraev, FOCS 2021):
I Nearly optimal spanners (of size 2n + o(n)) almost surely exist in

random temporal graphs, as soon as the graph is temporally connected
I (Beyond spanners) Interesting thresholds on temporal reachability

5/18

Before we start... an easier model

Simple Temporal Graphs (STGs):
1. A single presence time per edge (λ : E → N)

2. Adjacent edges have different times (λ is locally injective)

5

3 9

1

2 5

Generality for spanners:
I Most negative results still apply
I Positive results extend to general case
I No distinction between strict and non-strict temporal paths

Further motivations:
I Distributed models by pairwise interactions,

e.g. population protocols or gossip models (without repetition)

I Topics in edge-ordered graphs

5/18

Before we start... an easier model

Simple Temporal Graphs (STGs):
1. A single presence time per edge (λ : E → N)

2. Adjacent edges have different times (λ is locally injective)

5

3 9

1

2 5

Generality for spanners:
I Most negative results still apply
I Positive results extend to general case
I No distinction between strict and non-strict temporal paths

Further motivations:
I Distributed models by pairwise interactions,

e.g. population protocols or gossip models (without repetition)

I Topics in edge-ordered graphs

5/18

Before we start... an easier model

Simple Temporal Graphs (STGs):
1. A single presence time per edge (λ : E → N)

2. Adjacent edges have different times (λ is locally injective)

5

3 9

1

2 5

Generality for spanners:
I Most negative results still apply
I Positive results extend to general case
I No distinction between strict and non-strict temporal paths

Further motivations:
I Distributed models by pairwise interactions,

e.g. population protocols or gossip models (without repetition)

I Topics in edge-ordered graphs

6/18

Good news 1:

Temporal cliques admit sparse spanners

7/18

Two promising techniques...

Pivotability
Node v and time t such that:
I all nodes can reach v before t
I v can reach all nodes after t

Then in-tree ∪ out-tree is a spanner of size 2n− 2

Dismountability
Three nodes u, v, w such that:
I uv =min-edge(v)

I uw =max-edge(w)

Then spanner(G) := spanner(G[V \u]) + uv + uw

Recursively,

→

spanner of size 2n− 3.

... but unfortunately
Both techniques fail in some cliques!

7/18

Two promising techniques...

Pivotability
Node v and time t such that:
I all nodes can reach v before t
I v can reach all nodes after t

Then in-tree ∪ out-tree is a spanner of size 2n− 2

Dismountability
Three nodes u, v, w such that:
I uv =min-edge(v)

I uw =max-edge(w)

Then spanner(G) := spanner(G[V \u]) + uv + uw

Recursively,

→

spanner of size 2n− 3.

... but unfortunately
Both techniques fail in some cliques!

7/18

Two promising techniques...

Pivotability
Node v and time t such that:
I all nodes can reach v before t
I v can reach all nodes after t

Then in-tree ∪ out-tree is a spanner of size 2n− 2

Dismountability
Three nodes u, v, w such that:
I uv =min-edge(v)

I uw =max-edge(w)

Then spanner(G) := spanner(G[V \u]) + uv + uw

Recursively,

→

spanner of size 2n− 3.

... but unfortunately
Both techniques fail in some cliques!

7/18

Two promising techniques...

Pivotability
Node v and time t such that:
I all nodes can reach v before t
I v can reach all nodes after t

Then in-tree ∪ out-tree is a spanner of size 2n− 2

Dismountability
Three nodes u, v, w such that:
I uv =min-edge(v)

I uw =max-edge(w)

Then spanner(G) := spanner(G[V \u]) + uv + uw

Recursively,

→

spanner of size 2n− 3.

... but unfortunately
Both techniques fail in some cliques!

8/18

Transitive delegations (“fireworks”)

Principle:
I Min edges→ “directed” forest
I Transitive delegations towards emitters (sinks)
I Spanner = min edges + all edges of emitters

Wait a minute... possibly too many emitters!

→→ Transformation of the forest:
I At most n/2 emitters

Theorem: ∃ spanners of size 3
4

(n
2

)
+ O(n)

Note: also works for receptions (“backward fireworks”):

→ Spanner = max edges + all edges of collectors

8/18

Transitive delegations (“fireworks”)

Principle:
I Min edges→ “directed” forest
I Transitive delegations towards emitters (sinks)
I Spanner = min edges + all edges of emitters

Wait a minute... possibly too many emitters!

→→ Transformation of the forest:
I At most n/2 emitters

Theorem: ∃ spanners of size 3
4

(n
2

)
+ O(n)

Note: also works for receptions (“backward fireworks”):

→ Spanner = max edges + all edges of collectors

8/18

Transitive delegations (“fireworks”)

Principle:
I Min edges→ “directed” forest
I Transitive delegations towards emitters (sinks)
I Spanner = min edges + all edges of emitters

Wait a minute... possibly too many emitters!

