Universal Graph and Implicit Representation of Planar Graphs

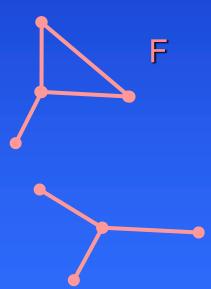
Cyril Gavoille

Séminaire du LIGM Université Paris-Est Marne-la-Vallée Nov. 16, 2021

Induced-Universal Graphs

[Babai, Chung, Erdös, Graham, Spencer '82]

A graph U is an **induced-universal** graph for the family F if every graph of F is isomorphic to an *induced* subgraph of U.



Goal: to find such a universal graph for a given family F_n with few nodes (w.r.t. n)

Induced-Universal Graphs

[Babai, Chung, Erdös, Graham, Spencer '82]

A graph U is an **induced-universal** graph for the family F if every graph of F is isomorphic to an *induced* subgraph of U.

Goal: to find such a universal graph for a given family F_n with few nodes (w.r.t. n)

Induced-Universal Graphs

[Babai, Chung, Erdös, Graham, Spencer '82]

A graph U is an **induced-universal** graph for the family F if every graph of F is isomorphic to an *induced* subgraph of U.

F

Goal: to find such a universal graph for a given family F_n with few nodes (w.r.t. n)

Representation of a Graph

adjacency list

matrix

1 node = 1 pointer in the data-structure (it does not carry any specific information)

Implicit Representation

To associate with the nodes more information, typically adjacency, and to remove the data-structure.

Interval graphs: $u \mapsto I(u) \subseteq [1,2n]$

Edges: $u-v \Leftrightarrow I(u) \cap I(v) \neq \emptyset$

Compact representation: $O(\log n)$ bits/node Possibly time O(n) algorithms vs. O(n+m)

Labelling Schemes

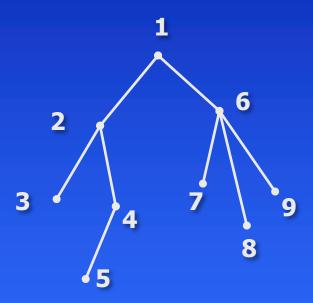
P = a graph property defined on pairs of nodes

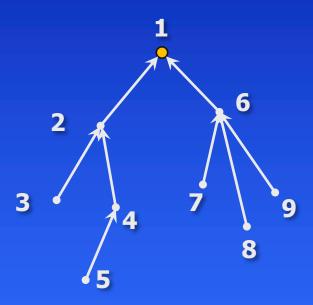
F = a graph family

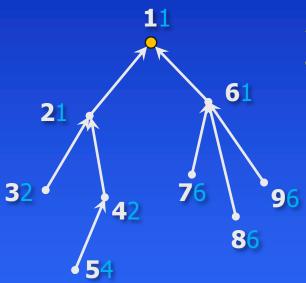
A P-labelling scheme for F is a pair (λ, f) such that $\forall G \in F, \forall u, v \in V(G)$:

- [labelling] $\lambda(u,G)$ is a binary string
- [decoder] $f(\lambda(u,G),\lambda(v,G))=P(u,v,G)$

Goal: to minimize the maximum label size **In this talk**: P(u,v,G) is TRUE $\Leftrightarrow uv \in E(G)$

