### On the Freeze-Tag Problem

# **Cyril Gavoille** joint work with N. Bonichon, A. Casteigts, N. Hanusse







GT Graph & Optimization LaBRI – Talence Avril 7th, 2023



A robot in charge of awaking a team of asleep robots.

#### Subject to:

- awaking by contacts (need a move to meet)
- any awaked robot can help to awake others
- robots lie and move in the Euclidean plane
- constant velocity moves

#### Goal:

- to minimize the **time** to awake all the robots
- with a good schedule ...

[demo]

## Example (basic)

# (1/3)

#pts = 8 diam = 1.890 ecc = 1.000





٠

## Example (basic)

# (1/3)



## Example (Jupiter)

# (2/3)

#pts = 16 diam = 1.989 ecc = 1.000

## Example (Jupiter)

# (2/3)



## Example (Jupiter)





## Example (convex)

# (3/3)

22

convex pts #pts = 12 diam = 1.783 ecc = 1.000 time = 1.372s seed = 3906

## Example (convex)

# (3/3)



## https://topp.openproblem.net/p35



#### **The Open Problems Project**

Next: Problem 36: Inplace Convex Hull of a Simple Polygonal Chain

Previous: Problem 34: Extending Pseudosegment Arrangements by Subdivision

#### Problem 35: Freeze-Tag: Optimal Strategies for Awakening a Swarm of Robots

#### Statement

An optimization problem that naturally arises in the study of "swarm robotics" is to wake up a set of "asleep" robots, starting with only on e "wake" robot. One robot can only avaken another when they are in the same location. As soon as a robot is awake, it may assist in waking up other robots. The goal is to compute an optimal *awakening schedulg* such that all robots are awake by time t", for the smallest possible value of t" (the optimal *makespon*). The *n* robots are initially at *n* points of a metric space. The problem is equivalent to finding a spanning tree with maximum out-degree two that minimizes the radius from a fixed source.

Is it NP-hard to determine an optimal awakening schedule for robots in the Euclidean (or  $L_1$ ) plane? In more general metric spaces, can one obtain an approximation algorithm with better than  $O(\log n)$  performance ratio?

#### Origin

#### [ABF+02]

#### Status/Conjectures

[ABF+02] conjecture that the freeze-tag problem is NP-hard in the Euclidean (or  $L_1$ ) plane. (They show it to be NP-complete in star metrics.)

#### Master student projects at U. Bordeaux [youtube]

FREEZE-TAG PROBLEM (basic) Input: a source  $s \in \mathbb{R}^2$ a set  $P \subseteq \mathbb{R}^2$  of *n* points Output: a wake-up tree for (s, P) of minimum depth w.r.t.  $\ell_2$ -norm

A wake-up tree for (s, P) is a binary tree spanning  $\{s\} \cup P$  of root s which has at most 1 child.

**Variants** (space for moves):  $\ell_p$ -norm, metric-spaces, weighted graphs, non-metric spaces, ...,  $\mathbb{R}^3$ , ...

<u>(1/3)</u>

(1/3)

[AY16,J17] NP-Hard for  $(\mathbb{R}^3, \ell_2)$ , from Hamiltonian Path in 2D Subgrid

(1/3)

[AY16,J17] NP-Hard for  $(\mathbb{R}^3, \ell_2)$ , from Hamiltonian Path in 2D Subgrid

[DR17] NP-Hard for  $(\mathbb{R}^3, \ell_p)$ , p > 1, from Dominating Set

(1/3)

[AY16,J17] NP-Hard for  $(\mathbb{R}^3, \ell_2)$ , from Hamiltonian Path in 2D Subgrid

[DR17] NP-Hard for  $(\mathbb{R}^3, \ell_p)$ , p > 1, from Dominating Set

[AAY17] NP-Hard for  $(\mathbb{R}^2, \ell_2)$ , from Monotone 3SAT

## Known Results: Approximation (2/3)

[ABF+06] O(log n)-approximation for locally-bounded weighted graphs (bounded aspect ratio for incident edges)

## Known Results: Approximation (2/3)

[ABF+06] O(log n)-approximation for locally-bounded weighted graphs (bounded aspect ratio for incident edges)

[ABF+06]  $(1 + \varepsilon)$ -approximation for  $(\mathbb{R}^d, \ell_p)$  for fixed d and any p, in time  $O(n \log n) + 2^{(1/\varepsilon)^{O(1)}}$ 

if *ε* < 1/57



#### [YBMK15] For $(\mathbb{R}^2, \ell_2)$ and unit source radius, $\exists$ wake-up tree of depth < 10.1 computable in O(n) time



