Spanner, Distance Oracle, and Compact Routing for Unweighted Graphs

> Cyril Gavoille (Joint work with Ittai Abraham, Microsoft, Mountview, CA)

> > University of Bordeaux

ALADDIN Meeting - Arcachon May 2011

Topic

Given a graph G with n nodes compute an **efficient** data structure supporting **approximate** distance and/or routing queries in G.

- Efficient: polynomial time pre-processing, constant or poly-log(n) query time
- **Approximate**: guarantees on the distance \hat{d} or route length returned w.r.t. the shortest path in *G*.

Ex: $d_G(u,v) \leq \hat{d}(u,v) \leq f(d_G(u,v))$

2010 IEEE 51st Annual Symposium on Foundations of Computer Science

Distance Oracles Beyond the Thorup–Zwick Bound

Mihai Pătraşcu

Liam Roditty

Theorem 1. For any unweighted graph, there exists a distance oracle of size $O(n^{5/3})$ that, given any nodes u and v at distance d, returns a distance of at most 2d+1 in constant time. A path of this length can be listed in O(1) time per hop.

Targets

Ideal/realistic:

- data structures of linear size? $o(n^2)$ space?
- constant time query? poly-log time?
- linear pre-processing time? polynomial time?

Targets

Ideal/realistic:

- data structures of linear size? $o(n^2)$ space?
- constant time query? poly-log time?
- linear pre-processing time? polynomial time?

Extra:

• data structure can be split into n balanced labels?

Compression (to get $o(n^2)$ space data structures)

Hints: sparsify the graph!

Compute a spanning subgraph (spanner) preserving distances.

Compression (to get $o(n^2)$ space data structures)

Hints: sparsify the graph!

Compute a spanning subgraph (spanner) preserving distances.

Good news: Every graph G has a spanner H of $O(n^{1+1/k})$ edges with *stretch* function (2k-1)d.

(i.e., $d_H(u,v) \leqslant (2k-1)d_G(u,v)$ for all u,v)

Compression: stretch d + 2 spanner of size $O(n^{3/2})$ Proof:

$$\bullet H := \varnothing$$

2 While
$$\exists u \in V$$
, $\deg(u) \ge \sqrt{n}$:

$$\bullet \ H := H \cup BFS(u, G)$$

$$:= G \setminus N(u)$$

Compression: stretch d+2 spanner of size $O(n^{3/2})$ Proof:

$$\bullet H := \emptyset$$

2 While
$$\exists u \in V$$
, $\deg(u) \ge \sqrt{n}$:

$$\bullet \ H := H \cup BFS(u, G)$$

$$G := G \setminus N(u)$$

Size: $O(n\sqrt{n})$

Compression: stretch d+2 spanner of size $O(n^{3/2})$ Proof:

$$\bullet H := \emptyset$$

2 While
$$\exists u \in V$$
, $\deg(u) \ge \sqrt{n}$:

$$\bullet \ H := H \cup BFS(u, G)$$

$$G := G \setminus N(u)$$

$$\bullet H := H \cup G$$

Size: $O(n\sqrt{n})$

Stretch: if an *xy*-shortest path does not intersect a neighbor of any selected node u (or cuts u), then stretch is d, otherwise $d_H(x, y) \leq d_1 + d_2 + 2 = d + 2$.

Compression: **V**Query time?

How do we get $d_H(u, v)$?

We can do in $O(n + m_H)$ time instead of $O(n + m_G)$ but it's far from polylog(n).

Compression: **V**Query time?

- How do we get $d_H(u, v)$?
- We can do in $O(n + m_H)$ time instead of $O(n + m_G)$ but it's far from polylog(n).
- What about if G is already sparse? say G is a cubic graph?

Compression: **V**Query time?

How do we get $d_H(u, v)$?

We can do in $O(n + m_H)$ time instead of $O(n + m_G)$ but it's far from polylog(n).

What about if G is already sparse? say G is a cubic graph?

