On the Freeze-Tag Problem

Cyril Gavoille joint work with

N. Bonichon, A. Casteigts, N. Hanusse

université
dBORDEAUX

LaBRI

GT Graph \& Optimization
LaBRI - Talence
Avril 7th, 2023

Context

A robot in charge of awaking a team of asleep robots.

Subject to:

- awaking by contacts (need a move to meet)
- any awaked robot can help to awake others
- robots lie and move in the Euclidean plane
- constant velocity moves

Goal:

- to minimize the time to awake all the robots
- with a good schedule ...

Example (basic)

$(1 / 3)$

$$
\begin{aligned}
& \# p t s=8 \\
& \operatorname{diam}=1.890 \\
& \text { ecc }=1.000
\end{aligned}
$$

Example (basic)

$(1 / 3)$
optimal $=2.110$
depth $=2.110$
\#pts $=8$
diam $=1.890$
ecc $=1.000$
time $=0.009 \mathrm{~s}$

Example (Jupiter)

$$
\begin{aligned}
& \text { \#pts }=16 \\
& \text { diam }=1.989 \\
& \text { ecc }=1.000
\end{aligned}
$$

Example (Jupiter)

$(2 / 3)$

> optimal $=3.318$
> depth $=3.318$
> $\#$ pts $=16$
> diam $=1.989$
> ecc $=1.000$
> time $=207.710 \mathrm{~s}$

Example (Jupiter)
 $(2 / 3)$

Example (convex)

$$
\begin{aligned}
& \text { convex pts } \\
& \# \text { pts }=12 \\
& \text { diam }=1.783 \\
& \text { ecc }=1.000 \\
& \text { time }=1.372 \mathrm{~s} \\
& \text { seed }=3906
\end{aligned}
$$

Example (convex)

(3/3)
optimal $=2.594$
depth $=2.594$
\#pts $=12$
diam $=1.783$
ecc $=1.000$
seed $=3906$

https://topp.openproblem.net/p35

The Open Problems Project

Next: Problem 36: Inplace Convex Hull of a Simple Polygonal Chain
Previous: Problem 34: Extending Pseudosegment Arrangements by Subdivision

Problem 35: Freeze-Tag: Optimal Strategies for Awakening a Swarm of Robots

Statement

An optimization problem that naturally arises in the study of "swarm robotics" is to wake up a set of "asleep" robots, starting with only one "awake" robot. One robot can only awaken another when they are in the same location. As soon as a robot is awake, it may assist in waking up other robots. The goal is to compute an optimal awakening schedule such that all robots are awake by time t^{*}, for the smallest possible value of t^{*} (the optimal makespan). The n robots are initially at n points of a metric space. The problem is equivalent to finding a spanning tree with maximum out-degree two that minimizes the radius from a fixed source.

Is it NP-hard to determine an optimal awakening schedule for robots in the Euclidean (or L_{1}) plane? In more general metric spaces, can one obtain an approximation algorithm with better than $O(\log n)$ performance ratio?

Origin

[$\mathrm{ABF}+02$]
Status/Conjectures
[$\mathrm{ABF}+02$] conjecture that the freeze-tag problem is NP-hard in the Euclidean (or L_{1}) plane. (They show it to be NP-complete in star metrics.)

Master student projects at U. Bordeaux [youtube]

Problem Statement

Freeze-Tag Problem (basic)

Input: a source $s \in \mathbb{R}^{2}$
a set $P \subseteq \mathbb{R}^{2}$ of n points
Output: a wake-up tree for (s, P) of minimum depth w.r.t. ℓ_{2}-norm

A wake-up tree for (s, P) is a binary tree spanning $\{s\} \cup P$ of root s which has at most 1 child.
Variants (space for moves): ℓ_{p}-norm, metric-spaces, weighted graphs, non-metric spaces, ..., \mathbb{R}^{3}, \ldots

Known Results: Hardness $\quad(1 / 3)$

[ABF+06] NP-Hard for moves restricted to weighted star graphs, from Numerical 3D Matching, and for unweighted trees, from 3-PARTITION (asleep robots at leaves)

Known Results: Hardness (1/3)

[ABF+06] NP-Hard for moves restricted to weighted star graphs, from Numerical 3D Matching, and for unweighted trees, from 3-PARTITION (asleep robots at leaves)
[AY16,J17] NP-Hard for $\left(\mathbb{R}^{3}, \ell_{2}\right)$, from Hamiltonian Path in 2D Subgrid

