A Succinct Story of Compact Stuff

by Cyril Gavoille

FRAIGNIAUD Workshop

[Fundamental Research and Algorithmic Innovations in Graphs, Networks and the Internet, with Applications and Upcoming Directions]

> Paris - IRIF

Novembre 28th, 2022

```
(3) IrIF Current and Former PhD Studen }
\leftarrow->O @ O B https://www.irif.fr/users/pierref/phd# 园 133% & Q Q Rechercher
% Les plus visités Records CAB (Mac) 质 EasyChair & IUF-Institut universi... anr- ANR CES48 - AAP ... % Log in to Orater -
    ||| |
```


Pierre FRAIGNIAUD

The Origins

1994 - Vancouver (CAN)

1991 - Master's internship (M. Gastaldo, P. Fraigniaud)

Ecole Normale Supérieure de Lyon
46, Allée de l'Italie, 69364 Lyon Cedex 07, France
Téléphone : +33 727280 00; Télécopieur :+33 72728080
Adresses électroniques :
lip@frens161.bitnet; lip@lip.ens-lyon.fr (uucp)

Laboratoire de l'Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Institut IMAG
Unité de Recherche Associée au CNRS n ${ }^{\circ} 1398$

1991 - Master’s internship (M. Gastaldo, P. Fraigniaud)

Evaluation of the MasPar Performances

Cyril GAvoille

Training Course for a Masters in Computer Science
Claude Bernard University
1991-

1991 - Master’s internship (M. Gastaldo, P. Fraigniaud)

Figure 4.5c: Two distance models (d1 and d2) for xsend and xfetch communications.
xsend and $x f e t c h$ communication Results
Just as the xnet communications, the xsend and xfetch instructions depend on the distances, which are dy and dx. They also depend on the number of transferred bits (see the size of the simple types of the variables table). We will also notice the importance of left-values (that is xsend). We can also say that the times depend on the parameter type ($\mathrm{ss}, \mathrm{ps}, \mathrm{sp}$, or pp ; see syntax of these communications) These times decrease when the pointers (scr and dest) are in the ACU memory. When all the variable addresses are the same, the pointer is then situated in the ACU and the sequencer can then order a transfer of bytes directly to all the PE's. But if the variable addresses are not the same for all PE's, the sequencer can only send, to the PE's, instructions for adresses decoding and then send transfer instructions. So then the PE's have to perform more instructions.

Results on X-Net type communications

An X-Net communication used in left-value is always quicker than the same instruction right-value. Performances depend neither on direction nor on the

Interval Routing Time

1995 - Luminy (FRA)

1992-93 - Master2's internship

1993 - Interval routing (PhD starts)

M.D. May and P.W. Thompson. Transputers and routers: Components for concurrent machines. In Transputers and Routers: Function, Performance and Applications, INMOS Ltd., April 1990

> Optimal Interval Routing
> Pierre Fraigniaud ${ }^{1}$ and Cyril Gavoille ${ }^{1}$ $\xrightarrow{\text { Lip - CNRS }}$ $\begin{gathered}\text { Ecole Normale Supéiene de Lyon } \\ \text { 63364 Lyon } \\ \text { Cedex OTZ France }\end{gathered}$

Abstract. Interval routing, was introduced to reduce the size of the

A Characterization of Networks Supporting Linear Interval

$$
\begin{aligned}
& \text { Pierre Fraigniaud* and Cyril Gavoille }{ }^{+} \\
& \text {LIP - CNRS } \\
& \text { Ecole Normale Superieure de Lyon } \\
& 69364 \text { Lyon Cedex 07, France } \\
& \text { \{pfraign, gavoille\}@1ip.ens-1yon.fr }
\end{aligned}
$$

Abstract

Compact routing tables are useful to implement routing algorithms on a distsiriuted memory parallel com-
puter. Interval routing is a popular way of building
such compact tables. It was already known that any such compact tables. It was already known that any
network can support an interval routing function with only one interval per output port as soon as one allows
intervals to be "cyclic" [13]. However it might be is

"Inear" intervals (see $[2]$). This notion is particularly
sefull to derive results on networks built by cartesian

 we characterize the networks that admint alinear in-
terval routign function with at most one interval per
output port. We also characterize the networks that dmit a strict linear interval routing function with dmit a strict linear interval routing function with at