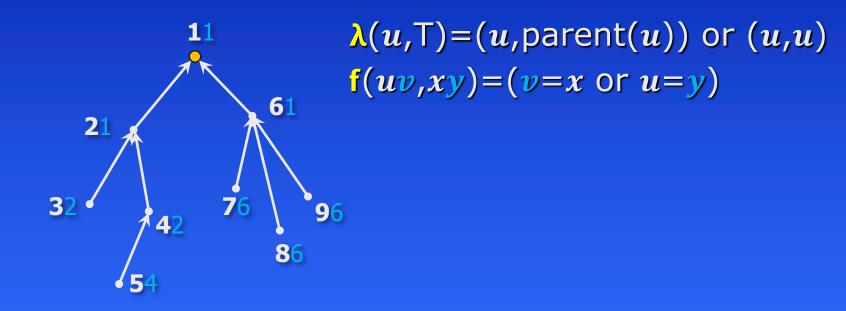






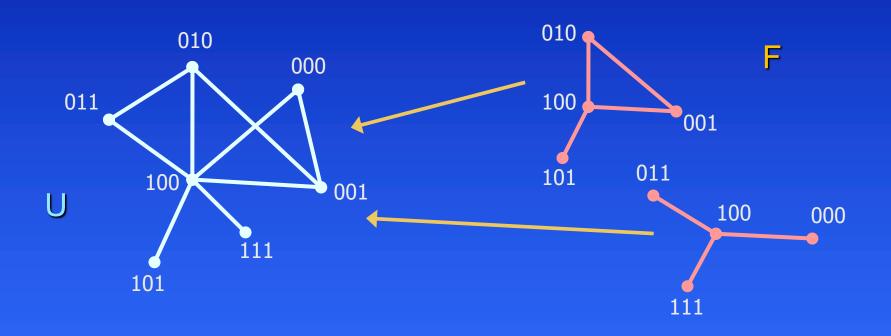
$$\lambda(u,T)=(u, parent(u)) \text{ or } (u,u)$$

 $f(uv,xy)=(v=x \text{ or } u=y)$



For trees with n nodes: $\sim 2\log n$ bits/node (the constant does matter [Abiteboul et al. - SICOMP '06])

Universal & Label Graphs



Universal & Label Graphs



induced-universal graph U

graphs of F

 $c \log n$ -bit labelling \Leftrightarrow induced-universal graph of n^c nodes

From the (u, parent(u)) labelling \Rightarrow induced-universal graph of n^2 =36 nodes

61	62	63	6 4	65	66
o	<u>•</u>	•	•	<u>•</u>	•
51	52	53	54	55	56
o	o	•	o	4 5	•
41	42	43	44		46
o	o	o	o	o	•
31	32	33	34	35	36
o	o	o	<u>o</u>	o	o
21	22	23	24	25	26
o 11	<u>o</u> 12	o 13	<u> </u>	<u> </u>	o 16

Using DFS for T: (u,v) $\Rightarrow u>v$ or u=v=1

From the (u, parent(u)) labelling \Rightarrow induced-universal graph of n^2 =36 nodes

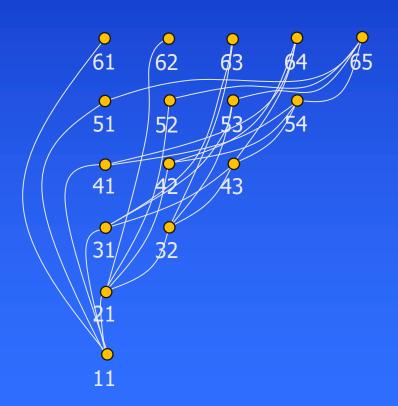
6 1	62	6 3	6 4	65	
o 51	<u>•</u> 52	• 53	• 54		
o 41	• 42	43			
o 31	32				
o 21					
0 11	• 12				• 16

Using DFS for T: (u,v)

$$\Rightarrow u>v$$
 or $u=v=1$

$$\Rightarrow n(n-1)/2+1=16$$
 nodes

From the (u, parent(u)) labelling \Rightarrow induced-universal graph of $n^2=36$ nodes



Using DFS for T: (u,v)

 $\Rightarrow u>v$ or u=v=1

 $\Rightarrow n(n-1)/2+1=16$ nodes

Universal Graphs for Trees (universal trees)

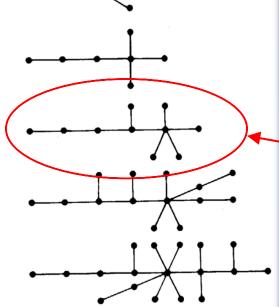
$$n = 1$$
:

$$n=\#$$
edges

$$n=2$$
:

$$n = 3$$
:

n = 4:

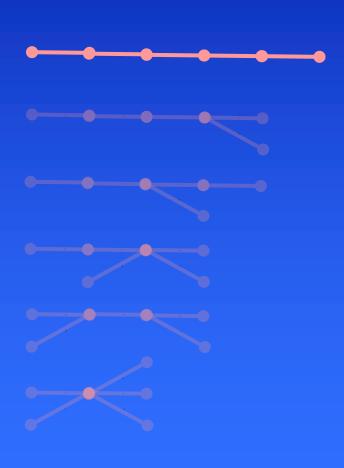


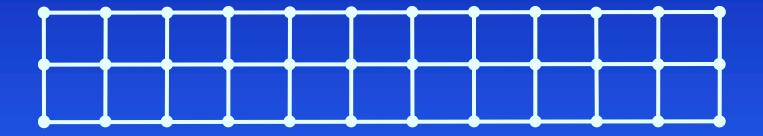
ON GRAPHS WHICH CONTAIN ALL SMALL TREES, II.

