
On the Freeze-Tag Problem

Cyril Gavoille joint work with
N. Bonichon, A. Casteigts, N. Hanusse

GT Graph & Optimization
LaBRI – Talence
Avril 7th, 2023

Context

A robot in charge of awaking a team of asleep robots.

Subject to:

awaking by contacts (need a move to meet)
any awaked robot can help to awake others
robots lie and move in the Euclidean plane
constant velocity moves

Goal:

to minimize the time to awake all the robots
with a good schedule ... [demo]

https://www.labri.fr/perso/bonichon/slides_gt/#/0/0/0

Example (basic) (1/3)

Example (basic) (1/3)

Example (Jupiter) (2/3)

Example (Jupiter) (2/3)

Example (Jupiter) (2/3)

Example (convex) (3/3)

Example (convex) (3/3)

https://topp.openproblem.net/p35

Master student projects at U. Bordeaux [youtube]

https://youtu.be/tVl5udSTRqY?t=824

Problem Statement

Freeze-Tag Problem (basic)

Input: a source s ∈R2

a set P ⊆R
2 of n points

Output: a wake-up tree for (s ,P) of
minimum depth w.r.t. `2-norm

A wake-up tree for (s ,P) is a binary tree spanning
{s} ∪ P of root s which has at most 1 child.

Variants (space for moves): `p-norm, metric-spaces,
weighted graphs, non-metric spaces, ..., R3, ...

Known Results: Hardness (1/3)

[ABF+06] NP-Hard for moves restricted to weighted
star graphs, from Numerical 3D Matching,
and for unweighted trees, from 3-Partition
(asleep robots at leaves)

[AY16,J17] NP-Hard for (R3, `2), from Hamiltonian
Path in 2D Subgrid

[DR17] NP-Hard for (R3, `p), p > 1, from
Dominating Set

[AAY17] NP-Hard for (R2, `2), from Monotone 3SAT

Known Results: Hardness (1/3)

[ABF+06] NP-Hard for moves restricted to weighted
star graphs, from Numerical 3D Matching,
and for unweighted trees, from 3-Partition
(asleep robots at leaves)

[AY16,J17] NP-Hard for (R3, `2), from Hamiltonian
Path in 2D Subgrid

[DR17] NP-Hard for (R3, `p), p > 1, from
Dominating Set

[AAY17] NP-Hard for (R2, `2), from Monotone 3SAT

Known Results: Hardness (1/3)

[ABF+06] NP-Hard for moves restricted to weighted
star graphs, from Numerical 3D Matching,
and for unweighted trees, from 3-Partition
(asleep robots at leaves)

[AY16,J17] NP-Hard for (R3, `2), from Hamiltonian
Path in 2D Subgrid

[DR17] NP-Hard for (R3, `p), p > 1, from
Dominating Set

[AAY17] NP-Hard for (R2, `2), from Monotone 3SAT

Known Results: Hardness (1/3)

[ABF+06] NP-Hard for moves restricted to weighted
star graphs, from Numerical 3D Matching,
and for unweighted trees, from 3-Partition
(asleep robots at leaves)

[AY16,J17] NP-Hard for (R3, `2), from Hamiltonian
Path in 2D Subgrid

[DR17] NP-Hard for (R3, `p), p > 1, from
Dominating Set

[AAY17] NP-Hard for (R2, `2), from Monotone 3SAT

Known Results: Approximation (2/3)

[ABF+06] O(logn)-approximation for
locally-bounded weighted graphs (bounded
aspect ratio for incident edges)

[ABF+06] (1+ ε)-approximation for (Rd , `p) for fixed
d and any p , in time O(n logn)+2(1/ε)O(1)

if ε < 1/57

Known Results: Approximation (2/3)

[ABF+06] O(logn)-approximation for
locally-bounded weighted graphs (bounded
aspect ratio for incident edges)

[ABF+06] (1+ ε)-approximation for (Rd , `p) for fixed
d and any p , in time O(n logn)+2(1/ε)O(1)

if ε < 1/57
The Freeze-Tag Problem 217

0v

P

Fig. 9. PTAS for geometric instances. Rescale so that all robots lie in a unit square. Look at the m-by-m grid
of pixels, where m = O(1/ε). Consider an enumeration over a special class of wake-up trees on a set P of
representative points, one per occupied pixel.

and we subdivide the square into an m-by-m grid of pixels, each of side length 1/m. (We
will select m to be O(1/ε).) We say that a pixel is empty if it contains no robots. (See
Figure 9.)