→→ Transformation of the forest:
I At most n/2 emitters

Theorem: ∃ spanners of size 3
4

(n
2

)
+ O(n)

Note: also works for receptions (“backward fireworks”):

→ Spanner = max edges + all edges of collectors

8/18

Transitive delegations (“fireworks”)

Principle:
I Min edges→ “directed” forest
I Transitive delegations towards emitters (sinks)
I Spanner = min edges + all edges of emitters

Wait a minute... possibly too many emitters!

→→ Transformation of the forest:
I At most n/2 emitters

Theorem: ∃ spanners of size 3
4

(n
2

)
+ O(n)

Note: also works for receptions (“backward fireworks”):

→ Spanner = max edges + all edges of collectors

8/18

Transitive delegations (“fireworks”)

Principle:
I Min edges→ “directed” forest
I Transitive delegations towards emitters (sinks)
I Spanner = min edges + all edges of emitters

Wait a minute... possibly too many emitters!

→→ Transformation of the forest:
I At most n/2 emitters

Theorem: ∃ spanners of size 3
4

(n
2

)
+ O(n)

Note: also works for receptions (“backward fireworks”):

→ Spanner = max edges + all edges of collectors

8/18

Transitive delegations (“fireworks”)

Principle:
I Min edges→ “directed” forest
I Transitive delegations towards emitters (sinks)
I Spanner = min edges + all edges of emitters

Wait a minute... possibly too many emitters!

→→ Transformation of the forest:
I At most n/2 emitters

Theorem: ∃ spanners of size 3
4

(n
2

)
+ O(n)

Note: also works for receptions (“backward fireworks”):

→ Spanner = max edges + all edges of collectors

9/18

Combining both directions

Principle
I Every vertex can reach at least one emitter u

through u’s min edge
I Every vertex can be reached by a collector v

through v’s max edge
I Every emitter can reach all collectors

through direct edges

→ Spanner = min edges + max edges
+ edges between emitters and collectors

Theorem:

At most n/2 emitters and n/2 collectors⇒ ∃ Spanners of size
(n
2

)
/2 +O(n)

≈ half of the edges

10/18

Recurse or sparsify?

Two options:
I Case 1: emitters ∪ collectors (V

I Case 2: emitters ∪ collectors = V

Case 1: One vertex v is neither emitter nor collector.

→ v is “2-hop dismountable”
(select 4 edges selected, then recurse in G[V − v])

Case 2: emitters ∪ collectors = V

→ All vertices are either emitters or collectors (not both)!

A lot of structure to work with:
I Complete bipartite graph H between emitters and collectors
I Min edges and max edges form two perfect matchings
I W.l.o.g. min edges (max edges) are reciprocal in H

New objective:
→ Sparsify H while preserving journeys from each emitter to all collectors

10/18

Recurse or sparsify?

Two options:
I Case 1: emitters ∪ collectors (V

I Case 2: emitters ∪ collectors = V

Case 1: One vertex v is neither emitter nor collector.

→ v is “2-hop dismountable”
(select 4 edges selected, then recurse in G[V − v])

Case 2: emitters ∪ collectors = V

→ All vertices are either emitters or collectors (not both)!

A lot of structure to work with:
I Complete bipartite graph H between emitters and collectors
I Min edges and max edges form two perfect matchings
I W.l.o.g. min edges (max edges) are reciprocal in H

New objective:
→ Sparsify H while preserving journeys from each emitter to all collectors

10/18

Recurse or sparsify?

Two options:
I Case 1: emitters ∪ collectors (V

I Case 2: emitters ∪ collectors = V

Case 1: One vertex v is neither emitter nor collector.

→ v is “2-hop dismountable”
(select 4 edges selected, then recurse in G[V − v])

Case 2: emitters ∪ collectors = V

→ All vertices are either emitters or collectors (not both)!

A lot of structure to work with:
I Complete bipartite graph H between emitters and collectors
I Min edges and max edges form two perfect matchings
I W.l.o.g. min edges (max edges) are reciprocal in H

New objective:
→ Sparsify H while preserving journeys from each emitter to all collectors

10/18

Recurse or sparsify?

Two options:
I Case 1: emitters ∪ collectors (V

I Case 2: emitters ∪ collectors = V

Case 1: One vertex v is neither emitter nor collector.

→ v is “2-hop dismountable”
(select 4 edges selected, then recurse in G[V − v])

Case 2: emitters ∪ collectors = V

→ All vertices are either emitters or collectors (not both)!

A lot of structure to work with:
I Complete bipartite graph H between emitters and collectors
I Min edges and max edges form two perfect matchings
I W.l.o.g. min edges (max edges) are reciprocal in H

New objective:
→ Sparsify H while preserving journeys from each emitter to all collectors

10/18

Recurse or sparsify?

Two options:
I Case 1: emitters ∪ collectors (V

I Case 2: emitters ∪ collectors = V

Case 1: One vertex v is neither emitter nor collector.