Known Results: Hardness $\quad(1 / 3)$

[ABF+06] NP-Hard for moves restricted to weighted star graphs, from Numerical 3D Matching, and for unweighted trees, from 3-PARTITION (asleep robots at leaves)
[AY16,J17] NP-Hard for $\left(\mathbb{R}^{3}, \ell_{2}\right)$, from Hamiltonian Path in 2D Subgrid
[DR17] NP-Hard for $\left(\mathbb{R}^{3}, \ell_{p}\right), p>1$, from Dominating Set

Known Results: Hardness $\quad(1 / 3)$

[ABF+06] NP-Hard for moves restricted to weighted star graphs, from Numerical 3D Matching, and for unweighted trees, from 3-PARTITION (asleep robots at leaves)
[AY16,J17] NP-Hard for $\left(\mathbb{R}^{3}, \ell_{2}\right)$, from Hamiltonian Path in 2D Subgrid
[DR17] NP-Hard for $\left(\mathbb{R}^{3}, \ell_{p}\right), p>1$, from Dominating Set
[AAY17] NP-Hard for $\left(\mathbb{R}^{2}, \ell_{2}\right)$, from Monotone 3SAT

Known Results: Approximation (2/3)

[ABF+06] $O(\log n)$-approximation for locally-bounded weighted graphs (bounded aspect ratio for incident edges)

Known Results: Approximation (2/3)

[ABF+06] $O(\log n)$-approximation for locally-bounded weighted graphs (bounded aspect ratio for incident edges)
[ABF+06] $(1+\varepsilon)$-approximation for $\left(\mathbb{R}^{d}, \ell_{p}\right)$ for fixed d and any p, in time $O(n \log n)+2^{(1 / \varepsilon)^{O(1)}}$ if $\varepsilon<1 / 57$

Known Results: Upper Bound (3/3)

[YBMK15] For $\left(\mathbb{R}^{2}, \ell_{2}\right)$ and unit source radius, \exists wake-up tree of depth <10.1 computable in $O(n)$ time

Contributions

For $\left(\mathbb{R}^{2}, \ell_{2}\right)$ and unit source radius

Contributions

For $\left(\mathbb{R}^{2}, \ell_{2}\right)$ and unit source radius

- $\forall P$ in convex position, \exists wake-up tree of depth $\leqslant 1+2 \sqrt{2} \approx 3.8$, achieved for $n=|P|=4$

Contributions

For $\left(\mathbb{R}^{2}, \ell_{2}\right)$ and unit source radius

- $\forall P$ in convex position, \exists wake-up tree of depth
$\leqslant 1+2 \sqrt{2} \approx 3.8$, achieved for $n=|P|=4$
- $\forall P, \exists$ wake-up tree of depth $\leqslant 3+O(1 / \sqrt{n})$

Contributions

For $\left(\mathbb{R}^{2}, \ell_{2}\right)$ and unit source radius

- $\forall P$ in convex position, \exists wake-up tree of depth
$\leqslant 1+2 \sqrt{2} \approx 3.8$, achieved for $n=|P|=4$
- $\forall P, \exists$ wake-up tree of depth $\leqslant 3+O(1 / \sqrt{n})$
- $\exists P, \forall$ wake-up tree has depth $\geqslant 3+\Omega\left(1 / n^{1 / 3}\right)$

Contributions

For $\left(\mathbb{R}^{2}, \ell_{2}\right)$ and unit source radius

- $\forall P$ in convex position, \exists wake-up tree of depth
$\leqslant 1+2 \sqrt{2} \approx 3.8$, achieved for $n=|P|=4$
- $\forall P, \exists$ wake-up tree of depth $\leqslant 3+O(1 / \sqrt{n})$
- $\exists P, \forall$ wake-up tree has depth $\geqslant 3+\Omega\left(1 / n^{1 / 3}\right)$

For $\left(\mathbb{R}^{2}, \ell_{1}\right)$ and unit source radius

- $\forall P, \exists$ wake-up tree of depth $\leqslant 5$ (optimal)

Contributions

For $\left(\mathbb{R}^{2}, \ell_{2}\right)$ and unit source radius

- $\forall P$ in convex position, \exists wake-up tree of depth
$\leqslant 1+2 \sqrt{2} \approx 3.8$, achieved for $n=|P|=4$
- $\forall P, \exists$ wake-up tree of depth $\leqslant 3+O(1 / \sqrt{n})$
- $\exists P, \forall$ wake-up tree has depth $\geqslant 3+\Omega\left(1 / n^{1 / 3}\right)$

For $\left(\mathbb{R}^{2}, \ell_{1}\right)$ and unit source radius

- $\forall P, \exists$ wake-up tree of depth $\leqslant 5$ (optimal)

Exact algorithm running in time $3^{n} \cdot n^{O(1)}$
(holds for any non-metric space), experiments, heuristics, ...