Our algorithm is based on approximately optimizing over a restricted set of solutions,
namely those for which all of the robots within a pixel are awakened before any robot
leaves that pixel. Note that by Theorem 22, once one robot in a pixel has been awakened,
all of the robots in the pixel can be awakened within additional time O(1/m), because
this is the diameter of the pixel.

We now describe the algorithm. We select an arbitrary representative point in each
nonempty pixel. We pretend that all robots in the pixel are at this point, and we enumerate
over all possible wake-up trees on the set, P , of representative points. (If there are r robots
in a given pixel, then we only enumerate wake-up trees whose corresponding out-degree
at that pixel is at most min{m2− 1, r + 1}.) Because there are only a constant number of
such trees (at most 2O(m2 log m), because |P| ≤ m2), this operation takes time 2O(m2 log m),
which is a constant independent of n. Recall that a wake-up tree is pseudo-balanced if
each root-to-leaf path in the tree has O(log2 m) nodes. Among those wake-up trees for
P that are pseudo-balanced, we select one, T ∗b (P), of minimum makespan, t∗b (P). We
convert T ∗b (P) into a wake-up tree for all of the input points R by replacing each p ∈ P
with an O(1)-approximate wake-up tree for points of R within p’s pixel, according
to Theorem 22. This step takes total time O(n log n). The total running time of the
algorithm is therefore O(2O(m2 log m)+n log n). Correctness is established in the following
lemmas.

LEMMA 24. There is a choice of representative points P such that the makespan of an
optimal wake-up tree of P is at most t∗(R).

Known Results: Upper Bound (3/3)

[YBMK15] For (R2, `2) and unit source radius,
∃ wake-up tree of depth < 10.1
computable in O(n) time

Contributions

For (R2, `2) and unit source radius

∀P in convex position, ∃ wake-up tree of depth
6 1+2

√
2 ≈ 3.8, achieved for n = |P |= 4

∀P , ∃ wake-up tree of depth 6 3+O(1/
√
n)

∃P , ∀ wake-up tree has depth > 3+Ω(1/n1/3)

For (R2, `1) and unit source radius
∀P , ∃ wake-up tree of depth 6 5 (optimal)

Exact algorithm running in time 3n ·nO(1)

(holds for any non-metric space), experiments,
heuristics, ...

Contributions

For (R2, `2) and unit source radius
∀P in convex position, ∃ wake-up tree of depth
6 1+2

√
2 ≈ 3.8, achieved for n = |P |= 4

∀P , ∃ wake-up tree of depth 6 3+O(1/
√
n)

∃P , ∀ wake-up tree has depth > 3+Ω(1/n1/3)

For (R2, `1) and unit source radius
∀P , ∃ wake-up tree of depth 6 5 (optimal)

Exact algorithm running in time 3n ·nO(1)

(holds for any non-metric space), experiments,
heuristics, ...

Contributions

For (R2, `2) and unit source radius
∀P in convex position, ∃ wake-up tree of depth
6 1+2

√
2 ≈ 3.8, achieved for n = |P |= 4

∀P , ∃ wake-up tree of depth 6 3+O(1/
√
n)

∃P , ∀ wake-up tree has depth > 3+Ω(1/n1/3)

For (R2, `1) and unit source radius
∀P , ∃ wake-up tree of depth 6 5 (optimal)

Exact algorithm running in time 3n ·nO(1)

(holds for any non-metric space), experiments,
heuristics, ...

Contributions

For (R2, `2) and unit source radius
∀P in convex position, ∃ wake-up tree of depth
6 1+2

√
2 ≈ 3.8, achieved for n = |P |= 4

∀P , ∃ wake-up tree of depth 6 3+O(1/
√
n)

∃P , ∀ wake-up tree has depth > 3+Ω(1/n1/3)

For (R2, `1) and unit source radius
∀P , ∃ wake-up tree of depth 6 5 (optimal)

Exact algorithm running in time 3n ·nO(1)

(holds for any non-metric space), experiments,
heuristics, ...