→ v is “2-hop dismountable”
(select 4 edges selected, then recurse in G[V − v])

Case 2: emitters ∪ collectors = V

→ All vertices are either emitters or collectors (not both)!

A lot of structure to work with:
I Complete bipartite graph H between emitters and collectors
I Min edges and max edges form two perfect matchings
I W.l.o.g. min edges (max edges) are reciprocal in H

New objective:
→ Sparsify H while preserving journeys from each emitter to all collectors

10/18

Recurse or sparsify?

Two options:
I Case 1: emitters ∪ collectors (V

I Case 2: emitters ∪ collectors = V

Case 1: One vertex v is neither emitter nor collector.

→ v is “2-hop dismountable”
(select 4 edges selected, then recurse in G[V − v])

Case 2: emitters ∪ collectors = V

→ All vertices are either emitters or collectors (not both)!

A lot of structure to work with:
I Complete bipartite graph H between emitters and collectors
I Min edges and max edges form two perfect matchings
I W.l.o.g. min edges (max edges) are reciprocal in H

New objective:
→ Sparsify H while preserving journeys from each emitter to all collectors

11/18

Sparsification of the bipartite graph

New objective:

→ SparsifyH while preserving journeys from each emitter to all collectors

Technique: Partial delegations among emitters

I Find a 2-hop journey from one emitter to another,
arriving through a “locally small” edge

I Pay extra edges to reach the missed collectors

Iterative procedure:

In each step i:
I Half of the emitters partially delegate to other half

I We pay direct edges to missed collectors (penalty)
I Penalty doubles in each step, but # emitters halves
I O(n) edges over O(logn) iterations→ O(n logn) edges.

Conclusion (entire algorithm):

→ ∃ spanner of size O(n) + O(n logn) = O(n logn).

11/18

Sparsification of the bipartite graph

New objective:

→ SparsifyH while preserving journeys from each emitter to all collectors

Technique: Partial delegations among emitters

I Find a 2-hop journey from one emitter to another,
arriving through a “locally small” edge

I Pay extra edges to reach the missed collectors

Iterative procedure:

In each step i:
I Half of the emitters partially delegate to other half

I We pay direct edges to missed collectors (penalty)
I Penalty doubles in each step, but # emitters halves
I O(n) edges over O(logn) iterations→ O(n logn) edges.

Conclusion (entire algorithm):

→ ∃ spanner of size O(n) + O(n logn) = O(n logn).

11/18

Sparsification of the bipartite graph

New objective:

→ SparsifyH while preserving journeys from each emitter to all collectors

Technique: Partial delegations among emitters

I Find a 2-hop journey from one emitter to another,
arriving through a “locally small” edge

I Pay extra edges to reach the missed collectors

Iterative procedure:

In each step i:
I Half of the emitters partially delegate to other half

I We pay direct edges to missed collectors (penalty)
I Penalty doubles in each step, but # emitters halves
I O(n) edges over O(logn) iterations→ O(n logn) edges.

Conclusion (entire algorithm):

→ ∃ spanner of size O(n) + O(n logn) = O(n logn).

12/18

Good news 2:

Spanners of size 2n + o(n) almost surely exist

in random temporal graphs

13/18

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p

An RSTG G ∼ Gn,p:
1. Pick a footprint G ∼ Gn,p
2. Permute the edges randomly

(interpret ranks as times)

Ex: n = 7, p = 0.4 a

b c

d

et

g

1

2

5

3

4

6

8

9

7

Another point of view:
1. Take a complete graph Kn

2. Assign random real times in [0, 1] to every edge

3. Restrict your attention to G[0,p]

→ Better for analysis.

13/18

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p

An RSTG G ∼ Gn,p:
1. Pick a footprint G ∼ Gn,p
2. Permute the edges randomly

(interpret ranks as times)

Ex: n = 7, p = 0.4 a

b c

d

et

g

1

2

5

3

4

6

8

9

7

Another point of view:
1. Take a complete graph Kn

2. Assign random real times in [0, 1] to every edge

3. Restrict your attention to G[0,p]

→ Better for analysis.

13/18

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p

An RSTG G ∼ Gn,p:
1. Pick a footprint G ∼ Gn,p
2. Permute the edges randomly

(interpret ranks as times)

Ex: n = 7, p = 0.4 a

b c

d

et

g

1

2

5

3

4

6

8

9

7

Another point of view:
1. Take a complete graph Kn

2. Assign random real times in [0, 1] to every edge

3. Restrict your attention to G[0,p]

→ Better for analysis.

13/18

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p

An RSTG G ∼ Gn,p:
1. Pick a footprint G ∼ Gn,p
2. Permute the edges randomly

(interpret ranks as times)

Ex: n = 7, p = 0.4 a

b c

d

et

g

1

2

5

3

4

6

8

9

7

Another point of view:
1. Take a complete graph Kn

2. Assign random real times in [0, 1] to every edge

3. Restrict your attention to G[0,p]

→ Better for analysis.

