A Quick Overview on Name-Independent Compact Routing Schemes

Cyril Gavoille

University of Bordeaux LaBRI – IUF

7 November 2011 - Euler Meeting - UPC Barcelona

The Compact Routing Problem

Input: a network G (an edge-weighted connected graph) Ouput: a routing scheme for G

A *routing scheme* is a distributed algorithm that allows **any** source node to route messages to **any** destination node, given the destination's network identifier

Space = size (in bits) of the largest local routing tables Stretch = ratio between length of the route and distance

Goals

What we expect for a good routing scheme:

- Universal
- Low Space & Low Stretch
- Name-Independent

The destination enters the network with its **name**, which is either determined by the designer of the routing scheme (labeled), or set arbitrarily (name-independent).

General Bounds [Abraham,Gavoille et al.]

For each integer $k \ge 1$, and every weighted graph, there is name-independent routing scheme with stretch linear in k and space $n^{1/k} \cdot \operatorname{polylog}(n)$ space.

 $k = 1 \Rightarrow \mathsf{BGP}$: stretch 1, space $n \cdot \operatorname{polylog}(n)$ $k = 2 \Rightarrow [\mathsf{AGMNT}]$: stretch 3, space $\sqrt{n} \cdot \operatorname{polylog}(n)$ $k \ge 3$: stretch $\sim 64k$, optimal stretch for k = 3 is open General Bounds: Lower Bounds [Abraham,Gavoille et al.]

For each integer $k \ge 1$, there are weighted trees for which every name-independent routing scheme with space $< n^{1/k}$ requires stretch $\ge 2k + 1$ and average stretch $\ge k/4$.

General Bounds: Lower Bounds [Abraham,Gavoille et al.]

For each integer $k \ge 1$, there are weighted trees for which every name-independent routing scheme with space $< n^{1/k}$ requires stretch $\ge 2k + 1$ and average stretch $\ge k/4$.

For *unweighted* trees, there is a name-independent routing scheme with space polylog(n) and stretch 17.

General Bounds: Lower Bounds [Abraham,Gavoille et al.]

For each integer $k \ge 1$, there are weighted trees for which every name-independent routing scheme with space $< n^{1/k}$ requires stretch $\ge 2k + 1$ and average stretch $\ge k/4$.

For *unweighted* trees, there is a name-independent routing scheme with space polylog(n) and stretch 17.

Main differences with labeled routing schemes:

- stretch 1 with space polylog(n) for weighted trees
- average stretch O(1) with polylog(n) for weighted graphs
- no difference between weighted/unweighted case
- general lower bound depends on the Girth Conjecture

Parameterized Bounds (graph parameter dependent)

parameter	stretch	space
growth α	$1 + \varepsilon$	$\varepsilon^{-O(\log \alpha)} \cdot \operatorname{polylog}(n)$
doubling dimension d	$9 + \varepsilon$	$\varepsilon^{-O(d)} \cdot \operatorname{polylog}(n)$
minor-free size <i>r</i> (unweighted)	$4r^2$	$r!2^{O(r)} \cdot \operatorname{polylog}(n)$

Note: these schemes do not depend on any specific pre-decomposition or structure driven by the parameter. It always works! If the parameter is small, stretch & space are low.

 \Rightarrow run the algorithm and see.

An (s, δ) -sparse cover for a graph G is a set of clusters $\mathcal{C} \subset 2^{V(G)}$ such that for every $r \ge 0$:

An (s, δ) -sparse cover for a graph G is a set of clusters $\mathcal{C} \subset 2^{V(G)}$ such that for every $r \ge 0$:

(Cover) $\forall u \in V(G), \exists C \in \mathfrak{C} \text{ such that } B(u, r) \subseteq C$

An (s, δ) -sparse cover for a graph G is a set of clusters $\mathcal{C} \subset 2^{V(G)}$ such that for every $r \ge 0$:

(Cover) $\forall u \in V(G), \exists C \in \mathfrak{C} \text{ such that } B(u, r) \subseteq C$ (Diameter) $\forall C \in \mathfrak{C}, \operatorname{diam}(G[C]) \leq s \cdot r$

An (s, δ) -sparse cover for a graph G is a set of clusters $\mathcal{C} \subset 2^{V(G)}$ such that for every $r \ge 0$:

(Cover) $\forall u \in V(G), \exists C \in \mathfrak{C} \text{ such that } B(u,r) \subseteq C$ (Diameter) $\forall C \in \mathfrak{C}, \operatorname{diam}(G[C]) \leq s \cdot r$ (Density) $\forall u \in V(G), |\{C \in \mathfrak{C} : u \in C\}| \leq \delta$

An (s, δ) -sparse cover for a graph G is a set of clusters $\mathcal{C} \subset 2^{V(G)}$ such that for every $r \ge 0$:

(Cover) $\forall u \in V(G), \exists C \in \mathfrak{C} \text{ such that } B(u, r) \subseteq C$ (Diameter) $\forall C \in \mathfrak{C}, \operatorname{diam}(G[C]) \leq s \cdot r$ (Density) $\forall u \in V(G), |\{C \in \mathfrak{C} : u \in C\}| \leq \delta$

If G has a (s, δ) -sparse cover, then it has name-independent routing scheme with space $\delta \log D \cdot \operatorname{polylog}(n)$ and stretch O(s).

Known Sparse Covers

networks	stretch	density
any graph, $k \ge 1$	2k - 1	$2kn^{1/k}$
growth α	$1 + \varepsilon$	$\varepsilon^{-O(\log \alpha)}$
doubling dimension d	$1 + \varepsilon$	$\varepsilon^{-O(d)}$
minor-free size r	$4r^2$	$r!2^{O(r)}$
k-path separable	4	$O(k \log n)$

Note: the space bound depends on $\log D$. So, for weighted graphs the sparse cover based routing scheme may produce non-polynomial space.

Thank you!