Computing distances in a graph in constant time and with $0.793 n$-bit labels

Cyril Gavoille
(LaBRI, U. Bordeaux)

Stephen Alstrup (U. Copenhagen)

Esben Bistrup Halvorsen (U. Copenhagen)
Holger Petersen (-)

Aussois - ANR DISPLEXITY - March 2015

Agenda

1. The Problem
2. Squashed Cube Dimension
3. Dominating Set Technique
4. Another Solution
5. Conclusion

The Distance Labeling Problem

Given a graph, find a labeling of its nodes such that the distance between any two nodes can be computed by inspecting only their labels.

Subject to:

- label the nodes of every graph of a family (scheme),
- using short labels (size measured in bits), and
- with a fast distance decoder (algorithm)

Motivation [Peleg '99]

If a short label (say of poly-logarithmic size) can be added to the address of the destination, then routing to any destination can be done without routing tables and with a "limited" number of messages.

message header=hop-count

A Distributed Data Structure

- Get the labels of nodes involved in the query
- Compute/decode the answer from the labels
- No other source of information is required

Label Size: a trivial upper bound

There is a labeling scheme using labels of $O(n \log n$) bits for every (unweighted) graph G with n nodes, and constant time decoding.
$\mathrm{L}_{\sigma}(i)=(i,[\operatorname{dist}(i, 1), \ldots, \operatorname{dist}(i, j), \ldots, \operatorname{dist}(i, n)])$
\rightarrow distance vector

Label Size: a trivial lower bound

No labeling scheme can guarantee labels of less than $0.5 n$ bits for all n-node graphs (whatever the distance decoder complexity is)

Proof. The sequence $\left\langle L_{-}(1)_{r, \ldots,}, L_{-}(n)\right\rangle$ and the decoder $\delta(, \ldots)$ is a representation of G on $n \cdot k+O(1)$ bits if each label has size $k: i$ adjacent to j iff $\delta\left(L_{-}(i), L_{-}(j)\right)=1$.

$$
n \cdot k+O(1) \geq \log _{2}(\# \operatorname{graphs}(n))=n \cdot(n-1) / 2
$$

Squashed Cube Dimension [Graham,Pollack '71]

Labeling: word over $\{0,1, *\}$
Decoder: Hamming distance (where *=don't care) (graphs must be connected)
$\mathrm{SC}_{\text {dim }}(G) \geq \max \left\{n^{+}, n^{-}\right\}$
$n^{+/-}=\#$ positive/negative eigenvalues of the distance matrix of G
$\mathrm{SC}_{\mathrm{dim}}\left(\mathrm{K}_{n}\right)=n-1$

Squashed Cube Dimension [Winkler '83]

Theorem. Every connected n-node graph has squashed cube dimension at most $n-1$.

Therefore, for the family of all connected n-node graphs:

Label size: $O(n)$ bits, in fact $n \log _{2} 3 \sim 1.58 n$ bits Decodjing time: $O(n / \log n)$ in the RAM model

Rem: all graphs = connected graphs + O(logn) bits

Dominating Set Technique [G.,Peleg,Pérennès,Raz '01]

Definition. A k-dominating set for G is a set S such that, for every node $x \in G, \operatorname{dist}(x, S) \leq k$.

Fact: Every n-node connected graph has a k dominating set of size at most $n /(k+1)$.

Target:
Label size: $\mathrm{O}(n)$ bits
Decoding time: O(loglogn)

Part 1

$\operatorname{dom}_{\mathrm{s}}(x)=$ dominator of x, its closest node in S

Observation 1:

$\operatorname{dist}(x, y)=\operatorname{dist}\left(\operatorname{dom}_{s}(x), \operatorname{dom}_{s}(y)\right)+e(x, y)$ where $e(x, y) \in[-2 k,+2 k]$

Observation 2:

One can encode $e(x, y)$ with $\left\lceil\log _{2}(4 k+1)\right]$ bits

Part 2

Idea: take a collection of k_{i}-dominating set $S_{i,} i=0 \ldots . t$ (may intersect) where $k_{0}=0,\left|S_{i}\right|=n /\left(k_{i}+1\right)$, and $\left|S_{t}\right|=0(n / \log n)$. Denote $x_{0}=x$ and $x_{i}=\operatorname{dom}_{s_{i}}\left(x_{i-1}\right)$.

