
Computing distances in a graph
in constant time and with

0.793n-bit labels

Stephen Alstrup (U. Copenhagen)
Esben Bistrup Halvorsen (U. Copenhagen)

Holger Petersen (-)

Aussois – ANR DISPLEXITY - March 2015

Cyril Gavoille
(LaBRI, U. Bordeaux)

1.  The Problem
2.  Squashed Cube Dimension
3.  Dominating Set Technique
4.  Another Solution
5.  Conclusion

Agenda

The Distance Labeling Problem
Given a graph, find a labeling of its nodes
such that the distance between any two
nodes can be computed by inspecting only
their labels.

Subject to:
•  label the nodes of every graph of a family (scheme),
•  using short labels (size measured in bits), and
•  with a fast distance decoder (algorithm)

0000

1111

0001

0011

0111

Motivation
[Peleg ’99]

If a short label (say of poly-logarithmic size) can be
added to the address of the destination, then routing to
any destination can be done without routing tables and
with a “limited” number of messages.

dist(x,y) x

message header=hop-count

y

A Distributed Data Structure

•  Get the labels of nodes involved in the query
•  Compute/decode the answer from the labels
•  No other source of information is required

Label Size:
a trivial upper bound

There is a labeling scheme using labels of
O(nlogn) bits for every (unweighted) graph G
with n nodes, and constant time decoding.

LG(i)=(i, [dist(i,1),…,dist(i,j),…,dist(i,n)])

➟ distance vector

Label Size:
a trivial lower bound

No labeling scheme can guarantee labels of
less than 0.5n bits for all n-node graphs
(whatever the distance decoder complexity is)

Proof. The sequence ⟨LG(1),…,LG(n)⟩ and the decoder
δ(.,.) is a representation of G on n.k+O(1) bits if each
label has size k: i adjacent to j iff δ(LG(i),LG(j))=1.

n.k + O(1) ≥ log2(#graphs(n))=n.(n-1)/2
n

Squashed Cube Dimension
[Graham,Pollack ’71]

Labeling: word over {0,1,*}
Decoder: Hamming distance
 (where *=don’t care)

(graphs must be connected)

SCdim(G)≥max{n+,n-}

n+/-=#positive/negative eigen-
values of the distance matrix of G	

SCdim(Kn)=n-1

Squashed Cube Dimension
[Winkler ’83]

Theorem. Every connected n-node graph has squashed
cube dimension at most n-1.

Therefore, for the family of all connected n-node
graphs:

Label size: O(n) bits, in fact nlog23 ~ 1.58n bits
Decoding time: O(n/logn) in the RAM model

Rem: all graphs = connected graphs + O(logn) bits

Dominating Set Technique
[G.,Peleg,Pérennès,Raz ’01]

Definition. A k-dominating set for G is a set S such
that, for every node x∈G, dist(x,S) ≤ k.

Fact: Every n-node connected graph has a k-
dominating set of size at most n/(k+1).

Target:
 Label size: O(n) bits
 Decoding time: O(loglogn)

Part 1

domS(x) = dominator of x, its closest node in S

Observation 1:
dist(x,y)=dist(domS(x),domS(y))+e(x,y)
where e(x,y)∈[-2k,+2k]

Observation 2:
One can encode e(x,y) with ⎡log2(4k+1)⎤ bits

Part 2

Idea: take a collection of ki-dominating set Si, i=0…t
(may intersect) where k0=0, |Si|=n/(ki+1), and
|St|=o(n/logn). Denote x0=x and xi=domSi(xi-‐1).

Decoder: dist(x,y)=∑1≤i≤t ei(xi-‐1,yi-‐1) + dist(xt,yt)
Time: O(t)

Part 3

Decoder: dist(x,y)=∑1≤i≤t ei(xi-‐1,yi-‐1) + dist(xt,yt)
Label size: ∑1≤i≤t|Si-‐1|.⎡log2(4ki+1)⎤ + |St|.O(logn) bits

 size ≤ n . ∑1≤i≤t ⎡log2(4ki+1)⎤/(ki-‐1+1) + o(n)

Choose: ki=4i-1 and t=loglogn
➟ k0=0, ⎡log2(4ki+1)⎤=2i+2, and |St|=o(n/logn)
➟ size ≤ n . ∑i≥1 (2i+2)/4i-1 = n .	 (56/9) ~ 6.22n bits
➟ time O(t) = O(loglogn)

[k0…4=(0,2,15,145,940), ki=exp(ki-‐1), t=log*n, size ~ 5.90n]

Another Solution
Label size: n(log23)/2 ~ 0.793n bits
Decoding time: O(1)

✖

Warm-up
(ignoring decoding time)

Assume G has a Hamiltonian cycle x0,x1,…,xn-1.