Contributions

For (R2, `2) and unit source radius
∀P in convex position, ∃ wake-up tree of depth
6 1+2

√
2 ≈ 3.8, achieved for n = |P |= 4

∀P , ∃ wake-up tree of depth 6 3+O(1/
√
n)

∃P , ∀ wake-up tree has depth > 3+Ω(1/n1/3)

For (R2, `1) and unit source radius
∀P , ∃ wake-up tree of depth 6 5 (optimal)

Exact algorithm running in time 3n ·nO(1)

(holds for any non-metric space), experiments,
heuristics, ...

Contributions

For (R2, `2) and unit source radius
∀P in convex position, ∃ wake-up tree of depth
6 1+2

√
2 ≈ 3.8, achieved for n = |P |= 4

∀P , ∃ wake-up tree of depth 6 3+O(1/
√
n)

∃P , ∀ wake-up tree has depth > 3+Ω(1/n1/3)

For (R2, `1) and unit source radius
∀P , ∃ wake-up tree of depth 6 5 (optimal)

Exact algorithm running in time 3n ·nO(1)

(holds for any non-metric space), experiments,
heuristics, ...

Brute-Force Algorithms
Looks like to TSP (cycle or path vs. binary tree)

n!cn outputs (= wake-up trees) to explore !

Dynamic Programming

Computing in Combinatorial Optimization 31

associated costs form a monotone nonincreasing sequence which may not
converge to the optimum solution; however, computer experimentation has
yielded excellent results in a variety of cases.

Again, a fantastic combination of theory and practice. Their computer code,
developed together with Richard Shareshian, was made available to users of
IBM’s hardware; an image of the 1964 press release is displayed in Fig. 1.

Fig. 1. Michael Held, Richard Shareshian and Richard Karp, 1964. Courtesy of IBM
Corporate Archives.

2 Dantzig, Linear Programming, and Cutting Planes

We mentioned that Julia Robinson was a post-doc at the RAND Corporation,
a think tank for the United States government. Another member of the RAND
group was the remarkable George Dantzig. His name is forever associated with
his life’s work: the creation of the linear programming model, the simplex method
for its solution, and its application to problems far and wide. Grötschel [44] gave
the following powerful summary.

The development of linear programming is—in my opinion—the most
important contribution of the mathematics of the 20th century to the
solution of practical problems arising in industry and commerce.

This is from the operations research perspective, but Dantzig’s LP model was
also a bombshell for the general theory and practice of computing in combina-
torial optimization.

Linear programming was introduced to the world in a lecture given by
Dantzig on September 9, 1948, at an economics meeting at the University of
Wisconsin in Madison [18].

The basic assumptions of the model lead to a fundamental set of linear
equations expressing the conditions which much be satisfied by the various
levels of activity, Xi, in the dynamic system. These variables are subject

[Held-Karp’64] O(n22n)
Best known complexity for non-metric TSP

Recurrence & Memorization

opt(r ,X ,b) := optimal time to awake all asleep robots
of X ⊆ P from r < X with b ∈ {1,2} awaked robots at r

opt(s ,P ,1)?

opt(r ,X ,1) = 0 if |X |= 0
opt(r ,X ,1) = minu∈X {dist(r ,u)+ opt(u ,X \ {u} ,2)}
opt(u ,X ,2) = min

X=Y ∪̇Z
max {opt(u ,Y ,1),opt(u ,Z ,1)}

Recurrence & Memorization

opt(r ,X ,b) := optimal time to awake all asleep robots
of X ⊆ P from r < X with b ∈ {1,2} awaked robots at r

opt(s ,P ,1)?

opt(r ,X ,1) = 0 if |X |= 0
opt(r ,X ,1) = minu∈X {dist(r ,u)+ opt(u ,X \ {u} ,2)}
opt(u ,X ,2) = min

X=Y ∪̇Z
max {opt(u ,Y ,1),opt(u ,Z ,1)}

Analysis (1/2)

[#nodes� n! ·2n]

TIME(r ,X ,b) = #visit(r ,X ,b) × lookup(r ,X ,b)
+ # {(r ,X ,b)} × cost(r ,X ,b)

Analysis (2/2)

TIME(r ,X ,b) = #visit(r ,X ,b) × lookup(r ,X ,b)
+ # {(r ,X ,b)} × cost(r ,X ,b)

{(r ,X ,b)}= (1+n)×
(n
x

)
×2 x := |X |

#visit <# {(r ,X ,b)} ×∆ ∆= 2x

lookup=O(log (# {(r ,X ,b)})) =O(n)
cost=O(lookup+ x ·2x)

max
X⊆P

{
2x ·

(n
x

)}
= 3n/Θ(

√
n)