Decoder: $\operatorname{djst}(x, y)=\Sigma_{1 \leq i \leq t} e_{i}\left(x_{i-1}, y_{i-1}\right)+\operatorname{djst}\left(x_{t}, y_{t}\right)$ Time: $O(t)$

Part 3

Decoder: $\operatorname{dist}(x, y)=\Sigma_{1 \leq i \leq t} e_{i}\left(x_{i-1}, y_{i-1}\right)+\operatorname{dist}\left(x_{t}, y_{t}\right)$
Label size: $\sum_{1 \leq i \leq t}\left|S_{i-1}\right| \cdot\left[\log _{2}\left(4 k_{i}+1\right)\left|+\left|S_{t}\right| \cdot O(\log n)\right.\right.$ bits

$$
\text { size } \leq n \cdot \Sigma_{1 \leq i s t}\left[\log _{2}\left(4 k_{i}+1\right)\right] /\left(k_{i-1}+1\right)+O(n)
$$

Choose: $k_{i}=4^{i-1}$ and $t=\log \log n$
$\rightarrow k_{0}=0,\left\lceil\log _{2}\left(4 k_{i}+1\right)\right]=2 i+2$, and $\left|S_{t}\right|=0(n / \log n)$
\Rightarrow size $\leq n \cdot \Sigma_{i \geq 1}(2 i+2) / 4 i-1=n \cdot(56 / 9) \sim 6.22 n$ bits
\rightarrow time $O(t)=O(\log \mid \log n)$

$$
\left[k_{0,4}=(0,2,15,145,940), k_{i}=\exp \left(k_{i-1}\right), \mathrm{t}=\log ^{*} n, \text { size } \sim 5.90 n\right]
$$

Another Solution

Label size: $n\left(\log _{2} 3\right) / 2 \sim 0.793 n$ bits Decoding time: $\mathrm{O}(1)$

Space

Warm-up
 (ignoring decoding time)

Assume G has a Hamiltonian cycle $x_{0,}, x_{1}, \ldots, x_{n-1}$.
$\Rightarrow \operatorname{dist}\left(x_{0,}, x_{i}\right)=\operatorname{dist}\left(x_{0,} x_{i-1}\right)+e_{0}\left(x_{i}, x_{i-1}\right)$ where $e_{0}\left(x_{i,} x_{i-1}\right) \in\{-1,0,+1\}$
$\Rightarrow \operatorname{dist}\left(x_{0}, x_{i}\right)=\Sigma_{1 \leq j \leq i} e_{0}\left(x_{j}, x_{j-1}\right)$
Label: $\mathrm{L}_{6}\left(x_{i}\right)=\left(i,\left[e_{i}\left(x_{i+1}, x_{i}\right), e_{i}\left(x_{i+2}, x_{i+1}\right), \ldots\right]\right)$ Size: $n\left(\log _{2} 3\right) / 2$ bits by storing only half $e_{i}()^{\prime} s$

Applications

Assume G is 2 -connected. By Fleischner's Theorem [1974], G^{2} has a Hamiltonian cycle $x_{0}, x_{1}, \ldots, x_{n-1}$. So, $e_{0}\left(x_{i,}, x_{i-1}\right)=\operatorname{dist}\left(x_{0}, x_{i}\right)$ $\operatorname{dist}\left(x_{0}, x_{i-1}\right) \in\{-2,-1,0,1,2\}$.

Label size: $n\left(\log _{2} 5\right) / 2 \sim 1.16 n$ bits

For every tree T, T^{3} is Hamiltonian. So, if G is connected, then G^{3} is Hamiltonian and has a labeling scheme with $n\left(\log _{2} 7\right) / 2 \sim 1.41 n$ bits.

Constant Time Solution

$\mathrm{T}=$ any rooted spanning tree of G
$e_{x}(u)=\operatorname{dist}(x, u)-\operatorname{dist}(x, \operatorname{parent}(u)) \in\{-1,0,+1\}$

Telescopic sum: if z ancestor of y, then $\operatorname{dist}(x, y)=\operatorname{dist}(x, z)+\sum_{u \in \mathrm{~T}[y, z)} e_{x}(u)$

Dominating Set \& Edge-Partition

Select an α-dominating $\mathrm{S}=\left\{\mathrm{S}_{i}\right\}$ with $\operatorname{root}(\mathrm{T}) \in \mathrm{S}$ and $|S| \leq(n / \alpha)+1$

Edge-partition: T has an edge-partition into at most $[n / \beta]$ sub-trees $\left\{T_{i}\right\}$ of $\leq 2 \beta$ edges.