Brute-Force Algorithms

Looks like to TSP (cycle or path vs. binary tree)

$n!c^{n}$ outputs (= wake-up trees) to explore!

Dynamic Programming

FOR RELEASE:
A. M's, Thursday January 2, 1964

FROM: International Business Machines Corp. Data Processing Division
112 East Post Road
White Plains, New York
Bert Reisman
914 WHite Plains 9-1900

WHITE PLAINS, N. Y., Jan. 2 IBM mathematicians
(left to right) Michael Held, Richard Shareshian and Richard M. Karp review the manual describing a new computer program which provides business and industry with a practical scientific method for handling a wide variety of complex scheduling tasks. The program, available to users of the IBM 7090 and 7094 data processing systems, consists of a set of 4,500 instructions which tell the computer what to do with data fed into it. It grew out of the trio's efforts to find solutions for a classic mathematical problem -- the "Traveling Salesman" problem -- which has long defied solution by man, or by the fastest computers he uses.

[Held-Karp'64] $O\left(n^{2} 2^{n}\right)$

Best known complexity for non-metric TSP

Recurrence \& Memorization

opt $(r, X, b):=$ optimal time to awake all asleep robots of $X \subseteq P$ from $r \notin X$ with $b \in\{1,2\}$ awaked robots at r

$$
\text { opt }(s, P, 1) ?
$$

Recurrence \& Memorization

opt $(r, X, b):=$ optimal time to awake all asleep robots of $X \subseteq P$ from $r \notin X$ with $b \in\{1,2\}$ awaked robots at r

$$
\text { opt }(s, P, 1) ?
$$

$\operatorname{opt}(r, X, 1)=0$ if $|X|=0$
r $\operatorname{opt}(r, X, 1)=\min _{u \in X}\{\operatorname{dist}(r, u)+\operatorname{opt}(u, X \backslash\{u\}, 2)\}$ $\operatorname{opt}(u, X, 2)=\min _{X=Y \dot{\cup} Z} \max \{\operatorname{opt}(u, Y, 1), \operatorname{opt}(u, Z, 1)\}$

Analysis

$\operatorname{TIME}(r, X, b)=\# \operatorname{visit}(r, X, b) \times \operatorname{lookup}(r, X, b)$ $+\#\{(r, X, b)\} \times \operatorname{cost}(r, X, b)$

Analysis

$\operatorname{TIME}(r, X, b)=\# \operatorname{visit}(r, X, b) \times \operatorname{lookup}(r, X, b)$ $+\#\{(r, X, b)\} \times \operatorname{cost}(r, X, b)$

Analysis

$\operatorname{TIME}(r, X, b)=\# \operatorname{visit}(r, X, b) \times \operatorname{lookup}(r, X, b)$ $+\#\{(r, X, b)\} \times \operatorname{cost}(r, X, b)$

$$
\#\{(r, X, b)\}=(1+n) \times\binom{ n}{x} \times 2
$$

$$
x:=|X|
$$

Analysis

$\operatorname{TIME}(r, X, b)=\# \operatorname{visit}(r, X, b) \times \operatorname{lookup}(r, X, b)$ $+\#\{(r, X, b)\} \times \operatorname{cost}(r, X, b)$
$\#\{(r, X, b)\}=(1+n) \times\binom{ n}{x} \times 2$ $\#$ visit $<\#\{(r, X, b)\} \times \Delta$

$$
\begin{aligned}
x: & =|X| \\
\Delta & =2^{x}
\end{aligned}
$$

Analysis

$\operatorname{TIME}(r, X, b)=\# \operatorname{visit}(r, X, b) \times \operatorname{lookup}(r, X, b)$ $+\#\{(r, X, b)\} \times \operatorname{cost}(r, X, b)$
$\#\{(r, X, b)\}=(1+n) \times\binom{ n}{x} \times 2$ \#visit < \# $\{(r, X, b)\} \times \Delta$ lookup $=O(\log (\#\{(r, X, b)\}))=O(n)$

$$
\begin{aligned}
x: & =|X| \\
\Delta & =2^{x}
\end{aligned}
$$

Analysis

$\operatorname{TIME}(r, X, b)=\# \operatorname{visit}(r, X, b) \times \operatorname{lookup}(r, X, b)$ $+\#\{(r, X, b)\} \times \operatorname{cost}(r, X, b)$
$\#\{(r, X, b)\}=(1+n) \times\binom{ n}{x} \times 2$ $\#$ visit $<\#\{(r, X, b)\} \times \Delta$

$$
x:=|X|
$$

lookup $=O(\log (\#\{(r, X, b)\}))=O(n)$
cost $=O\left(\right.$ lookup $\left.+x \cdot 2^{x}\right)$