Lower bound [Sommer et al. (FOCS'09)] Every stretch $O(k) \cdot d$ query time t distance oracle for graphs with $\tilde{O}(n)$ edges must have a size $n^{1+\Omega(1/(kt))}$.

Space limitation of $n^{1+\Omega(1/k)}$ comes from not only from compression but also from *constant* query time.

Thorup-Zwick distance oracle (J.ACM '05) Every weighted graph has a stretch (2k-1)d distance oracle of size $\tilde{O}(n^{1+1/k})$ with query time O(k), and polynomial pre-processing. Moreover, the oracle can be represented as a distance labeling.

For k=2:

 \Rightarrow stretch 3d, space $n^{3/2}$, constant query time

Can we do better for unweighted graphs?

Pătrașcu-Roditty (FOCS '10) Every unweighted graph has stretch 2d + 1 distance oracle of size $\tilde{O}(n^{5/3})$ with constant query time. (Label approach fails because of use a global hash table of size $n^{5/3}$)

Can we do better for unweighted graphs?

Pătrașcu-Roditty (FOCS '10) Every unweighted graph has stretch 2d + 1 distance oracle of size $\tilde{O}(n^{5/3})$ with constant query time. (Label approach fails because of use a global hash table of size $n^{5/3}$)

Theorem (This talk)

Let $k \ge 2$. Every unweighted graph has stretch (2k-2)d+1distance oracle of size $\tilde{O}(n^{1+2/(2k-1)})$ with query time O(k). Moreover it can be represented as a distance labeling.

For k=2: \Rightarrow stretch 2d + 1, space $n^{1+2/3} = n^{5/3}$, constant query time

[TZ05]

[TZ05][PR10]

[TZ05][PR10][us]

The Best Solution depends on the question:

The **Best Solution** depends on the question:

• What is the best space complexity with stretch 3d? $\Rightarrow n^{3/2}$ [TZ05]

[TZ05][PR10][us]

The Best Solution depends on the question:

- What is the best space complexity with stretch 3d? $\Rightarrow n^{3/2}$ [TZ05]
- What is the best stretch with space complexity o(n²)?
 ⇒ at most 2d + 1 [PR10][us]

[TZ05][PR10][us]

The Best Solution depends on the question:

- What is the best space complexity with stretch 3d? $\Rightarrow n^{3/2}$ [TZ05]
- ② What is the best stretch with space complexity $o(n^2)$? ⇒ at most 2d + 1 [PR10][us]

Under a conjecture about hardness of sparse intersecting set data structures, [PR10] believe that stretch $(2 - \varepsilon)d$ requires space $\tilde{\Omega}(n^2)$, and stretch 2d + 1 requires $\tilde{\Omega}(n^{3/2})$.

Proof for k = 2. (we want n labels of $\tilde{O}(n^{2/3})$ bits and stretch 2d + 1) Proof for k = 2. (we want n labels of $\tilde{O}(n^{2/3})$ bits and stretch 2d + 1)

Definitions: Given a set of landmarks $L \subset V$: $B_L(u) = \{v \in V : d(u, v) < d(u, L)\}$

Proof for k = 2. (we want n labels of $\tilde{O}(n^{2/3})$ bits and stretch 2d + 1)

Definitions: Given a set of landmarks $L \subset V$:

$$B_L(u) = \{ v \in V : d(u, v) < d(u, L) \}$$

$$C_L(v) = \{ u \in V : v \in B_L(u) \}$$

 $\mathbb{R} \quad v \in B_L(u) \text{ iff } u \in C_L(v)$

Sampling Lemma [TZ - SPAA '01]

Select: $|L| \sim n^{2/3}$ such that $\forall u$, $|B_L(u)| \& |C_L(u)| \sim n^{1/3}$

Lemma. Given $s (= n^{2/3})$, one can construct in polynomial time a landmark set L such that for every node u of G, $|B_L(u)| \& |C_L(u)| \leq 4n/s$, and in expectation, $|L| \leq 2s \log n$.

Proof idea. Sample nodes of V with probability s/n. $|B_L(u)|$ is ok whp. Compute set W of w having large $C_L(w)$. If $|W| \leq s$, add W to L. Otherwise, sample this W with probability s/|W|. Then, half of large w becomes small (double counting + Markov).