Choose:

$$
\begin{aligned}
& \alpha=[\log n \cdot \log \log n\rceil \\
& \beta=[\log a \cdot \log \log n\rceil \sim(\log \log n)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& |S| \leqslant \frac{m}{\alpha} \\
& \left|T_{i}\right| \leqslant 2 \beta \\
& \begin{array}{l}
\alpha=\log n \cdot \log \log n n+\log n \cdot \log n
\end{array} \\
& \text { - } \Delta \in S
\end{aligned}
$$

Distance decoder:

$\operatorname{dist}(x, y)=\operatorname{dist}(x, z)+\sum_{u \in T[y, z)} e_{x}(u)=A+B$
Storage for computing A:
$\# \mathrm{z} \times \log n=(n / \beta) \cdot \log n=\omega(n)$

But, $A=\operatorname{dist}(x, s)+A^{\prime}$, where
$\mathrm{A}^{\prime}=(\operatorname{dist}(x, z)-\operatorname{dist}(x, s)) \in[-2 a,+2 \alpha]$
\Rightarrow only $\left\lceil\log _{2}(2 a+1)\right]$ bits to store A^{\prime}.
$\# \mathrm{~s} \times \log n=(n / a) \cdot \log n=O(n)$
$\# z \times\lceil\log (2 \alpha+1)\rceil=(n / \beta) \cdot \log a=0(n)$

Distance decoder:

$\operatorname{dist}(x, y)=\operatorname{dist}(x, z)+\sum_{u \in \mathrm{~T}[y, z)} e_{x}(u)=\mathrm{A}+\mathrm{B}$
Storage for computing B : assume $\mathrm{y} \in \mathrm{T}_{i}$ $\mathrm{B}=\mathrm{f}\left(\mathrm{T}_{i}, \overrightarrow{e_{x}}\left(\mathrm{~T}_{i}\right), r \mathrm{k}(\mathrm{y})\right)$ for some $\mathrm{f}(\ldots)$ where $\vec{e}_{x}\left(T_{i}\right)=[-1,0,+1,+1,0,-1, \ldots]$

But, the input $\left\langle T_{i}, \overrightarrow{e_{x}}\left(T_{i}\right), r k(y)\right\rangle$ writes on $O(\beta)=O\left(\log ^{2} \log n\right)$ bits!
\rightarrow one can tabulate $f(\ldots)$ once for all its possible inputs with $20(\beta) \times \log _{2} B=O(n)$ bits to have constant time.

Storage for u (in its label):
storage for all $A, A^{\prime}, B \rightarrow O(n)$ bits
storage also for:

1. i st. $u \in \mathrm{~T}_{i,}, \mathrm{rk}(u)$ in T_{i} and $z=\operatorname{root}\left(\mathrm{T}_{i}\right)$
2. closest $s \in S$ ancestor of z
3. coding of T_{i} with $O(\beta)$ bits
4. $\vec{e}_{u}\left(T_{i}\right), \overrightarrow{e_{u}}\left(T_{i+1}\right)$,... for half the total information (this latter costs $n\left(\log _{2} 3\right) / 2+o(n)$ bits)

Decoder: [x "knows" y, otherwise swap x, y]

1. y tells to $x:\left\langle i, T_{i j} \upharpoonright k(y), z, s\right\rangle$
2. x computes and returns $A+A^{\prime}+B$

Conclusion

Main question: Design a labeling scheme with $0.5 n+0(n)$-bit labels and constant time decoder?

Bonus:

- The technique extends to weighted graphs. We show $n \cdot \log _{2}(2 w+1) / 2$ bits for edge-weight in $[1, w]$. We show a lower bound of $n \cdot \log _{2}(w / 2+1) / 2$.
- We also show a 1 -additive (one sided error) labeling scheme of $n / 2$ bits, and a lower bound of $n / 4$.