Analysis

$\operatorname{TIME}(r, X, b)=\# \operatorname{visit}(r, X, b) \times \operatorname{lookup}(r, X, b)$ $+\#\{(r, X, b)\} \times \operatorname{cost}(r, X, b)$
$\#\{(r, X, b)\}=(1+n) \times\binom{ n}{x} \times 2$ \#visit < \# $\{(r, X, b)\} \times \Delta$

$$
x:=|X|
$$

lookup $=O(\log (\#\{(r, X, b)\}))=O(n)$ cost $=O\left(\right.$ lookup $\left.+x \cdot 2^{x}\right)$

$$
\max _{x \subseteq P}\left\{2^{x} \cdot\binom{n}{x}\right\}=3^{n} / \Theta(\sqrt{n})
$$

Analysis

$\operatorname{TIME}(r, X, b)=\# \operatorname{visit}(r, X, b) \times \operatorname{lookup}(r, X, b)$ $+\#\{(r, X, b)\} \times \operatorname{cost}(r, X, b)$

$\#\{(r, X, b)\}=(1+n) \times\binom{ n}{x} \times 2$ \#visit < \# $\{(r, X, b)\} \times \Delta$

$$
\begin{aligned}
x: & =|X| \\
\Delta & =2^{x}
\end{aligned}
$$

lookup $=O(\log (\#\{(r, X, b)\}))=O(n)$
cost $=O\left(\right.$ lookup $\left.+x \cdot 2^{x}\right)$

$$
\max _{x \subseteq P}\left\{2^{x} \cdot\binom{n}{x}\right\}=3^{n} / \Theta(\sqrt{n})
$$

$$
\Rightarrow \quad \operatorname{TIME}(\mathrm{s}, P, 1)=3^{n} \cdot O\left(n^{3 / 2}\right)
$$

Python

> In practice, 17 points takes $5^{\prime} 30^{\prime \prime}$ (Python) vs. $17!\times 10^{-9} \mathrm{~s} \approx 355,687 \mathrm{~s} \approx 4.1$ days

Bounds on α_{n}

$\alpha_{n}:=$ infimum real st. every unit source radius and n point set has a wake-up tree of depth $\leqslant \alpha_{n}$ for $\left(\mathbb{R}^{2}, \ell_{2}\right)$

Bounds on α_{n}

$\alpha_{n}:=$ infimum real st. every unit source radius and n point set has a wake-up tree of depth $\leqslant \alpha_{n}$ for $\left(\mathbb{R}^{2}, \ell_{2}\right)$

$$
\alpha_{0}=0
$$

Bounds on α_{n}

$\alpha_{n}:=$ infimum real st. every unit source radius and n point set has a wake-up tree of depth $\leqslant \alpha_{n}$ for $\left(\mathbb{R}^{2}, \ell_{2}\right)$

$$
\begin{aligned}
& \alpha_{0}=0 \\
& \alpha_{1}=1
\end{aligned}
$$

Bounds on α_{n}

$\alpha_{n}:=$ infimum real st. every unit source radius and n point set has a wake-up tree of depth $\leqslant \alpha_{n}$ for $\left(\mathbb{R}^{2}, \ell_{2}\right)$

$$
\begin{aligned}
& \alpha_{0}=0 \\
& \alpha_{1}=1 \\
& \alpha_{2}=3, \quad \forall n \geqslant 2, \alpha_{n} \geqslant 3
\end{aligned}
$$

Bounds on α_{n}

$\alpha_{n}:=$ infimum real st. every unit source radius and n point set has a wake-up tree of depth $\leqslant \alpha_{n}$ for $\left(\mathbb{R}^{2}, \ell_{2}\right)$

$$
\begin{aligned}
& \alpha_{0}=0 \\
& \alpha_{1}=1 \\
& \alpha_{2}=3, \quad \forall n \geqslant 2, \alpha_{n} \geqslant 3 \\
& \alpha_{3}=3
\end{aligned}
$$