⇒ TIME(s ,P ,1) = 3n ·O(n3/2)

Analysis (2/2)

TIME(r ,X ,b) = #visit(r ,X ,b) × lookup(r ,X ,b)
+ # {(r ,X ,b)} × cost(r ,X ,b)

{(r ,X ,b)}= (1+n)×
(n
x

)
×2 x := |X |

#visit <# {(r ,X ,b)} ×∆ ∆= 2x

lookup=O(log (# {(r ,X ,b)})) =O(n)
cost=O(lookup+ x ·2x)

max
X⊆P

{
2x ·

(n
x

)}
= 3n/Θ(

√
n)

⇒ TIME(s ,P ,1) = 3n ·O(n3/2)

Analysis (2/2)

TIME(r ,X ,b) = #visit(r ,X ,b) × lookup(r ,X ,b)
+ # {(r ,X ,b)} × cost(r ,X ,b)

{(r ,X ,b)}= (1+n)×
(n
x

)
×2 x := |X |

#visit <# {(r ,X ,b)} ×∆ ∆= 2x

lookup=O(log (# {(r ,X ,b)})) =O(n)
cost=O(lookup+ x ·2x)

max
X⊆P

{
2x ·

(n
x

)}
= 3n/Θ(

√
n)

⇒ TIME(s ,P ,1) = 3n ·O(n3/2)

Analysis (2/2)

TIME(r ,X ,b) = #visit(r ,X ,b) × lookup(r ,X ,b)
+ # {(r ,X ,b)} × cost(r ,X ,b)

{(r ,X ,b)}= (1+n)×
(n
x

)
×2 x := |X |

#visit <# {(r ,X ,b)} ×∆ ∆= 2x

lookup=O(log (# {(r ,X ,b)})) =O(n)

cost=O(lookup+ x ·2x)

max
X⊆P

{
2x ·

(n
x

)}
= 3n/Θ(

√
n)

⇒ TIME(s ,P ,1) = 3n ·O(n3/2)

Analysis (2/2)

TIME(r ,X ,b) = #visit(r ,X ,b) × lookup(r ,X ,b)
+ # {(r ,X ,b)} × cost(r ,X ,b)

{(r ,X ,b)}= (1+n)×
(n
x

)
×2 x := |X |

#visit <# {(r ,X ,b)} ×∆ ∆= 2x

lookup=O(log (# {(r ,X ,b)})) =O(n)
cost=O(lookup+ x ·2x)

max
X⊆P

{
2x ·

(n
x

)}
= 3n/Θ(

√
n)

⇒ TIME(s ,P ,1) = 3n ·O(n3/2)

Analysis (2/2)

TIME(r ,X ,b) = #visit(r ,X ,b) × lookup(r ,X ,b)
+ # {(r ,X ,b)} × cost(r ,X ,b)

{(r ,X ,b)}= (1+n)×
(n
x

)
×2 x := |X |

#visit <# {(r ,X ,b)} ×∆ ∆= 2x

lookup=O(log (# {(r ,X ,b)})) =O(n)
cost=O(lookup+ x ·2x)

max
X⊆P

{
2x ·

(n
x

)}
= 3n/Θ(

√
n)

⇒ TIME(s ,P ,1) = 3n ·O(n3/2)

Analysis (2/2)

TIME(r ,X ,b) = #visit(r ,X ,b) × lookup(r ,X ,b)
+ # {(r ,X ,b)} × cost(r ,X ,b)

{(r ,X ,b)}= (1+n)×
(n
x

)
×2 x := |X |

#visit <# {(r ,X ,b)} ×∆ ∆= 2x

lookup=O(log (# {(r ,X ,b)})) =O(n)
cost=O(lookup+ x ·2x)

max
X⊆P

{
2x ·

(n
x

)}
= 3n/Θ(

√
n)

⇒ TIME(s ,P ,1) = 3n ·O(n3/2)

Python

In practice, 17 points takes 5’30” (Python) vs.
17!×10−9s ≈ 355,687s ≈ 4.1 days

Bounds on αn

αn := infimum real st. every unit source radius and n
point set has a wake-up tree of depth 6 αn for (R2, `2)

α0 = 0
α1 = 1
α2 = 3, ∀n > 2, αn > 3 [demo]
α3 = 3
α4 = 1+2

√
2 ≈ 3.8 [demo]

α5,6,7 6 α4
...