For  $(\mathbb{R}^2, \ell_2)$  and unit source radius



r=1

#### For $(\mathbb{R}^2, \ell_2)$ and unit source radius

•  $\forall P \text{ in convex position, } \exists \text{ wake-up tree of depth} \\ \leq 1 + 2\sqrt{2} \approx 3.8, \text{ achieved for } n = |P| = 4$ 



#### For $(\mathbb{R}^2, \ell_2)$ and unit source radius

- $\forall P \text{ in convex position, } \exists \text{ wake-up tree of depth} \\ \leq 1 + 2\sqrt{2} \approx 3.8 \text{, achieved for } n = |P| = 4$
- $\forall P, \exists$  wake-up tree of depth  $\leq 3 + O(1/\sqrt{n})$



#### For $(\mathbb{R}^2, \ell_2)$ and unit source radius

- $\forall P \text{ in convex position, } \exists \text{ wake-up tree of depth} \\ \leq 1 + 2\sqrt{2} \approx 3.8, \text{ achieved for } n = |P| = 4$
- $\forall P, \exists$  wake-up tree of depth  $\leq 3 + O(1/\sqrt{n})$
- $\exists P, \forall$  wake-up tree has depth  $\geq 3 + \Omega(1/n^{1/3})$



#### For $(\mathbb{R}^2, \ell_2)$ and unit source radius

- $\forall P \text{ in convex position, } \exists \text{ wake-up tree of depth} \\ \leq 1 + 2\sqrt{2} \approx 3.8 \text{, achieved for } n = |P| = 4$
- $\forall P, \exists$  wake-up tree of depth  $\leq 3 + O(1/\sqrt{n})$
- $\exists P, \forall$  wake-up tree has depth  $\geq 3 + \Omega(1/n^{1/3})$

For  $(\mathbb{R}^2, \ell_1)$  and unit source radius

•  $\forall P, \exists$  wake-up tree of depth  $\leq 5$  (optimal)



For  $(\mathbb{R}^2, \ell_2)$  and unit source radius

- $\forall P \text{ in convex position, } \exists \text{ wake-up tree of depth} \\ \leq 1 + 2\sqrt{2} \approx 3.8, \text{ achieved for } n = |P| = 4$
- $\forall P, \exists$  wake-up tree of depth  $\leq 3 + O(1/\sqrt{n})$
- $\exists P, \forall$  wake-up tree has depth  $\geq 3 + \Omega(1/n^{1/3})$

For  $(\mathbb{R}^2, \ell_1)$  and unit source radius

•  $\forall P, \exists$  wake-up tree of depth  $\leq 5$  (optimal)

Exact algorithm running in time  $3^n \cdot n^{O(1)}$ (holds for any non-metric space), experiments, heuristics, ...

### **Brute-Force Algorithms**

#### Looks like to TSP (cycle or path vs. binary tree)



 $n!c^n$  outputs (= wake-up trees) to explore !

### Dynamic Programming

FOR RELEASE: A.M's, Thursday January 2, 1964 FROM: International Business Machines Corp. Data Processing Division 112 East Post Road White Plains, New York

> Bert Reisman 914 WHite Plains 9-1900

WHITE PLAINS, N.Y., Jan. 2.... IBM mathematicians (left to right) Michael Held, Richard Shareshian and Richard M. Karp review the manual describing a new computer program which provides business and industry with a practical scientific method for handling a wide variety of complex scheduling tasks. The program, available to users of the IBM 7090 and 7094 data processing systems, consists of a set of 4, 500 instructions which tell the computer what to do with data fed into it. It grew out of the trio's efforts to find solutions for a classic mathematical problem -- the "Traveling Salesman" problem -- which has long defied eolution by man, or by the fastest computers he uses.



#### [Held-Karp'64] $O(n^2 2^n)$ Best known complexity for non-metric TSP

#### Recurrence & Memorization

opt(r, X, b) := optimal time to awake all asleep robots of  $X \subseteq P$  from  $r \notin X$  with  $b \in \{1, 2\}$  awaked robots at r

opt(s, P, 1)?