13/18

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p

An RSTG G ∼ Gn,p:
1. Pick a footprint G ∼ Gn,p
2. Permute the edges randomly

(interpret ranks as times)

Ex: n = 7, p = 0.4 a

b c

d

et

g
1

2

5

3

4

6

8

9

7

Another point of view:
1. Take a complete graph Kn

2. Assign random real times in [0, 1] to every edge

3. Restrict your attention to G[0,p]

→ Better for analysis.

13/18

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p

An RSTG G ∼ Gn,p:
1. Pick a footprint G ∼ Gn,p
2. Permute the edges randomly

(interpret ranks as times)

Ex: n = 7, p = 0.4 a

b c

d

et

g
1

2

5

3

4

6

8

9

7

Another point of view:
1. Take a complete graph Kn

2. Assign random real times in [0, 1] to every edge

3. Restrict your attention to G[0,p]

→ Better for analysis.

14/18

Timeline of temporal reachability in Gn,p
For sufficiently large n, what happens when p increases?

0 1
1
n

logn
n

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(∼∗ ∼∗)

2 logn
n

First source
(1 ∗)

Most vertices
are sources
(∼∗ ∗)

4 logn
n

Pivotal spanner
(size 2n− 2)

3 logn
n

Temporal
connectivity
(∗ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner?

(size 2n− 4)

All the thresholds are sharp, except ? (open problem)
(sharp: ∃ε(n) = o(1), not true at (1− ε(n))p, true at (1 + ε(n))p)

14/18

Timeline of temporal reachability in Gn,p
For sufficiently large n, what happens when p increases?

0 1
1
n

logn
n

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(∼∗ ∼∗)

2 logn
n

First source
(1 ∗)

Most vertices
are sources
(∼∗ ∗)

4 logn
n

Pivotal spanner
(size 2n− 2)

3 logn
n

Temporal
connectivity
(∗ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner?

(size 2n− 4)

All the thresholds are sharp, except ? (open problem)
(sharp: ∃ε(n) = o(1), not true at (1− ε(n))p, true at (1 + ε(n))p)

14/18

Timeline of temporal reachability in Gn,p
For sufficiently large n, what happens when p increases?

0 1
1
n

logn
n

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(∼∗ ∼∗)

2 logn
n

First source
(1 ∗)

Most vertices
are sources
(∼∗ ∗)

4 logn
n

Pivotal spanner
(size 2n− 2)

3 logn
n

Temporal
connectivity
(∗ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner?

(size 2n− 4)

All the thresholds are sharp, except ? (open problem)
(sharp: ∃ε(n) = o(1), not true at (1− ε(n))p, true at (1 + ε(n))p)

14/18

Timeline of temporal reachability in Gn,p
For sufficiently large n, what happens when p increases?

0 1
1
n

logn
n

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(∼∗ ∼∗)

2 logn
n

First source
(1 ∗)

Most vertices
are sources
(∼∗ ∗)

4 logn
n

Pivotal spanner
(size 2n− 2)

3 logn
n

Temporal
connectivity
(∗ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner?

(size 2n− 4)

All the thresholds are sharp, except ? (open problem)
(sharp: ∃ε(n) = o(1), not true at (1− ε(n))p, true at (1 + ε(n))p)

14/18

Timeline of temporal reachability in Gn,p
For sufficiently large n, what happens when p increases?

0 1
1
n

logn
n

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(∼∗ ∼∗)

2 logn
n

First source
(1 ∗)

Most vertices
are sources
(∼∗ ∗)

4 logn
n

Pivotal spanner
(size 2n− 2)

3 logn
n

Temporal
connectivity
(∗ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner?

(size 2n− 4)

All the thresholds are sharp, except ? (open problem)
(sharp: ∃ε(n) = o(1), not true at (1− ε(n))p, true at (1 + ε(n))p)

14/18

Timeline of temporal reachability in Gn,p
For sufficiently large n, what happens when p increases?

0 1
1
n

logn
n

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(∼∗ ∼∗)

2 logn
n

First source
(1 ∗)

Most vertices
are sources
(∼∗ ∗)

4 logn
n

Pivotal spanner
(size 2n− 2)

3 logn
n

Temporal
connectivity
(∗ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner?

(size 2n− 4)

All the thresholds are sharp, except ? (open problem)
(sharp: ∃ε(n) = o(1), not true at (1− ε(n))p, true at (1 + ε(n))p)

14/18

Timeline of temporal reachability in Gn,p
For sufficiently large n, what happens when p increases?

0 1
1
n

logn
n

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(∼∗ ∼∗)

2 logn
n

First source
(1 ∗)

Most vertices
are sources
(∼∗ ∗)

4 logn
n

Pivotal spanner
(size 2n− 2)

3 logn
n

Temporal
connectivity
(∗ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner?