Bounds on α_{n}

$\alpha_{n}:=$ infimum real st. every unit source radius and n point set has a wake-up tree of depth $\leqslant \alpha_{n}$ for $\left(\mathbb{R}^{2}, \ell_{2}\right)$

$$
\begin{aligned}
& \alpha_{0}=0 \\
& \alpha_{1}=1 \\
& \alpha_{2}=3, \quad \forall n \geqslant 2, \alpha_{n} \geqslant 3 \\
& \alpha_{3}=3 \\
& \alpha_{4}=1+2 \sqrt{2} \approx 3.8
\end{aligned}
$$

[demo]
[demo]

Bounds on α_{n}

$\alpha_{n}:=$ infimum real st. every unit source radius and n point set has a wake-up tree of depth $\leqslant \alpha_{n}$ for $\left(\mathbb{R}^{2}, \ell_{2}\right)$

$$
\begin{aligned}
& \alpha_{0}=0 \\
& \alpha_{1}=1 \\
& \alpha_{2}=3, \quad \forall n \geqslant 2, \alpha_{n} \geqslant 3 \\
& \alpha_{3}=3 \\
& \alpha_{4}=1+2 \sqrt{2} \approx 3.8 \\
& \alpha_{5,6,7} \leqslant \alpha_{4} \\
& \quad \vdots \\
& \alpha_{n}<5+2 \sqrt{2}+\sqrt{5} \approx 10.1
\end{aligned}
$$

[demo]
[demo]

Bounds on α_{n}

Theorem (warm-up)
$\forall n \in \mathbb{N}^{*}, \quad \alpha_{n}<3+8 \pi / \sqrt{n}$

$\underbrace{\sum_{i} l_{i}}_{1}+\underbrace{\sum_{i} \frac{\theta_{i}}{2^{i}}}_{2 \theta}$

The time to awake robots in a slope- θ cone from its apex is cone $(\theta)<1+2 \theta$

Bounds on α_{n}

Theorem (warm-up)
$\forall n \in \mathbb{N}^{*}, \quad \alpha_{n}<3+8 \pi / \sqrt{n}$
cone $(\theta)<1+2 \theta$

$$
\Rightarrow \quad \alpha_{n} \leqslant \operatorname{cone}(2 \pi)<1+4 \pi<13.6
$$

Bounds on α_{n}

Theorem (warm-up)
$\forall n \in \mathbb{N}^{*}, \quad \alpha_{n}<3+8 \pi / \sqrt{n}$
cone $(\theta)<1+2 \theta$

$$
\begin{array}{ll}
\Rightarrow & \alpha_{n} \leqslant \operatorname{cone}(2 \pi)<1+4 \pi<13.6 \\
\Rightarrow & \alpha_{n} \leqslant 2+\operatorname{cone}(\pi)<3+2 \pi<9.3
\end{array}
$$

Bounds on α_{n}

Theorem (warm-up)
$\forall n \in \mathbb{N}^{*}, \quad \alpha_{n}<3+8 \pi / \sqrt{n}$

(0) Split in \sqrt{n} cones
(1) awake a dense cone
(2) go back to the source (3) awake all cones

$$
\begin{aligned}
\Rightarrow \alpha_{n} \leqslant & 2 \operatorname{cone}(2 \pi / \sqrt{n})+1<3+8 \pi / \sqrt{n} \\
& {\left[\alpha_{n}<10.1 \text { if } n \geqslant 13 \text { and } \alpha_{n}<\alpha_{4} \text { if } n \geqslant 921\right] }
\end{aligned}
$$

Better Cones!

Strategy. Minimize zigzags, larger region for the awaked robot, 61% better than 50% !

- Monotone in height: $\sum_{i} \ell_{i}=1$

Better Cones!

Strategy. Minimize zigzags, larger region for the awaked robot, 61% better than 50% !

- Monotone in height: $\sum_{i} \ell_{i}=1$
- Contribution in θ (zigzags): $f(\theta)$?

Better Cones!

Strategy. Minimize zigzags, larger region for the awaked robot, 61% better than 50% !

- Contribution in θ (zigzags):

$$
c_{\mathrm{opt}} ? \quad f(\theta)=\max \{\theta+f((1-c) \theta), c \theta+f(c \theta)\}
$$

Solving $f(\theta)$...