1 Introduction

If the structure of the interconnection network of a dis-
tributed memory parallel computer is fixed but complicated memory parallelelcomenection net is fiwerk of of a dis comgraph, etc) or if the interconnection network has no
The firt author received the support of the Centre de Rececrac
 $\stackrel{+}{+ \text { Beth }} \underset{c}{ }$
Pemission to cony without tiee all or part of this material is

particular structure, it could be diffic

simp "simple algorithm
tween two nodes.
By a simple algorithm, we mean an a
both execution time and space for i both execution time and space for im
the router are small. A solution to obe router are small. A solution to
obained by the use of routing tabes
locally on each router. Of course, locally on each router. Of course, thy
ment for these ta ment for these tables is to be as small
instance a size of $\theta(n)$ for a a etwork
is not realistic as soon is not realistic as soon
larger that some tens).

Compact routing has already been
ied see forinstance $[1,7,8]$. In partic
many solutions to compress the partic o
bles. The general idea is to group in so
destinat
bles. The general idea is to group in sq
destination addresses that correspond
put port, and to encode put port, and to encode the group so
to check if a destination address bel to check if a destination address bel
gropu. A evy popular solution of thad
of intervals $[12]$.They are indeed ver
and (only store the bounds of each interv
two comparisons are enough to check two cosp arisons are enough to check
adderess belonst on an interval. This k
used for instanco on the used for
Inmos.
The notion of interval routing has
by anatoro and Khatib in $[12]$. Th
that any directed by Santoro and Khatib in [12]. Th
that any irected acyclic network arl
terval routing function with shortest terval routing function with shortest
one interval per untput port. Morevee
is not acclic, they show that there e is not acyclic they show that there e
routitg function such that the maxim
route between two vertices is at mod roote between two vertices is at mos
diameter. Then van Leuwen and
the probem for undirected networks
that any network diameter. Then van Leeuwen and Tan (13) studied
the probem for undirected networks. They showed
that any network supports an interval routing func-

Interval Routing Schemes allow Broadcasting

© 1998 Springer-VClagag New Yorkt ne.

Interval Routing Schemes

$$
\text { P. Fraigniaud }{ }^{2} \text { and } C \text {. Gavoille }
$$

Abstract. Interval routing was introduced to reduce the size of routing tables: a router finds the direction Where to forward a message by determining which interval contains the destination address of the message,
ach interval being associated to one particular direction. This way of implementing a routing function is quite achi interval being associated o one particular direction. This way of implementing a routing function is quite
ttractive but very litte is known aboutt the topological properties that must satisfy a network to support an titerval routing function with particular constraints (shortest paths, limitited number of intervals associated to haracterize the set of networks which supporta linear or a linearis strict tinterval routing function with only one Interval per direction. We also derive practical tools to measure the efficiency of an interval routing function umber of intervals, length of the paths, etc.). and we describe large classes of networks which support optimal
near) interval routing functions. Finally, we derive the main properties satisfied by the popular networks linear) interval routing functions. Finally, we derive the main properties s.
used to inerconnect processors in a distributed memory parallel computer.
Key Words. Routing in distributed networks, Compact routing, Routing function, Interval.
. Introduction. Given a network of processors (such as the one of a distributed memory parallel computer), the way of routing messages among the processors is characterizd, on one hand, by the routing mode (store-and-forward, circuit-switched, wormhole, sources and the destinations. This paper focuses on the second parameter
The routing function is generally implemented locally on the routers. The route of message from its source to its destination is determined using a header attached to he message, and which contains information that will allow the intermediate routers to know where to forward the message. In this paper we are interested in routing functions which use only the destination address of the message to find the route.
As soon as a router receives a message, it looks at the header to read the destination, and then determines the output port which will be used to forward the message toward
its destination. There are mainly two ways of determining the output port from the destination address:
. Application of an algorithm.
Consultation of a routing table
${ }^{1}$ All the results presented in this paper are entirely based on [8]. The first author received the support of the
Centre de Recerca Matematica, Institut d'Estudis Catalans, Bellaterra, Spain. Both authors are supported by Centre de Recerca Matemàtica, Institut deEstudis Catalans, Bellaterra, Spain. Both authors are supported by
he research programs ANM and PRS of the CNRS.
LIP - CNRS Ecole Normale Superieure de Lyon, 46 allée ditalie, 69364 Lyon Cedex 07, France. fraign,gavoille)@ens-lyon.frr
Received February 7, 1996; revised November 25, 1996. Communicated by F. T. Leighton.