#### Recurrence & Memorization

opt(r, X, b) := optimal time to awake all asleep robots of  $X \subseteq P$  from  $r \notin X$  with  $b \in \{1, 2\}$  awaked robots at r

















$$\#\{(r, X, b)\} = (1+n) \times \binom{n}{x} \times 2 \qquad x := |X|$$





$$#\{(r, X, b)\} = (1 + n) \times \binom{n}{x} \times 2 \qquad x := |X|$$
  
#visit < # {(r, X, b)} × \Delta \Delta = 2<sup>x</sup>





$$\#\{(r, X, b)\} = (1 + n) \times \binom{n}{x} \times 2 \qquad x := |X|$$
  
 
$$\#\text{visit} < \#\{(r, X, b)\} \times \Delta \qquad \Delta = 2^{x}$$
  
 
$$\text{lookup} = O(\log(\#\{(r, X, b)\})) = O(n)$$





$$TIME(r,X,b) = \#visit(r,X,b) \times lookup(r,X,b) + \#\{(r,X,b)\} \times cost(r,X,b)$$

$$#\{(r, X, b)\} = (1 + n) \times \binom{n}{x} \times 2 \qquad x := |X|$$
  

$$#visit < \#\{(r, X, b)\} \times \Delta \qquad \Delta = 2^{x}$$
  

$$lookup = O(log(\#\{(r, X, b)\})) = O(n)$$
  

$$cost = O(lookup + x \cdot 2^{x})$$





$$TIME(r,X,b) = \#visit(r,X,b) \times lookup(r,X,b) + \#\{(r,X,b)\} \times cost(r,X,b)$$

$$\#\{(r, X, b)\} = (1 + n) \times \binom{n}{x} \times 2 \qquad x := |X|$$

$$\#\text{visit} < \#\{(r, X, b)\} \times \Delta \qquad \Delta = 2^{x}$$

$$\text{lookup} = O(\log(\#\{(r, X, b)\})) = O(n)$$

$$\text{cost} = O(\operatorname{lookup} + x \cdot 2^{x})$$

$$\max_{X \subseteq P} \left\{ 2^{x} \cdot \binom{n}{x} \right\} = 3^{n} / \Theta(\sqrt{n})$$





$$TIME(r,X,b) = \#visit(r,X,b) \times lookup(r,X,b) + \#\{(r,X,b)\} \times cost(r,X,b)$$

$$#\{(r, X, b)\} = (1 + n) \times \binom{n}{x} \times 2 \qquad x := |X|$$
  

$$#visit < \#\{(r, X, b)\} \times \Delta \qquad \Delta = 2^{x}$$
  

$$lookup = O(log(\#\{(r, X, b)\})) = O(n)$$
  

$$cost = O(lookup + x \cdot 2^{x})$$

$$\max_{X\subseteq P}\left\{2^x\cdot \binom{n}{x}\right\}=3^n/\Theta(\sqrt{n})$$

$$\Rightarrow \quad \text{TIME}(s, P, 1) = 3^n \cdot O(n^{3/2})$$

### Python

| •••   |                                                                                            |                                       |                                            |                              |                 |
|-------|--------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------|------------------------------|-----------------|
| G     | 🔹 freez                                                                                    | -tag.py •                             |                                            |                              |                 |
| -     | Users > gavoille > Desktop > Recherches > Freeze-Tag-Problem > 🌵 freeze-tag.py > 🛇 optimal |                                       |                                            |                              |                 |
|       |                                                                                            |                                       |                                            |                              |                 |
|       | 708                                                                                        | @lru_cache(maxsize=None)              |                                            |                              |                 |
|       |                                                                                            | <pre>def optimal(r,A,b):</pre>        |                                            |                              |                 |
|       |                                                                                            |                                       |                                            |                              |                 |
|       |                                                                                            | n = len(A)                            |                                            |                              |                 |
|       |                                                                                            |                                       |                                            |                              |                 |
| æ     |                                                                                            | <pre>xmin = UPPER_BOUND # major</pre> |                                            |                              |                 |
|       |                                                                                            |                                       |                                            |                              | nerine concerne |
| ß     |                                                                                            | if b:                                 |                                            |                              | ESERCENCERCER,  |
| ш     |                                                                                            |                                       |                                            |                              |                 |
|       |                                                                                            |                                       |                                            |                              |                 |
|       |                                                                                            |                                       | ******                                     |                              |                 |
|       |                                                                                            |                                       |                                            |                              |                 |
|       |                                                                                            | 1f n == 0: return 0, [                | <b>r]</b> # c'est fini: r est une feui     |                              |                 |
|       | 721                                                                                        |                                       |                                            |                              |                 |
|       | 722                                                                                        |                                       |                                            |                              |                 |
|       | 723<br>724                                                                                 | for v in A: # pour cha                |                                            |                              |                 |
|       | 724                                                                                        | B = C[:] # B = cop                    |                                            |                              |                 |
|       | 725                                                                                        |                                       | Re de A<br>B\{v} = A\{v}, NB: pas possible | do fairo romavo ci tualo     |                 |
|       | 726                                                                                        |                                       | <pre>ble(B),False) # calcul de la so</pre> |                              |                 |
| 8     | 728                                                                                        | x += dist(r, v) # a                   |                                            | caciton pour (470)           |                 |
|       | 729                                                                                        |                                       | a trouvé mieux en commençant pa            |                              |                 |
| ર્જી  | 730                                                                                        |                                       | f # on garde la meilleure solut            |                              |                 |
|       | 731                                                                                        | x x x x x x x x x x x x x x x x x x x |                                            |                              |                 |
| ⊗ o ∆ | 10                                                                                         |                                       | L 708. col 1 Espaces : 4 UTF               | -8 LF ( Pvthon 3.7.364-bit 🗸 | Spell 🖉 🗋       |