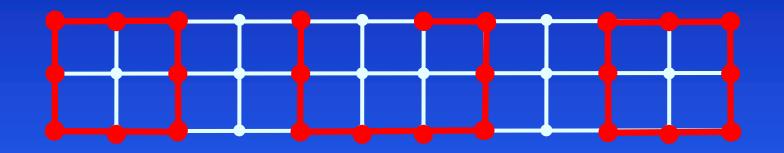
F.R.K. CHUNG — R.L. GRAHAM — N. PIPPENGER

COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 18. COMBINATORICS, KESZTHELY (HUNGARY), 1976.

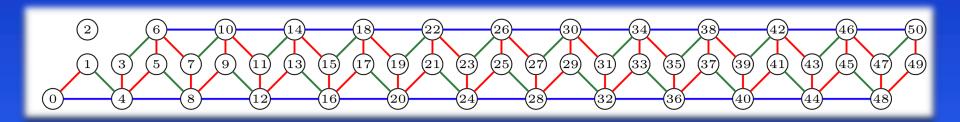
10 nodes







 $3n \text{ nodes} \Rightarrow \log n + O(1) \text{ bits}$



 $2n \text{ nodes} \Rightarrow \log n + 1 \text{ bits}$

(Lower Bound: 11n/6 nodes)

M. Abrahamsen, S. Alstrup, J. Holm et al. / Discrete Applied Mathematics 282 (2020) 1–13

Exercice II: Caterpillar How to get log n + o(1) bit labels?

(Lower Bound: 3n/2 nodes)

Labelling Schemes for Planar Graphs Basic: Truncated List

$$u \mapsto id(u) \in \{1, ..., n\}$$

$$\lambda(u) = (id(u), \{id(N_u)\})$$

$$id(v_1)$$

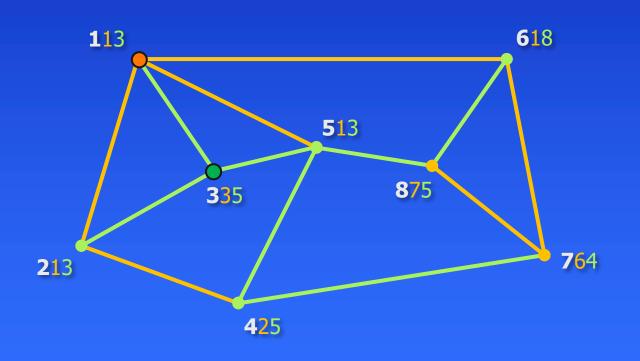
$$id(v_2)$$

$$id(v_3)$$

 $u-v \Leftrightarrow id(v) \in \{id(N_u)\}\ or\ id(u) \in \{id(N_v)\}\$

- $\Rightarrow (k+1)\log n$ bits if G is k-degenerated
- \Rightarrow 6log*n* bits for planar [Muller'88]

Labelling Schemes for Planar Graphs Edge Partition: Combining Schemes



```
Arboricity-k graphs: (k+1)\log n bits \Rightarrow Planar (k=3): 4\log n bits [KNR - STOC'88]
```

Better Labelling Schemes

```
For trees: \log n + O(\log^* n), \log n + O(1)
[Alstrup,Rauhe - FOCS'02]
[Alstrup,Dahlgaard,B.T.Knudsen - FOCS'15 & J.ACM'17]
\Rightarrow Arboricity-k: k\log n + O(1)
\Rightarrow Planar: 3\log n + O(1)

For treewidth-k: \log n + O(k\log\log n)
[G.,Labourel - ESA'07]
\Rightarrow Planar & Minor-free: 2\log n + O(\log\log n)
```