Pierre Fraigniaud and Cyril Gavoille. A characterization of networks supporting linear interval routing. In 13th Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 216-224. ACM Press, August 1994.

Theorem $2 G \in 1$-LIRS $\Leftrightarrow G$ is not a lithium-graph.

Pierre Fraigniaud, Cyril Gavoille, and Bernard Mans. Interval routing schemes allow broadcasting with linear message-complexity. Distributed Computing, 14(4):217-229, July 2001. Ext. abstract in PODC'00.

(12001 4 22	
Interval routing schemes allow broadcasting with linear message-complexity	
Laboratoire Bordelais de Recherche en Informatique, Université Bordeaux I, 33405 Talence cedex, FrDepartment of Computing, Division of ICS, Macquarie University, Sydney, NSW 2109, Australia	
	为
	Nomele
Solememe	
deater	will make no distinction between the nodes and their labels. In
	of node x in the IRS is precisely $x \in\{1, \ldots, n\}$. Broadcasting for an arbitrary node of a network is the in- formation dissemination problem which consists of sending a
	given message to all the other nodes. The message-complexity of broadcasting is between $\Omega(n)$ and $O(m), m=\|E\|$, since the reception of the message by every node but the source re-
and	received the message). Improved upper and lower bounds may be derived as a function of the knowledge of the nodes of the network and of the maximal size of the message-headers (e.g.,
	see $[1,2,5]$). In this paper, the only knowledge of every nodeis its label in some IRS and the intervals attached to its inci-dent edges in the same IRS. The size of each message-header
momme	

Corollary 3 In a network supporting a shortest path Interval Routing Scheme, the average distance between two nodes labeled by two consecutive integers is bounded by a constant.

Theorem 4 Networks supporting a shortest-path interval routing scheme allow leader-election with $O(n)$ messagecomplexity.

Compact Routing Time

2012 - Salvador (BRE)

1995-2001 - Routing with little information at

 each node in every graph ...

2001 - Routing in trees ...

with $\Theta\left(\log ^{2} n / \log \log n\right)$ bits/node

ICALP 2001

A Space Lower Bound for Routing in Trees Pierre Fraigniaudd and Cyril Gavoille ${ }^{2}$
 (

Introduction
is well known, a routing scheme consists of two parts:
a preprocessing algorithm in charge of, iving a network G, setting data structure
(e.g., routing tables, node addresese, port thabeling, etc.) on which the routing decision i. $\mathrm{a} G$ woutill be based
mainly determinuses, for verery message entering the node, the output podt of which whic message has to be forwarded. Note that the routing protocol may also be in charge of
other tasks such as updating the headers, etc. For instance, a classical routing scheme is the so-c

 ontains the address of the destination, say nod y. This address is denoted by address(y.
Node x then extracts from tis look-up table the output port number p corresponding to

 pro-processing algorithm is in charge of constructing the look--up tables. Giving differen
addreseses between 1 and n to the nodes of an n noded network, and labeling the inciden
 $O($ log $n)$. The question iss can we do betert? L.e., can we design routings schemes requiring
less space at each node of the network? The answer is yyes", and the main tool to achieve

Beyong Routing: Navigating

2009 - Carry-le-Rouet (FRA)

2003-2009 - Compact headers, Compact advices, Small-World and ... Eclecticism!

Pierre Fraigniaud, Cyril Gavoille, and Christophe Paul. Eclecticism shrinks even small worlds. Distributed Computing, 18(4):279-291, March 2006. Appears also in PODC '04.

Fig. 1 Long-range links in the 2-dimensional mesh. The topologica awareness of node x is composed of the four plain long-range links

Expected number of steps

Fig. 4 The expected number of steps vs. the awareness $v(n)=$ $(\log n)^{\alpha}$. The expected number of steps is $\Omega\left((\log n)^{2+\alpha / d-\alpha}\right)$ if $\alpha<1$ (by Lemma 5), and $\Omega\left((\log n)^{1+\alpha / d-o(1)}\right)$ if $1 \leq \alpha<d$ (by Lemma 6). For $\alpha>d$, the expected number of steps is $\Theta\left(\log ^{2} n\right)$ (by Lemma 6)

The End!

2008 - Parc Algonquin (CAN)