$f(\theta)=\alpha \theta$, for some α

$$
\begin{array}{r}
f(\theta)=\max \{\theta+f((1-c) \theta), c \theta+f(c \theta)\} \\
\alpha \theta=\max \{\theta+\alpha(1-c) \theta, c \theta+\alpha c \theta\} \\
c ? \quad c \geqslant 1 / \alpha \text { and } c \geqslant \alpha /(1+\alpha) \\
1 / \alpha=\alpha /(1+\alpha) \quad \Leftrightarrow \quad 1+\alpha=\alpha^{2} \\
\Rightarrow \alpha=(1+\sqrt{5}) / 2=\varphi, \quad c_{\mathrm{opt}}=1 / \alpha \approx 61 \%
\end{array}
$$

Lemma

cone $(\theta) \leqslant 1+f(\theta)=1+\varphi \theta$

Solving $f(\theta)$...

$f(\theta)=\alpha \theta$, for some α

$$
\begin{array}{r}
f(\theta)=\max \{\theta+f((1-c) \theta), c \theta+f(c \theta)\} \\
\alpha \theta=\max \{\theta+\alpha(1-c) \theta, c \theta+\alpha c \theta\} \\
c ? \quad c \geqslant 1 / \alpha \text { and } c \geqslant \alpha /(1+\alpha) \\
1 / \alpha=\alpha /(1+\alpha) \quad \Leftrightarrow \quad 1+\alpha=\alpha^{2} \\
\Rightarrow \alpha=(1+\sqrt{5}) / 2=\varphi, \quad c_{\mathrm{opt}}=1 / \alpha \approx 61 \%
\end{array}
$$

Lemma
cone $(\theta) \leqslant 1+f(\theta)=1+\varphi \theta$
$\Rightarrow \alpha_{n} \leqslant 2+\operatorname{cone}(\pi) \leqslant 3+\varphi \pi<8.1$

New bounds on α_{n}

Theorem
$\forall n \in \mathbb{N}^{*}, \quad \alpha_{n} \leqslant 3+4 \varphi \pi / \sqrt{n}$
with some refinements, $\alpha_{n} \leqslant 1+2 \sqrt{2}$ if $n \geqslant 285$.

Other Shapes

$\operatorname{rect}(w, h)$: time to awake a $w \times h$ rectangle

Lemma

$\operatorname{rect}(w, h) \leqslant w+(1+\varphi) h$

Other Shapes

$\operatorname{rect}(w, h)$: time to awake a $w \times h$ rectangle

Lemma

$\operatorname{rect}(w, h) \leqslant w+(1+\varphi) h$
Theorem
$\forall n \in \mathbb{N}^{*}, \quad \alpha_{n} \leqslant 1+\operatorname{rect}(2,1) \leqslant 4+\varphi<5.7$

Other Shapes

$\operatorname{rect}(w, h)$: time to awake a $w \times h$ rectangle

Lemma

$\operatorname{rect}(w, h) \leqslant w+(1+\varphi) h$
Theorem
$\forall n \in \mathbb{N}^{*}, \quad \alpha_{n} \leqslant 1+\operatorname{rect}(2,1) \leqslant 4+\varphi<5.7$
... and more generally for ℓ_{p}-norms
Theorem
$\forall n \in \mathbb{N}^{*}, \forall p \geqslant 1, \quad \alpha_{n, p} \leqslant 4+\varphi+\lambda(p)<6.2$ where $\lambda(p) \in\left[0, \frac{1}{2}\right]$ and $\lambda(2)=0$

Open Problems

- $\alpha_{n} \leqslant \alpha_{4}$ for every n ?

Open Problems

- $\alpha_{n} \leqslant \alpha_{4}$ for every n ?
- $\alpha_{n, p} \leqslant \alpha_{4, p}=1+2^{1+\max \{1 / p, 1-1 / p\}}$ for all n and p ?

Open Problems

- $\alpha_{n} \leqslant \alpha_{4}$ for every n ?
- $\alpha_{n, p} \leqslant \alpha_{4, p}=1+2^{1+\max \{1 / p, 1-1 / p\}}$ for all n and p ?
- Polynomial time if P is convex?

Open Problems

- $\alpha_{n} \leqslant \alpha_{4}$ for every n ?
- $\alpha_{n, p} \leqslant \alpha_{4, p}=1+2^{1+\max \{1 / p, 1-1 / p\}}$ for all n and p ?
- Polynomial time if P is convex?

THAT'S THE END