Storage

Storage for u: I(u) and the distance from u to every $v \in I(u)$, plus its closest landmarks l_v .

[$|I(u)| = \tilde{O}(n^{2/3})$, storage \checkmark]

Querying between s and t

If $t \in I(s)$, then returns d(s,t)else returns min $\{d(s,l_s) + d(l_s),t), d(t,l_t) + d(l_t,t)\}$

Querying between s and t

If $t \in I(s)$, then returns d(s,t)else returns min $\{d(s,l_s) + d(l_s),t), d(t,l_t) + d(l_t,t)\}$

[dictionary and 2-level hash table, query time ✔]

Querying between s and t

If $t \in I(s)$, then returns d(s,t)else returns min $\{d(s,l_s) + d(l_s),t), d(t,l_t) + d(l_t,t)\}$

[stretch 2d + 1?]

If $t \notin I(s)$, then $B_L(s) \cap B_L(t) = \emptyset$ [otherwise $\exists w \in B_L(t) \cap B_L(s) \Rightarrow t \in C_L(w)$ and $w \in B_L(s) \Rightarrow t \in I(s)$] If $t \notin I(s)$, i.e., $B_L(s) \cap B_L(t) = \varnothing$ W.I.o.g. $d(s, l_s) \leq d(t, l_t)$

If $t \notin I(s)$, i.e., $B_L(s) \cap B_L(t) = \emptyset$ W.I.o.g. $d(s, l_s) \leq d(t, l_t)$

$$\mathbb{R} \left[d(s, l_s) - 1 \right] + 1 + \left[d(t, l_t) - 1 \right] \leqslant d$$

If $t \notin I(s)$, i.e., $B_L(s) \cap B_L(t) = \emptyset$ W.I.o.g. $d(s, l_s) \leq d(t, l_t)$

$$\boxed{\mathbb{I}} [d(s,l_s)-1] + 1 + [d(t,l_t)-1] \leq d$$

$$\Rightarrow 2d(s,l_s) \leq d+1$$

If $t \notin I(s)$, i.e., $B_L(s) \cap B_L(t) = \emptyset$ W.I.o.g. $d(s, l_s) \leq d(t, l_t)$

$$\mathbb{IS} \left[d(s, l_s) - 1 \right] + 1 + \left[d(t, l_t) - 1 \right] \leqslant d$$
$$2d(s, l_s) \leqslant d + 1$$
$$\hat{d} \leqslant 2d(s, l_s) + d \leqslant 2d + 1$$

≒

Observation

Routing with $\tilde{O}(n^{2/3})$ bit routing tables, polylog addresses and stretch 2d + 1 is not known. Routing query is not symetric!

What about Compact Routing?

Best routing scheme [Thorup-Zwick (SPAA '01)] achieves stretch (4k-5)d and routing tables of size $\tilde{O}(n^{1/k})$. [TZ01]

What about Compact Routing?

Best routing scheme [Thorup-Zwick (SPAA '01)] achieves stretch (4k-5)d and routing tables of size $\tilde{O}(n^{1/k})$. [TZ01][us]

New construction with stretch (4k-6)d+1 and routing tables of size $\tilde{O}(n^{3/(3k-2)})$.

Conclusion

	stretch		size
Spanner	d+2		$O(n^{1/2}) \cdot n$
Distance Labeling	?	2d + 1	$\tilde{O}(n^{2/3})$
Compact Routing		2d + 1	$ ilde{O}(n^{3/4})$
Compact Routing	$d + \beta$		$ ilde{\Omega}(n/eta^2)$

Conclusion

	stretch		size
Spanner	d+2		$O(n^{1/2}) \cdot n$
Distance Labeling	?	2d+1	$ ilde{O}(n^{2/3})$
Compact Routing		2d+1	$ ilde{O}(n^{3/4})$
Compact Routing	$d + \beta$		$ ilde{\Omega}(n/eta^2)$

Thank You!