(size 2n− 4)

All the thresholds are sharp, except ? (open problem)
(sharp: ∃ε(n) = o(1), not true at (1− ε(n))p, true at (1 + ε(n))p)

14/18

Timeline of temporal reachability in Gn,p
For sufficiently large n, what happens when p increases?

0 1
1
n

logn
n

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(∼∗ ∼∗)

2 logn
n

First source
(1 ∗)

Most vertices
are sources
(∼∗ ∗)

4 logn
n

Pivotal spanner
(size 2n− 2)

3 logn
n

Temporal
connectivity
(∗ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner?

(size 2n− 4)

All the thresholds are sharp, except ? (open problem)
(sharp: ∃ε(n) = o(1), not true at (1− ε(n))p, true at (1 + ε(n))p)

14/18

Timeline of temporal reachability in Gn,p
For sufficiently large n, what happens when p increases?

0 1
1
n

logn
n

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(∼∗ ∼∗)

2 logn
n

First source
(1 ∗)

Most vertices
are sources
(∼∗ ∗)

4 logn
n

Pivotal spanner
(size 2n− 2)

3 logn
n

Temporal
connectivity
(∗ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner?

(size 2n− 4)

All the thresholds are sharp, except ? (open problem)
(sharp: ∃ε(n) = o(1), not true at (1− ε(n))p, true at (1 + ε(n))p)

15/18

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5t = 6t = 7t = 8

Analysis

I Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

I Once we have reached k vertices, there are k(n− k) potential edges.

I The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n
k=1

1
k(n−k) ≈ 2 logn

n
.

I Azuma’s inequality for concentration.

15/18

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1

t = 2t = 3t = 4t = 5t = 6t = 7t = 8

Analysis

I Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

I Once we have reached k vertices, there are k(n− k) potential edges.

I The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n
k=1

1
k(n−k) ≈ 2 logn

n
.

I Azuma’s inequality for concentration.

15/18

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1

t = 2

t = 3t = 4t = 5t = 6t = 7t = 8

Analysis

I Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

I Once we have reached k vertices, there are k(n− k) potential edges.

I The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n
k=1

1
k(n−k) ≈ 2 logn

n
.

I Azuma’s inequality for concentration.

15/18

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2

t = 3

t = 4t = 5t = 6t = 7t = 8

Analysis

I Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

I Once we have reached k vertices, there are k(n− k) potential edges.

I The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n
k=1

1
k(n−k) ≈ 2 logn

n
.

I Azuma’s inequality for concentration.

15/18

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3

t = 4

t = 5t = 6t = 7t = 8

Analysis

I Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

I Once we have reached k vertices, there are k(n− k) potential edges.

I The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n
k=1

1
k(n−k) ≈ 2 logn

n
.

I Azuma’s inequality for concentration.

15/18

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4

t = 5

t = 6t = 7t = 8

Analysis

I Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

I Once we have reached k vertices, there are k(n− k) potential edges.

I The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n
k=1

1
k(n−k) ≈ 2 logn

n
.

I Azuma’s inequality for concentration.

15/18

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5

t = 6

t = 7t = 8

Analysis

I Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

I Once we have reached k vertices, there are k(n− k) potential edges.

I The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n
k=1

1
k(n−k) ≈ 2 logn

n
.

I Azuma’s inequality for concentration.

15/18

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5t = 6

t = 7

t = 8

Analysis

I Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

I Once we have reached k vertices, there are k(n− k) potential edges.

I The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n
k=1

1
k(n−k) ≈ 2 logn

n
.

I Azuma’s inequality for concentration.

15/18

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5t = 6t = 7

t = 8

Analysis

I Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

I Once we have reached k vertices, there are k(n− k) potential edges.

I The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n
k=1

1
k(n−k) ≈ 2 logn

n
.

I Azuma’s inequality for concentration.

15/18

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5t = 6t = 7t = 8

Analysis

I Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

I Once we have reached k vertices, there are k(n− k) potential edges.

I The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n
k=1

1
k(n−k) ≈ 2 logn

n
.

I Azuma’s inequality for concentration.

15/18

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5t = 6t = 7t = 8

Analysis
I Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

I Once we have reached k vertices, there are k(n− k) potential edges.

I The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n
k=1

1
k(n−k) ≈ 2 logn

n
.

I Azuma’s inequality for concentration.

15/18

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5t = 6t = 7t = 8

Analysis
I Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

I Once we have reached k vertices, there are k(n− k) potential edges.

I The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n
k=1

1
k(n−k) ≈ 2 logn

n
.

I Azuma’s inequality for concentration.

15/18

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5t = 6t = 7t = 8

Analysis
I Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

I Once we have reached k vertices, there are k(n− k) potential edges.

I The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n
k=1

1
k(n−k) ≈ 2 logn

n
.

I Azuma’s inequality for concentration.