➟ dist(x0,xi) = dist(x0,xi-‐1) + e0(xi,xi-‐1) where
e0(xi,xi-‐1)∈{-1,0,+1}

➟ dist(x0,xi) = ∑1≤j≤i e0(xj,xj-‐1)

Label: LG(xi)=(i, [ei(xi+1,xi),ei(xi+2,xi+1), …])
Size: n(log23)/2 bits by storing only half ei()’s

Applications

Assume G is 2-connected. By Fleischner’s
Theorem [1974], G2 has a Hamiltonian cycle
x0,x1,…,xn-1. So, e0(xi,xi-‐1)=dist(x0,xi)-
dist(x0,xi-‐1)∈{-2,-1,0,1,2}.

Label size: n(log25)/2 ~ 1.16n bits

For every tree T, T3 is Hamiltonian. So, if G is
connected, then G3 is Hamiltonian and has a
labeling scheme with n(log27)/2 ~ 1.41n bits.

Constant Time Solution

T = any rooted spanning tree of G
ex(u) = dist(x,u)-dist(x,parent(u))∈{-1,0,+1}

Telescopic sum: if z ancestor of y, then
dist(x,y)=dist(x,z)+∑u∈T[y,z) ex(u)

Dominating Set & Edge-Partition

Select an α-dominating S={si} with root(T)∈S
and |S| ≤ (n/α)+1

Edge-partition: T has an edge-partition into
at most ⎡n/β⎤ sub-trees {Ti} of ≤ 2β edges.

Choose:
	 α=⎡logn.loglogn⎤
 β=⎡logα.loglogn⎤ ~ (loglogn)2

Distance decoder:
dist(x,y)=dist(x,z)+∑u∈T[y,z) ex(u) = A + B

Storage for computing A:
#z x logn=(n/β).logn=ω(n) ✖

But, A = dist(x,s) + A’, where
A’=(dist(x,z)-dist(x,s))∈[-2α,+2α]
➟ only ⎡log2(2α+1)⎤ bits to store A’.

#s x logn =(n/α).logn = o(n) ✔
#z x ⎡log(2α+1)⎤=(n/β).logα = o(n)
✔

Distance decoder:
dist(x,y)=dist(x,z)+∑u∈T[y,z) ex(u) = A + B

Storage for computing B: assume y∈Ti
B=f(Ti,ex(Ti),rk(y)) for some f(…)

where ex(Ti)=[-1,0,+1,+1,0,-1,…]

But, the input ⟨Ti,ex(Ti),rk(y)⟩ writes on
O(β)=O(log2logn) bits!

➟ one can tabulate f(…) once for all its possible
inputs with 2O(β) x log2B = o(n) bits to have
constant time.

→

→

→

Storage for u (in its label):
storage for all A,A’,B ➟ o(n) bits
storage also for:
1.  i st. u∈Ti, rk(u) in Ti, and z=root(Ti)	
2.  closest s∈S ancestor of z
3.  coding of Ti with O(β) bits
4.  eu(Ti),eu(Ti+1),…	 for half the total information

 (this latter costs n(log23)/2 + o(n) bits)

Decoder: [x “knows” y, otherwise swap x,y]
1.  y tells to x: ⟨i,Ti,rk(y),z,s⟩
2.  x computes and returns A+A’+B

→ →

Conclusion

Main question: Design a labeling scheme with
0.5n+o(n)-bit labels and constant time decoder?

Bonus:
•  The technique extends to weighted graphs. We show

n.log2(2w+1)/2 bits for edge-weight in [1,w]. We show
a lower bound of n.log2(w/2+1)/2.

•  We also show a 1-additive (one sided error) labeling
scheme of n/2 bits, and a lower bound of n/4.