αn < 5+2
√

2+
√

5 ≈ 10.1 from [YBMK15]

https://www.labri.fr/perso/bonichon/slides_gt/#/2/0/0
https://www.labri.fr/perso/bonichon/slides_gt/#/3/0/0

Bounds on αn

αn := infimum real st. every unit source radius and n
point set has a wake-up tree of depth 6 αn for (R2, `2)

α0 = 0

α1 = 1
α2 = 3, ∀n > 2, αn > 3 [demo]
α3 = 3
α4 = 1+2

√
2 ≈ 3.8 [demo]

α5,6,7 6 α4
...

αn < 5+2
√

2+
√

5 ≈ 10.1 from [YBMK15]

https://www.labri.fr/perso/bonichon/slides_gt/#/2/0/0
https://www.labri.fr/perso/bonichon/slides_gt/#/3/0/0

Bounds on αn

αn := infimum real st. every unit source radius and n
point set has a wake-up tree of depth 6 αn for (R2, `2)

α0 = 0
α1 = 1

α2 = 3, ∀n > 2, αn > 3 [demo]
α3 = 3
α4 = 1+2

√
2 ≈ 3.8 [demo]

α5,6,7 6 α4
...

αn < 5+2
√

2+
√

5 ≈ 10.1 from [YBMK15]

https://www.labri.fr/perso/bonichon/slides_gt/#/2/0/0
https://www.labri.fr/perso/bonichon/slides_gt/#/3/0/0

Bounds on αn

αn := infimum real st. every unit source radius and n
point set has a wake-up tree of depth 6 αn for (R2, `2)

α0 = 0
α1 = 1
α2 = 3, ∀n > 2, αn > 3 [demo]

α3 = 3
α4 = 1+2

√
2 ≈ 3.8 [demo]

α5,6,7 6 α4
...

αn < 5+2
√

2+
√

5 ≈ 10.1 from [YBMK15]

https://www.labri.fr/perso/bonichon/slides_gt/#/2/0/0
https://www.labri.fr/perso/bonichon/slides_gt/#/3/0/0

Bounds on αn

αn := infimum real st. every unit source radius and n
point set has a wake-up tree of depth 6 αn for (R2, `2)

α0 = 0
α1 = 1
α2 = 3, ∀n > 2, αn > 3 [demo]
α3 = 3

α4 = 1+2
√

2 ≈ 3.8 [demo]
α5,6,7 6 α4
...

αn < 5+2
√

2+
√

5 ≈ 10.1 from [YBMK15]

https://www.labri.fr/perso/bonichon/slides_gt/#/2/0/0
https://www.labri.fr/perso/bonichon/slides_gt/#/3/0/0

Bounds on αn

αn := infimum real st. every unit source radius and n
point set has a wake-up tree of depth 6 αn for (R2, `2)

α0 = 0
α1 = 1
α2 = 3, ∀n > 2, αn > 3 [demo]
α3 = 3
α4 = 1+2

√
2 ≈ 3.8 [demo]

α5,6,7 6 α4
...

αn < 5+2
√

2+
√

5 ≈ 10.1 from [YBMK15]

https://www.labri.fr/perso/bonichon/slides_gt/#/2/0/0
https://www.labri.fr/perso/bonichon/slides_gt/#/3/0/0

Bounds on αn

αn := infimum real st. every unit source radius and n
point set has a wake-up tree of depth 6 αn for (R2, `2)

α0 = 0
α1 = 1
α2 = 3, ∀n > 2, αn > 3 [demo]
α3 = 3
α4 = 1+2

√
2 ≈ 3.8 [demo]

α5,6,7 6 α4
...

αn < 5+2
√

2+
√

5 ≈ 10.1 from [YBMK15]

https://www.labri.fr/perso/bonichon/slides_gt/#/2/0/0
https://www.labri.fr/perso/bonichon/slides_gt/#/3/0/0