15/18

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5t = 6t = 7t = 8

Analysis
I Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

I Once we have reached k vertices, there are k(n− k) potential edges.

I The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n
k=1

1
k(n−k) ≈ 2 logn

n
.

I Azuma’s inequality for concentration.

15/18

Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5t = 6t = 7t = 8

Analysis
I Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

I Once we have reached k vertices, there are k(n− k) potential edges.

I The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n
k=1

1
k(n−k) ≈ 2 logn

n
.

I Azuma’s inequality for concentration.

16/18

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds
I ∼∗ ∼∗ ⇐⇒ ∀u, ∀v, a.a.s. v ∈ foremost(u) (logn/n)

I 1 ∗ ⇐⇒ a.a.s. ∃u,∀v, v ∈ foremost(u) (2 logn/n)
I ∼∗ ∗ ⇐⇒ ∀u, a.a.s. ∀v, v ∈ foremost(u) (2 logn/n)
I ∗ ∗ ⇐⇒ a.a.s ∀u, ∀v, v ∈ foremost(u) (3 logn/n)

LB: (∗ 1) + (logn/n), each non sink must have at least one new edge.
UB: (∗ ∼∗) + (logn/n), each non sink is reached from at least one sink.

Spanners

I Pivotal (∗ 1 ∗)⇐= (∗ ∼∗) + (∼∗ ∗) (4 logn/n)
I Optimal spanner (size 2n− 4) (4 logn/n)

Pivotal square. Sharp ?

I Nearly optimal spanner (size 2n+ o(n)) (3 logn/n)
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length logn/n:

I ∼∗ 1 (say u) By logn/n
I u ∼∗ between 2 logn/n and 3 logn/n.
I missing u between 0 and 2 logn
I u missing between logn/n and 3 logn/n
I missing missing between 0 and 3 logn/n

16/18

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds
I ∼∗ ∼∗ ⇐⇒ ∀u, ∀v, a.a.s. v ∈ foremost(u) (logn/n)
I 1 ∗ ⇐⇒ a.a.s. ∃u,∀v, v ∈ foremost(u) (2 logn/n)

I ∼∗ ∗ ⇐⇒ ∀u, a.a.s. ∀v, v ∈ foremost(u) (2 logn/n)
I ∗ ∗ ⇐⇒ a.a.s ∀u, ∀v, v ∈ foremost(u) (3 logn/n)

LB: (∗ 1) + (logn/n), each non sink must have at least one new edge.
UB: (∗ ∼∗) + (logn/n), each non sink is reached from at least one sink.

Spanners

I Pivotal (∗ 1 ∗)⇐= (∗ ∼∗) + (∼∗ ∗) (4 logn/n)
I Optimal spanner (size 2n− 4) (4 logn/n)

Pivotal square. Sharp ?

I Nearly optimal spanner (size 2n+ o(n)) (3 logn/n)
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length logn/n:

I ∼∗ 1 (say u) By logn/n
I u ∼∗ between 2 logn/n and 3 logn/n.
I missing u between 0 and 2 logn
I u missing between logn/n and 3 logn/n
I missing missing between 0 and 3 logn/n

16/18

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds
I ∼∗ ∼∗ ⇐⇒ ∀u, ∀v, a.a.s. v ∈ foremost(u) (logn/n)
I 1 ∗ ⇐⇒ a.a.s. ∃u,∀v, v ∈ foremost(u) (2 logn/n)
I ∼∗ ∗ ⇐⇒ ∀u, a.a.s. ∀v, v ∈ foremost(u) (2 logn/n)

I ∗ ∗ ⇐⇒ a.a.s ∀u, ∀v, v ∈ foremost(u) (3 logn/n)
LB: (∗ 1) + (logn/n), each non sink must have at least one new edge.
UB: (∗ ∼∗) + (logn/n), each non sink is reached from at least one sink.

Spanners

I Pivotal (∗ 1 ∗)⇐= (∗ ∼∗) + (∼∗ ∗) (4 logn/n)
I Optimal spanner (size 2n− 4) (4 logn/n)

Pivotal square. Sharp ?

I Nearly optimal spanner (size 2n+ o(n)) (3 logn/n)
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length logn/n:

I ∼∗ 1 (say u) By logn/n
I u ∼∗ between 2 logn/n and 3 logn/n.
I missing u between 0 and 2 logn
I u missing between logn/n and 3 logn/n
I missing missing between 0 and 3 logn/n

16/18

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds
I ∼∗ ∼∗ ⇐⇒ ∀u, ∀v, a.a.s. v ∈ foremost(u) (logn/n)
I 1 ∗ ⇐⇒ a.a.s. ∃u,∀v, v ∈ foremost(u) (2 logn/n)
I ∼∗ ∗ ⇐⇒ ∀u, a.a.s. ∀v, v ∈ foremost(u) (2 logn/n)
I ∗ ∗ ⇐⇒ a.a.s ∀u, ∀v, v ∈ foremost(u) (3 logn/n)

LB: (∗ 1) + (logn/n), each non sink must have at least one new edge.
UB: (∗ ∼∗) + (logn/n), each non sink is reached from at least one sink.

