
PADEC
Interactive Proof for

Self-Stabilizing Algorithms
Karine Altisen, Pierre Corbineau, Stéphane Devismes

Fontainebleau, le 08/11/2021

How to Gain Confidence into Distributed Algorithms?

Why? Complex statements:
Algorithms, Topologies, Scheduling assumptions...

Pen&paper Proof (usual practice)

Proof = artifact to convince of the validity of an assertion

From [Lamport, How to Write a 21st Century Proof, 2012]
“Proofs are still written in prose pretty much the way they were in the 17th
century. [...]"
“Proofs are unnecessarily hard to understand, and they encourage
sloppiness that leads to errors."

K. Altisen, P. Corbineau, S. Devismes PADEC -- 2

Pen&paper Proof (usual practice) → prone to error?

Test, Simulation → few pattern cases

Verification, e.g. Model-Checking → scaling

Machine-checked Proof (proof assistant)
→ heavy development
→ correctness, few convergence
→ very few quantitative properties
→ no complexity

➔ PADEC
A Coq Framework to Prove Self-stabilizing Algorithms
in the Atomic State Model (ASM)

K. Altisen, P. Corbineau, S. Devismes PADEC -- 3

How to Gain Confidence into Distributed Algorithms?

Instantiate Algorithm:
- State = a record of local var.
- run = a faithful translation

Express Assumption:
- Daemon e.g., weakly fair
- Network, e.g. rooted, bidir,

connected

Express Specification:
- Self-stabilizing w.r.t. a problem

e.g., BFS spanning tree
- Complexity, e.g. convergence

requires at most Diameter Rounds

Prove it!!

K. Altisen, P. Corbineau, S. Devismes PADEC -- 6

PADEC – Short How To

Algorithm

State

run

Network

NodeChannel

r

K. Altisen, P. Corbineau, S. Devismes PADEC -- 7

PADEC – Big Picture

Computational Model
ASM Semantics

Assumptions
- Daemons
- Networks

Specification
- Self-Stabilization
- Problem
- Complexity: Steps, Rounds

Composition
- Hierarchical Collateral

Relational <->
Functional

Unfair, weakly fair,
synchronous

Connected, ring, tree
Identified, (semi-)anonymous
Measures (distance, diameter)

Tools for convergence
Lexico, Well-founded,
Potential & multisets

Definitions

Induction Schema

BFS spanning tree
Token circulation
Clustering

Examples

Proof of
- Specification
- Complexity

Common proof patterns & results

KDomSet, KClustering

Case studies

Dijkstra Token Ring (steps)

BFS spanning tree (rounds)

BFS + KClustering

Libraries:
Setoid support
Streams, LTL,
Counting, …

K. Altisen, P. Corbineau, S. Devismes PADEC -- 8

Computational Model – ASM Semantics

𝛾0 𝛾1 𝛾2

Step Step

Configuration 𝛾𝑖: Env (state of all nodes Env := Node -> State)

Atomic step - read local & neighbor variables → enabled?
- daemon selection
- node computation→ update local variables

relation := Env -> Env -> Prop

Execution Exec := Stream Env

such that (predicate is_exec: Exec -> Prop)
- Each two consecutive configurations are linked by
- if the stream is finite, the last configuration is terminal

Step

Step

Relational semantics
<->
Functional semantics

K. Altisen, P. Corbineau, S. Devismes PADEC -- 9

Assumptions about Daemons & Networks

Networks
- Basic properties (bidirectional, connected, rooted)
- Topologies (ring, tree)
- Measures (distance, diameter)

Daemons – model the asynchronism in the ASM model
In PADEC: a predicate over executions Exec -> Prop

Classical daemons available in PADEC:
unfair, weakly fair, synchronous…

unfair e := True (* no constraint *)

weakly_fair e := (* a node which is enabled is

eventually activated or neutralized, and this forever *)

∀ p, Always (fun e => EN p e -> Eventually (AN p) e) e

K. Altisen, P. Corbineau, S. Devismes PADEC -- 10

Specification – Self-Stabilization

Defined w.r.t. a problem specification
SPEC: Exec -> Prop

self_stab SPEC :=

∃LC: Env -> Prop,

∀e,

Closure: if e starts in LC then
Always e remains in LC

Convergence: Eventually e
reaches LC

Specification: if e starts in LC then
SPEC e

Tools for Convergence :
- Lexicographic ordering,
- Well-foundedness,
- Potential & Multiset ordering

K. Altisen, P. Corbineau, S. Devismes PADEC -- 11

Specification – Problem - Complexity

Problems
- BFS spanning tree
- Token circulation
- Clustering
Expressed in SPEC: Exec -> Prop

Complexity measures
- Steps (number of atomic steps in executions)
- Rounds

Dijkstra Token Ring (steps)

BFS spanning tree (rounds)

Induction Schema – e.g. (simplified):
P(n): Exec -> Prop e: Exec

If ∀e, ∀n ≤ B, P(n) e -> e reaches P(n+1) in at most one Step/Round
If P(0) e holds
Then e reaches P(B) in at most B Steps/Rounds

K. Altisen, P. Corbineau, S. Devismes PADEC -- 12

Hierarchical Collateral Composition

A1 assumes H1
is self-stabilizing w.r.t. SPEC1 and terminates (silent)

A2 shares variables with A1 but cannot overwrite them
assumes SPEC1
is self-stabilizing w.r.t. SPEC2

weakly fair daemon (so that A1 can converge)

Proof of specification: A1;A2 is self-stabilizing, w.r.t. SPEC2 assuming H1
(convergence is quite tricky)

Proof of complexity: round complexity is additive in this case
(WIP)

A1;A2

K. Altisen, P. Corbineau, S. Devismes PADEC -- 13

Comments and Lessons

PADEC: a Coq Framework to prove Self-Stabilizing Algorithms

General Model: (not dedicated to a particular case)
Atomic State Model, Daemons, …
→ Close to designer

Reasoning on formal proof: as close as possible of the pen&paper proof
→ Get rid of generality using simplifying tools!

Generic powerful tools: counting, slices, graph properties…

Formal proofs: strengthen assumptions; develop new proofs
and sometimes bring new results!

K. Altisen, P. Corbineau, S. Devismes PADEC -- 14

PADEC

http://www-verimag.imag.fr/~altisen/PADEC/

#loc = 14k (spec); 44k (proof); 8k (comments)

http://www-verimag.imag.fr/~altisen/PADEC/