Better: Bonamy, G., Pilipczuk – SODA'20

For planar & bounded genus: $\frac{4}{3} \log n + O(\log \log n)$ \Rightarrow

Induced-universal graph of $n^{4/3+o(1)}$ nodes for n-node planar graphs (and bounded genus graphs)

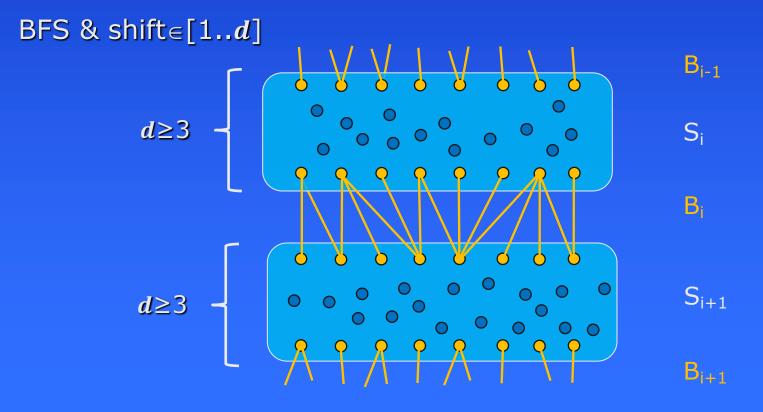
Labelling the nodes is polynomial Decoding adjacency takes constant time

Sketch of Proof (1/2)

Edge partition: $G = S \cup B$ (Strips & Border)

S: components have d layers $\sim n^{1/3}$

B: has treewidth ≤ 5 and $n/d \sim n^{2/3}$ nodes



Sketch of Proof (1/2)

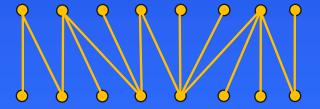
Edge partition: $G = S \cup B$ (Strips & Border)

S: components have d layers $\sim n^{1/3}$

B: has treewidth ≤ 5 and $n/d \sim n^{2/3}$ nodes

BFS & shift $\in [1...d]$

 B_{i-1}



Bi

 B_{i+1}

Sketch of Proof (2/2)

Labelling for B: $\log(n/d)$

Labelling for S: $\log n + \log d$ new!

[$up\ to\ +O(loglogn)\ terms$]

Problem: nodes in V(B) pay both labellings $\Rightarrow \log(n/d) + (\log n + \log d) = 2\log n$

Improved labelling for S: nodes in V(B) pay only $\log |V(B)| = \log(n/d)$ bits!

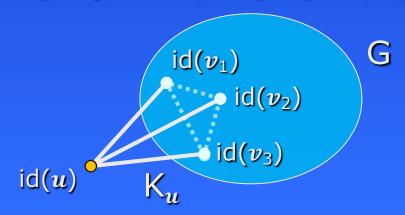
- \Rightarrow nodes in S\V(B): $\log n + \log d = \frac{4}{3} \log n$
- \Rightarrow nodes in V(B): $\log(n/d) + \log(n/d) = \frac{4}{3} \log n$

Improved Scheme for Treewidth-k

G = treewidth-k, V(G) = V₁ \cup V₂, K_u = N[u] = simplicial complex of u, $|K_u| \le k+1$.

Lemma. G has a scheme providing, for each u, id(u) and $\lambda(u)$ st. $\forall v \in K_u$ id(v) can be extracted from $\lambda(u)$. Moreover, for $u \in V_i$

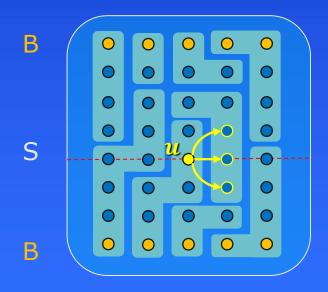
 $|\lambda(u)| = \log|V_i| + O(k\log\log|V(G)|).$



 $u-v \Leftrightarrow id(v) \in \{id(K_u)\}\ or\ id(u) \in \{id(K_v)\}\$

Labeling Scheme for S

Key lemma. [2018,2019,2021] If G is planar, there is a node partition into monotone paths taken from any given BFS such that contracting each one leads to a treewidth-6 graph.