In practice, 17 points takes 5'30" (Python) vs.  $17! \times 10^{-9}s \approx 355,687s \approx 4.1$  days

 $\alpha_0 = 0$ 

 $\begin{array}{c} \alpha_0 = \mathbf{0} \\ \alpha_1 = \mathbf{1} \end{array}$ 

 $\begin{array}{l} \alpha_0 = 0\\ \alpha_1 = 1\\ \alpha_2 = 3, \quad \forall n \ge 2, \, \alpha_n \ge 3 \end{array}$ 

[demo]

demo

$$\alpha_0 = 0$$
  

$$\alpha_1 = 1$$
  

$$\alpha_2 = 3, \quad \forall n \ge 2, \alpha_n \ge 3$$
  

$$\alpha_3 = 3$$

$$\begin{array}{l} \alpha_{0} = 0 \\ \alpha_{1} = 1 \\ \alpha_{2} = 3, \quad \forall n \geq 2, \, \alpha_{n} \geq 3 \\ \alpha_{3} = 3 \\ \alpha_{4} = 1 + 2\sqrt{2} \approx 3.8 \\ \alpha_{5,6,7} \leq \alpha_{4} \\ \vdots \\ \alpha_{n} < 5 + 2\sqrt{2} + \sqrt{5} \approx 10.1 \end{array} \qquad \text{[demo]}$$

Theorem (warm-up)  $\forall n \in \mathbb{N}^*, \quad \alpha_n < 3 + 8\pi/\sqrt{n}$ 



The time to awake robots in a slope- $\theta$  cone from its apex is  $cone(\theta) < 1 + 2\theta$ 

Theorem (warm-up)  
$$\forall n \in \mathbb{N}^*, \quad \alpha_n < 3 + 8\pi/\sqrt{n}$$

 $\operatorname{cone}(\theta) < 1 + 2\theta$ 

 $\Rightarrow \alpha_n \leq \operatorname{cone}(2\pi) < 1 + 4\pi < 13.6$ 

Theorem (warm-up)  
$$\forall n \in \mathbb{N}^*, \quad \alpha_n < 3 + 8\pi/\sqrt{n}$$

 $\operatorname{cone}(\theta) < 1 + 2\theta$ 

 $\Rightarrow \quad \alpha_n \leq \operatorname{cone}(2\pi) < 1 + 4\pi < 13.6$  $\Rightarrow \quad \alpha_n \leq 2 + \operatorname{cone}(\pi) < 3 + 2\pi < 9.3$ 

## Theorem (warm-up) $\forall n \in \mathbb{N}^*, \quad \alpha_n < 3 + 8\pi/\sqrt{n}$



 $\Rightarrow \alpha_n \leq 2\text{cone}(2\pi/\sqrt{n}) + 1 < 3 + 8\pi/\sqrt{n}$ [ $\alpha_n < 10.1$  if  $n \geq 13$  and  $\alpha_n < \alpha_4$  if  $n \geq 921$ ]

### Better Cones!

**Strategy.** Minimize zigzags, larger region for the awaked robot, 61% better than 50%!



• Monotone in height:  $\sum_i \ell_i = 1$ 



### Better Cones!

**Strategy.** Minimize zigzags, larger region for the awaked robot, 61% better than 50%!



- Monotone in height:  $\sum_i \ell_i = 1$
- Contribution in  $\theta$  (zigzags):  $f(\theta)$ ?