Spanners

I Pivotal (∗ 1 ∗)⇐= (∗ ∼∗) + (∼∗ ∗) (4 logn/n)
I Optimal spanner (size 2n− 4) (4 logn/n)

Pivotal square. Sharp ?

I Nearly optimal spanner (size 2n+ o(n)) (3 logn/n)
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length logn/n:

I ∼∗ 1 (say u) By logn/n
I u ∼∗ between 2 logn/n and 3 logn/n.
I missing u between 0 and 2 logn
I u missing between logn/n and 3 logn/n
I missing missing between 0 and 3 logn/n

16/18

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds
I ∼∗ ∼∗ ⇐⇒ ∀u, ∀v, a.a.s. v ∈ foremost(u) (logn/n)
I 1 ∗ ⇐⇒ a.a.s. ∃u,∀v, v ∈ foremost(u) (2 logn/n)
I ∼∗ ∗ ⇐⇒ ∀u, a.a.s. ∀v, v ∈ foremost(u) (2 logn/n)
I ∗ ∗ ⇐⇒ a.a.s ∀u, ∀v, v ∈ foremost(u) (3 logn/n)

LB: (∗ 1) + (logn/n), each non sink must have at least one new edge.
UB: (∗ ∼∗) + (logn/n), each non sink is reached from at least one sink.

Spanners

I Pivotal (∗ 1 ∗)⇐= (∗ ∼∗) + (∼∗ ∗) (4 logn/n)
I Optimal spanner (size 2n− 4) (4 logn/n)

Pivotal square. Sharp ?

I Nearly optimal spanner (size 2n+ o(n)) (3 logn/n)
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length logn/n:

I ∼∗ 1 (say u) By logn/n
I u ∼∗ between 2 logn/n and 3 logn/n.
I missing u between 0 and 2 logn
I u missing between logn/n and 3 logn/n
I missing missing between 0 and 3 logn/n

16/18

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds
I ∼∗ ∼∗ ⇐⇒ ∀u, ∀v, a.a.s. v ∈ foremost(u) (logn/n)
I 1 ∗ ⇐⇒ a.a.s. ∃u,∀v, v ∈ foremost(u) (2 logn/n)
I ∼∗ ∗ ⇐⇒ ∀u, a.a.s. ∀v, v ∈ foremost(u) (2 logn/n)
I ∗ ∗ ⇐⇒ a.a.s ∀u, ∀v, v ∈ foremost(u) (3 logn/n)

LB: (∗ 1) + (logn/n), each non sink must have at least one new edge.
UB: (∗ ∼∗) + (logn/n), each non sink is reached from at least one sink.

Spanners
I Pivotal (∗ 1 ∗)⇐= (∗ ∼∗) + (∼∗ ∗) (4 logn/n)

I Optimal spanner (size 2n− 4) (4 logn/n)
Pivotal square. Sharp ?

I Nearly optimal spanner (size 2n+ o(n)) (3 logn/n)
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length logn/n:

I ∼∗ 1 (say u) By logn/n
I u ∼∗ between 2 logn/n and 3 logn/n.
I missing u between 0 and 2 logn
I u missing between logn/n and 3 logn/n
I missing missing between 0 and 3 logn/n

16/18

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds
I ∼∗ ∼∗ ⇐⇒ ∀u, ∀v, a.a.s. v ∈ foremost(u) (logn/n)
I 1 ∗ ⇐⇒ a.a.s. ∃u,∀v, v ∈ foremost(u) (2 logn/n)
I ∼∗ ∗ ⇐⇒ ∀u, a.a.s. ∀v, v ∈ foremost(u) (2 logn/n)
I ∗ ∗ ⇐⇒ a.a.s ∀u, ∀v, v ∈ foremost(u) (3 logn/n)

LB: (∗ 1) + (logn/n), each non sink must have at least one new edge.
UB: (∗ ∼∗) + (logn/n), each non sink is reached from at least one sink.

Spanners
I Pivotal (∗ 1 ∗)⇐= (∗ ∼∗) + (∼∗ ∗) (4 logn/n)
I Optimal spanner (size 2n− 4) (4 logn/n)

Pivotal square. Sharp ?

I Nearly optimal spanner (size 2n+ o(n)) (3 logn/n)
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length logn/n:

I ∼∗ 1 (say u) By logn/n
I u ∼∗ between 2 logn/n and 3 logn/n.
I missing u between 0 and 2 logn
I u missing between logn/n and 3 logn/n
I missing missing between 0 and 3 logn/n

16/18

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds
I ∼∗ ∼∗ ⇐⇒ ∀u, ∀v, a.a.s. v ∈ foremost(u) (logn/n)
I 1 ∗ ⇐⇒ a.a.s. ∃u,∀v, v ∈ foremost(u) (2 logn/n)
I ∼∗ ∗ ⇐⇒ ∀u, a.a.s. ∀v, v ∈ foremost(u) (2 logn/n)
I ∗ ∗ ⇐⇒ a.a.s ∀u, ∀v, v ∈ foremost(u) (3 logn/n)

LB: (∗ 1) + (logn/n), each non sink must have at least one new edge.
UB: (∗ ∼∗) + (logn/n), each non sink is reached from at least one sink.

