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The Distance Labeling Problem 
Given a graph, find a labeling of its nodes 
such that the distance between any two 
nodes can be computed by inspecting only 
their labels. 

Subject to: 
•  label the nodes of every graph of a family (scheme), 
•  using short labels (size measured in bits), and 
•  with a fast distance decoder (algorithm) 
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Motivation 
[Peleg ’99] 

If a short label (say of poly-logarithmic size) can be 
added to the address of the destination, then routing to 
any destination can be done without routing tables and 
with a “limited” number of messages. 

dist(x,y) x 

message header=hop-count 

y 



A Distributed Data Structure 

•  Get the labels of nodes involved in the query 
•  Compute/decode the answer from the labels 
•  No other source of information is required 



Label Size: 
a trivial upper bound 

There is a labeling scheme using labels of 
O(nlogn) bits for every (unweighted) graph G 
with n nodes, and constant time decoding. 
 
 
LG(i)=(i, [dist(i,1),…,dist(i,j),…,dist(i,n)] ) 
 
 

➟ distance vector 



Label Size: 
a trivial lower bound 

No labeling scheme can guarantee labels of 
less than 0.5n bits for all n-node graphs 
(whatever the distance decoder complexity is) 
 
 
Proof. The sequence ⟨LG(1),…,LG(n)⟩ and the decoder 
δ(.,.) is a representation of G on n.k+O(1) bits if each 
label has size k: i adjacent to j iff δ(LG(i),LG(j))=1. 
 

n.k + O(1) ≥ log2(#graphs(n))=n.(n-1)/2 
n 



Squashed Cube Dimension 
[Graham,Pollack ’71] 

Labeling: word over {0,1,*} 
Decoder: Hamming distance 
             (where *=don’t care) 

(graphs must be connected) 
 
 
SCdim(G)≥max{n+,n-} 
 

n+/-=#positive/negative eigen-
values of the distance matrix of G	  

 
SCdim(Kn)=n-1 

 



Squashed Cube Dimension 
[Winkler ’83] 

Theorem. Every connected n-node graph has squashed 
cube dimension at most n-1. 
 
 
Therefore, for the family of all connected n-node 
graphs: 
 
Label size: O(n) bits, in fact nlog23 ~ 1.58n bits 
Decoding time: O(n/logn) in the RAM model 
 
Rem: all graphs = connected graphs + O(logn) bits 
 

 



Dominating Set Technique 
[G.,Peleg,Pérennès,Raz ’01] 

Definition. A k-dominating set for G is a set S such 
that, for every node x∈G, dist(x,S) ≤ k. 
 
Fact: Every n-node connected graph has a k-
dominating set of size at most n/(k+1). 
 
 
Target: 
  Label size: O(n) bits 
  Decoding time: O(loglogn) 



Part 1 

domS(x) = dominator of x, its closest node in S 
 
 
Observation 1: 
dist(x,y)=dist(domS(x),domS(y))+e(x,y) 
where e(x,y)∈[-2k,+2k] 
 
 
Observation 2: 
One can encode e(x,y) with ⎡log2(4k+1)⎤ bits 
 



Part 2 

Idea: take a collection of ki-dominating set Si, i=0…t 
(may intersect) where k0=0, |Si|=n/(ki+1), and 
|St|=o(n/logn). Denote x0=x and xi=domSi(xi-‐1). 

Decoder: dist(x,y)=∑1≤i≤t ei(xi-‐1,yi-‐1) + dist(xt,yt) 
Time: O(t) 



Part 3 

Decoder: dist(x,y)=∑1≤i≤t ei(xi-‐1,yi-‐1) + dist(xt,yt) 
Label size: ∑1≤i≤t|Si-‐1|.⎡log2(4ki+1)⎤ + |St|.O(logn)  bits 
 
        size ≤ n . ∑1≤i≤t ⎡log2(4ki+1)⎤/(ki-‐1+1) + o(n) 
 
 
Choose: ki=4i-1 and t=loglogn 
➟ k0=0, ⎡log2(4ki+1)⎤=2i+2, and |St|=o(n/logn) 
➟ size ≤ n . ∑i≥1 (2i+2)/4i-1 = n .	  (56/9) ~ 6.22n bits 
➟ time O(t) = O(loglogn) 
 
[ k0…4=(0,2,15,145,940), ki=exp(ki-‐1), t=log*n, size ~ 5.90n ] 



Another Solution 
Label size: n(log23)/2 ~ 0.793n bits 
Decoding time: O(1) 
 

✖ 



Warm-up 
(ignoring decoding time) 

Assume G has a Hamiltonian cycle x0,x1,…,xn-1. 
 