Label $\lambda(u)$ consists of:

- the treewidth-6 scheme
- the depth of \mathbf{u} in S (unless $\mathbf{u} \in B$)
- 3 bits/path in the treewidth-6 scheme, i.e., 3x6 = 18 extra bits

Improved Bound: Dujmovic, Esperet, G., Joret, Micek, Morin – J.ACM'21

Theorem. The family of n-node subgraphs of $H \boxtimes P$, where H has bounded treewidth and P is a path, has a labelling scheme with $\log n + o(\log n)$ bit labels.

Induced-universal graph of $n^{1+o(1)}$ nodes for n-node planar graphs

(and many other graph families)

Labelling the nodes takes $O(n\log n)$ time Decoding adjacency takes $\sim \sqrt{\log n}$ time

Strong Product

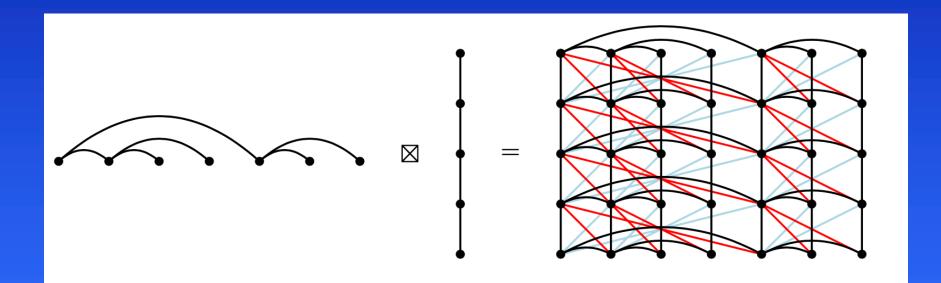


Figure 1: The strong product $H \boxtimes P$ of a tree H and a path P.

Special Case

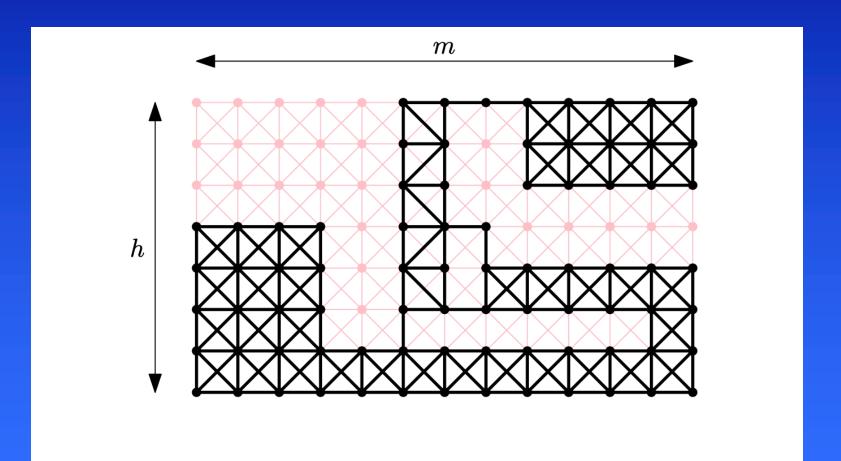


Figure 5: The special case where *G* is a subgraph of $P_1 \boxtimes P_2$.

Other Recent Results

- 1. Universal graph of 8n nodes for caterpillars
- 2. $\log n + \theta(p)$ bits for pathwidth-p
- 3. $n^{1/2+o(1)}$ bits for graphs of VC-dimension 2

 \Rightarrow

At most $\exp(n^{3/2})$ such graphs, whereas only $\exp(n^{5/3})$ was previously known, $\exp(n^{2-1/(d+1)})$ for VC-dim. d by [Alon, Bollobás et al.'11]

Open Problems

- 1. Improve the 2nd order term, $\log n + O(1)$?
- Extend to minor-free graphs
- 3. Improve to $\log n + \theta(k)$ for treewidth-k
- 4. Prove lower bounds for planar or minor-free
- Prove the "Implicit Graph Conjecture"

Best lower bound for planar: $\log n + \Omega(1)$

No families with $n! \, 2^{O(n)}$ labelled graphs like trees, planar, bounded genus, bounded treewidth, minor-free,... is known to require labels of $\log n + o(1)$ bits.