Bounds on αn

Theorem (warm-up)
∀n ∈N∗, αn < 3+8π/

√
n

The time to awake robots in a slope-θ cone from its
apex is cone(θ) < 1+2θ

Bounds on αn

Theorem (warm-up)
∀n ∈N∗, αn < 3+8π/

√
n

cone(θ) < 1+2θ

⇒ αn 6 cone(2π) < 1+4π < 13.6

⇒ αn 6 2+ cone(π) < 3+2π < 9.3

Bounds on αn

Theorem (warm-up)
∀n ∈N∗, αn < 3+8π/

√
n

cone(θ) < 1+2θ

⇒ αn 6 cone(2π) < 1+4π < 13.6
⇒ αn 6 2+ cone(π) < 3+2π < 9.3

Bounds on αn

Theorem (warm-up)
∀n ∈N∗, αn < 3+8π/

√
n

⇒ αn 6 2cone(2π/
√
n)+1 < 3+8π/

√
n

[αn < 10.1 if n > 13 and αn < α4 if n > 921]

Better Cones!
Strategy. Minimize zigzags, larger region
for the awaked robot, 61% better than 50%!

Monotone in height:
∑

i `i = 1

Contribution in θ (zigzags): f(θ)?

Better Cones!
Strategy. Minimize zigzags, larger region
for the awaked robot, 61% better than 50%!

Monotone in height:
∑

i `i = 1
Contribution in θ (zigzags): f(θ)?

Better Cones!
Strategy. Minimize zigzags, larger region
for the awaked robot, 61% better than 50%!

Contribution in θ (zigzags):

copt? f(θ) = max {θ+ f((1− c)θ),cθ+ f(cθ)}

Solving f(θ) ...

f(θ) = αθ, for some α

f(θ) = max {θ+ f((1− c)θ),cθ+ f(cθ)}
αθ =max {θ+α(1− c)θ,cθ+αcθ}

c? c > 1/α and c > α/(1+α)

1/α = α/(1+α) ⇔ 1+α = α2

⇒ α = (1+
√

5)/2 = ϕ, copt = 1/α ≈ 61%

Lemma
cone(θ) 6 1+ f(θ) = 1+ϕθ

⇒ αn 6 2+ cone(π) 6 3+ϕπ < 8.1

Solving f(θ) ...

f(θ) = αθ, for some α

f(θ) = max {θ+ f((1− c)θ),cθ+ f(cθ)}
αθ =max {θ+α(1− c)θ,cθ+αcθ}

c? c > 1/α and c > α/(1+α)

1/α = α/(1+α) ⇔ 1+α = α2

⇒ α = (1+
√

5)/2 = ϕ, copt = 1/α ≈ 61%

Lemma
cone(θ) 6 1+ f(θ) = 1+ϕθ

⇒ αn 6 2+ cone(π) 6 3+ϕπ < 8.1

New bounds on αn

Theorem
∀n ∈N∗, αn 6 3+4ϕπ/

√
n

with some refinements, αn 6 1+2
√

2 if n > 285.

Other Shapes
rect(w ,h): time to awake a w ×h rectangle

Lemma
rect(w ,h) 6 w +(1+ϕ)h

Theorem
∀n ∈N∗, αn 6 1+ rect(2,1) 6 4+ϕ < 5.7

Other Shapes
rect(w ,h): time to awake a w ×h rectangle

Lemma
rect(w ,h) 6 w +(1+ϕ)h

Theorem
∀n ∈N∗, αn 6 1+ rect(2,1) 6 4+ϕ < 5.7

Other Shapes
rect(w ,h): time to awake a w ×h rectangle

Lemma
rect(w ,h) 6 w +(1+ϕ)h

Theorem
∀n ∈N∗, αn 6 1+ rect(2,1) 6 4+ϕ < 5.7

... and more generally for `p-norms

Theorem
∀n ∈N∗,∀p > 1, αn ,p 6 4+ϕ+λ(p) < 6.2
where λ(p) ∈ [0, 1

2] and λ(2) = 0

Open Problems

αn 6 α4 for every n?

αn ,p 6 α4,p = 1+21+max{1/p ,1−1/p} for all n and p?
Polynomial time if P is convex?

THAT’S THE END

Open Problems

αn 6 α4 for every n?
αn ,p 6 α4,p = 1+21+max{1/p ,1−1/p} for all n and p?

Polynomial time if P is convex?

THAT’S THE END

Open Problems

αn 6 α4 for every n?
αn ,p 6 α4,p = 1+21+max{1/p ,1−1/p} for all n and p?
Polynomial time if P is convex?

THAT’S THE END

Open Problems

αn 6 α4 for every n?
αn ,p 6 α4,p = 1+21+max{1/p ,1−1/p} for all n and p?
Polynomial time if P is convex?

THAT’S THE END