➟ dist(x0,xi) = dist(x0,xi-‐1) + e0(xi,xi-‐1) where 
e0(xi,xi-‐1)∈{-1,0,+1} 
 
➟ dist(x0,xi) = ∑1≤j≤i e0(xj,xj-‐1) 
 
Label: LG(xi)=(i, [ei(xi+1,xi),ei(xi+2,xi+1), …]) 
Size: n(log23)/2 bits by storing only half ei()’s  
 
 
 
 
 



Applications 

Assume G is 2-connected. By Fleischner’s 
Theorem [1974], G2 has a Hamiltonian cycle 
x0,x1,…,xn-1. So, e0(xi,xi-‐1)=dist(x0,xi)-
dist(x0,xi-‐1)∈{-2,-1,0,1,2}. 
 
Label size: n(log25)/2 ~ 1.16n bits 
 
For every tree T, T3 is Hamiltonian. So, if G is 
connected, then G3 is Hamiltonian and has a 
labeling scheme with n(log27)/2 ~ 1.41n bits. 
 
 
 



Constant Time Solution 

T = any rooted spanning tree of G 
ex(u) = dist(x,u)-dist(x,parent(u))∈{-1,0,+1} 
 
 
Telescopic sum: if z ancestor of y, then 
dist(x,y)=dist(x,z)+∑u∈T[y,z) ex(u) 



Dominating Set & Edge-Partition 

Select an α-dominating S={si} with root(T)∈S 
and |S| ≤ (n/α)+1 
 
Edge-partition: T has an edge-partition into 
at most ⎡n/β⎤ sub-trees {Ti} of ≤ 2β edges. 
 
Choose: 
	  α=⎡logn.loglogn⎤ 
 β=⎡logα.loglogn⎤ ~ (loglogn)2 





Distance decoder: 
dist(x,y)=dist(x,z)+∑u∈T[y,z) ex(u) = A + B 
 
Storage for computing A: 
#z x logn=(n/β).logn=ω(n)          ✖ 
 
But, A = dist(x,s) + A’, where 
A’=(dist(x,z)-dist(x,s))∈[-2α,+2α] 
➟ only ⎡log2(2α+1)⎤ bits to store A’. 
 
#s x logn =(n/α).logn = o(n)   ✔ 
#z x ⎡log(2α+1)⎤=(n/β).logα = o(n) 
✔ 



Distance decoder: 
dist(x,y)=dist(x,z)+∑u∈T[y,z) ex(u) = A + B 
 
Storage for computing B: assume y∈Ti 
B=f(Ti,ex(Ti),rk(y)) for some f(…) 

where ex(Ti)=[-1,0,+1,+1,0,-1,…] 

 
But, the input ⟨Ti,ex(Ti),rk(y)⟩ writes on 
O(β)=O(log2logn) bits! 
 
➟ one can tabulate f(…) once for all its possible 
inputs with 2O(β) x log2B = o(n) bits to have 
constant time. 

→

→

→ 



Storage for u (in its label): 
storage for all A,A’,B ➟ o(n) bits 
storage also for: 
1.  i st. u∈Ti, rk(u) in Ti, and z=root(Ti)	  
2.  closest s∈S ancestor of z  
3.  coding of Ti with O(β) bits 
4.  eu(Ti),eu(Ti+1),…	  for half the total information 

      (this latter costs n(log23)/2 + o(n) bits) 

 
 
Decoder: [ x “knows” y, otherwise swap x,y ] 
1.  y tells to x: ⟨i,Ti,rk(y),z,s⟩ 
2.  x computes and returns A+A’+B 

→ →



Conclusion 

Main question: Design a labeling scheme with 
0.5n+o(n)-bit labels and constant time decoder? 
 
 
Bonus: 
•  The technique extends to weighted graphs. We show 

n.log2(2w+1)/2 bits for edge-weight in [1,w]. We show 
a lower bound of n.log2(w/2+1)/2. 

•  We also show a 1-additive (one sided error) labeling 
scheme of n/2 bits, and a lower bound of n/4. 