### Better Cones!

**Strategy.** Minimize zigzags, larger region for the awaked robot, 61% better than 50%!



• Contribution in  $\theta$  (zigzags):  $c_{\text{opt}}$ ?  $f(\theta) = \max\{\theta + f((1-c)\theta), c\theta + f(c\theta)\}$ 



# Solving $f(\theta)$ ...

 $f(\theta) = \alpha \theta$ , for some  $\alpha$ 

$$f(\theta) = \max \{\theta + f((1-c)\theta), c\theta + f(c\theta)\}$$
  

$$\alpha \theta = \max \{\theta + \alpha(1-c)\theta, c\theta + \alpha c\theta\}$$
  

$$c? \quad c \ge 1/\alpha \text{ and } c \ge \alpha/(1+\alpha)$$
  

$$1/\alpha = \alpha/(1+\alpha) \quad \Leftrightarrow \quad 1+\alpha = \alpha^2$$
  

$$\Rightarrow \alpha = (1+\sqrt{5})/2 = \varphi, \quad c_{opt} = 1/\alpha \approx 61\%$$

### Lemma

$$\operatorname{cone}(\theta) \leq 1 + f(\theta) = 1 + \varphi \theta$$

# Solving $f(\theta)$ ...

 $f(\theta) = \alpha \theta$ , for some  $\alpha$ 

$$f(\theta) = \max \{\theta + f((1-c)\theta), c\theta + f(c\theta)\}$$
  

$$\alpha \theta = \max \{\theta + \alpha(1-c)\theta, c\theta + \alpha c\theta\}$$
  

$$c? \quad c \ge 1/\alpha \text{ and } c \ge \alpha/(1+\alpha)$$
  

$$1/\alpha = \alpha/(1+\alpha) \quad \Leftrightarrow \quad 1+\alpha = \alpha^2$$
  

$$\Rightarrow \alpha = (1+\sqrt{5})/2 = \varphi, \quad c_{opt} = 1/\alpha \approx 61\%$$

#### Lemma

$$\operatorname{cone}(\theta) \leq 1 + f(\theta) = 1 + \varphi \theta$$

 $\Rightarrow \alpha_n \leq 2 + \operatorname{cone}(\pi) \leq 3 + \varphi \pi < 8.1$ 

## Theorem $\forall n \in \mathbb{N}^*, \quad \alpha_n \leq 3 + 4\varphi \pi / \sqrt{n}$

with some refinements,  $\alpha_n \leq 1 + 2\sqrt{2}$  if  $n \geq 285$ .

## **Other Shapes**

### rect(w, h): time to awake a $w \times h$ rectangle

#### Lemma

### $\operatorname{rect}(w,h) \leq w + (1+\varphi)h$

## **Other Shapes**

### rect(w, h): time to awake a $w \times h$ rectangle

#### Lemma

 $\operatorname{rect}(w,h) \leq w + (1+\varphi)h$ 

#### Theorem

 $\forall n \in \mathbb{N}^*, \quad \alpha_n \leq 1 + \operatorname{rect}(2, 1) \leq 4 + \varphi < 5.7$ 



## **Other Shapes**

### rect(w, h): time to awake a $w \times h$ rectangle

#### Lemma

 $\operatorname{rect}(w,h) \leq w + (1+\varphi)h$ 

#### Theorem

$$\forall n \in \mathbb{N}^*, \quad \alpha_n \leq 1 + \operatorname{rect}(2, 1) \leq 4 + \varphi < 5.7$$

### ... and more generally for $\ell_p$ -norms

### Theorem

$$\forall n \in \mathbb{N}^*, \forall p \ge 1, \quad \alpha_{n,p} \le 4 + \varphi + \lambda(p) < 6.2$$
  
where  $\lambda(p) \in [0, \frac{1}{2}]$  and  $\lambda(2) = 0$ 

## **Open Problems**

•  $\alpha_n \leq \alpha_4$  for every *n*?

• 
$$\alpha_n \leq \alpha_4$$
 for every *n*?

• 
$$\alpha_{n,p} \leq \alpha_{4,p} = 1 + 2^{1 + \max\{1/p, 1 - 1/p\}}$$
 for all *n* and *p*?

- $\alpha_n \leq \alpha_4$  for every *n*?
- $\alpha_{n,p} \leq \alpha_{4,p} = 1 + 2^{1 + \max\{1/p, 1-1/p\}}$  for all *n* and *p*?
- Polynomial time if *P* is convex?

## **Open Problems**

- $\alpha_n \leq \alpha_4$  for every *n*?
- $\alpha_{n,p} \leq \alpha_{4,p} = 1 + 2^{1 + \max\{1/p, 1-1/p\}}$  for all *n* and *p*?
- Polynomial time if *P* is convex?

# THAT'S THE END