Spanners
I Pivotal (∗ 1 ∗)⇐= (∗ ∼∗) + (∼∗ ∗) (4 logn/n)
I Optimal spanner (size 2n− 4) (4 logn/n)

Pivotal square. Sharp ?

I Nearly optimal spanner (size 2n+ o(n)) (3 logn/n)
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length logn/n:

I ∼∗ 1 (say u) By logn/n
I u ∼∗ between 2 logn/n and 3 logn/n.
I missing u between 0 and 2 logn
I u missing between logn/n and 3 logn/n
I missing missing between 0 and 3 logn/n

17/18

Random Non-Simple Temporal Graphs

Hn,p: Each edge independently appears according to a rate 1 Poisson
process stopped at time p.

5

24
16,65

17,22

73
,7

8

72

60

Theorem
All our thresholds also hold for Hn,p.

18/18

Open questions (deterministic)

Better spanners for temporal cliques
I Is O(n logn) optimal for cliques? Is O(n) possible?

Experiments: n sparsest spanner (# edges)
4 4 or 5 exhaustive search
5 6 or 7 exhaustive search
6 8 or 9 exhaustive search
7 10 or 11 exhaustive search
... ...
20 36 or 37 millions random instances

→ 2n− 4 ≤ OPT ≤ 2n− 3 ?

Relaxing the complete graph assumption
I Can more general classes of dense graphs be sparsified?

→ Recall that ∃ unsparsifiable graphs of density Θ(n2)

→ Is there a family of graphs of density < 1 which admits sparse spanners?

Thank you!

18/18

Open questions (deterministic)

Better spanners for temporal cliques
I Is O(n logn) optimal for cliques? Is O(n) possible?

Experiments: n sparsest spanner (# edges)
4 4 or 5 exhaustive search
5 6 or 7 exhaustive search
6 8 or 9 exhaustive search
7 10 or 11 exhaustive search
... ...
20 36 or 37 millions random instances

→ 2n− 4 ≤ OPT ≤ 2n− 3 ?

Relaxing the complete graph assumption
I Can more general classes of dense graphs be sparsified?

→ Recall that ∃ unsparsifiable graphs of density Θ(n2)

→ Is there a family of graphs of density < 1 which admits sparse spanners?

Thank you!

18/18

Open questions (deterministic)

Better spanners for temporal cliques
I Is O(n logn) optimal for cliques? Is O(n) possible?

Experiments: n sparsest spanner (# edges)
4 4 or 5 exhaustive search
5 6 or 7 exhaustive search
6 8 or 9 exhaustive search
7 10 or 11 exhaustive search
... ...
20 36 or 37 millions random instances

→ 2n− 4 ≤ OPT ≤ 2n− 3 ?

Relaxing the complete graph assumption

I Can more general classes of dense graphs be sparsified?

→ Recall that ∃ unsparsifiable graphs of density Θ(n2)

→ Is there a family of graphs of density < 1 which admits sparse spanners?

Thank you!

18/18

Open questions (deterministic)

Better spanners for temporal cliques
I Is O(n logn) optimal for cliques? Is O(n) possible?

Experiments: n sparsest spanner (# edges)
4 4 or 5 exhaustive search
5 6 or 7 exhaustive search
6 8 or 9 exhaustive search
7 10 or 11 exhaustive search
... ...
20 36 or 37 millions random instances

→ 2n− 4 ≤ OPT ≤ 2n− 3 ?

Relaxing the complete graph assumption
I Can more general classes of dense graphs be sparsified?

→ Recall that ∃ unsparsifiable graphs of density Θ(n2)

→ Is there a family of graphs of density < 1 which admits sparse spanners?

Thank you!

18/18

Open questions (deterministic)

Better spanners for temporal cliques
I Is O(n logn) optimal for cliques? Is O(n) possible?

Experiments: n sparsest spanner (# edges)
4 4 or 5 exhaustive search
5 6 or 7 exhaustive search
6 8 or 9 exhaustive search
7 10 or 11 exhaustive search
... ...
20 36 or 37 millions random instances

→ 2n− 4 ≤ OPT ≤ 2n− 3 ?

Relaxing the complete graph assumption
I Can more general classes of dense graphs be sparsified?

→ Recall that ∃ unsparsifiable graphs of density Θ(n2)

→ Is there a family of graphs of density < 1 which admits sparse spanners?

Thank you!

