Spanner, Distance Oracle, and Compact Routing for Unweighted Graphs

Cyril Gavoille
(Joint work with Ittai Abraham, Microsoft, Mountview, CA)

University of Bordeaux
ALADDIN Meeting - Arcachon
May 2011

Topic

Given a graph G with n nodes compute an efficient data structure supporting approximate distance and/or routing queries in G.

- Efficient: polynomial time pre-processing, constant or poly- $\log (n)$ query time
- Approximate: guarantees on the distance \hat{d} or route length returned w.r.t. the shortest path in G.
Ex: $d_{G}(u, v) \leqslant \hat{d}(u, v) \leqslant f\left(d_{G}(u, v)\right)$

For instance

2010 IEEE 51st Annual Symposium on Foundations of Computer Science

Distance Oracles Beyond the Thorup-Zwick Bound

Mihai Pătraşcu

Liam Roditty

Theorem 1. For any unweighted graph, there exists a distance oracle of size $O\left(n^{5 / 3}\right)$ that, given any nodes u and v at distance d, returns a distance of at most $2 d+1$ in constant time. A path of this length can be listed in $O(1)$ time per hop.

Targets

Ideal/realistic:

- data structures of linear size? $o\left(n^{2}\right)$ space?
- constant time query? poly-log time?
- linear pre-processing time? polynomial time?

Targets

Ideal/realistic:

- data structures of linear size? $o\left(n^{2}\right)$ space?
- constant time query? poly-log time?
- linear pre-processing time? polynomial time?

Extra:

- data structure can be split into n balanced labels?

Compression
 (to get $o\left(n^{2}\right)$ space data structures)

Hints: sparsify the graph!
Compute a spanning subgraph (spanner) preserving distances.

Compression

(to get $o\left(n^{2}\right)$ space data structures)

Hints: sparsify the graph!
Compute a spanning subgraph (spanner) preserving distances.
Good news: Every graph G has a spanner H of $O\left(n^{1+1 / k}\right)$ edges with stretch function $(2 k-1) d$.
(i.e., $d_{H}(u, v) \leqslant(2 k-1) d_{G}(u, v)$ for all $\left.u, v\right)$

Compression: stretch $d+2$ spanner of size $O\left(n^{3 / 2}\right)$ Proof:
(1) $H:=\varnothing$
(2) While $\exists u \in V, \operatorname{deg}(u) \geqslant \sqrt{n}$:
(1) $H:=H \cup \operatorname{BFS}(u, G)$
(2) $G:=G \backslash N(u)$
(3) $H:=H \cup G$

Compression: stretch $d+2$ spanner of size $O\left(n^{3 / 2}\right)$ Proof:
(1) $H:=\varnothing$
(2) While $\exists u \in V, \operatorname{deg}(u) \geqslant \sqrt{n}$:
(1) $H:=H \cup \operatorname{BFS}(u, G)$
(2) $G:=G \backslash N(u)$
(3) $H:=H \cup G$

Size: $O(n \sqrt{n})$

Compression: stretch $d+2$ spanner of size $O\left(n^{3 / 2}\right)$ Proof:
(1) $H:=\varnothing$
(2) While $\exists u \in V, \operatorname{deg}(u) \geqslant \sqrt{n}$:
(1) $H:=H \cup \operatorname{BFS}(u, G)$
(2) $G:=G \backslash N(u)$
(3) $H:=H \cup G$

Size: $O(n \sqrt{n})$
Stretch: if an $x y$-shortest path does not intersect a neighbor of any selected node u (or cuts u), then stretch is d, otherwise $d_{H}(x, y) \leqslant d_{1}+d_{2}+2=d+2$.

Compression:
 Query time?

How do we get $d_{H}(u, v)$?
We can do in $O\left(n+m_{H}\right)$ time instead of $O\left(n+m_{G}\right)$ but it's far from polylog (n).

Compression:
 Query time?

How do we get $d_{H}(u, v)$?
We can do in $O\left(n+m_{H}\right)$ time instead of $O\left(n+m_{G}\right)$ but it's far from polylog (n).

What about if G is already sparse? say G is a cubic graph?

Compression: Query time?

How do we get $d_{H}(u, v)$?
We can do in $O\left(n+m_{H}\right)$ time instead of $O\left(n+m_{G}\right)$ but it's far from polylog (n).
What about if G is already sparse? say G is a cubic graph?
Lower bound [Sommer et al. (FOCS'09)] Every stretch $O(k) \cdot d$ query time t distance oracle for graphs with $\tilde{O}(n)$ edges must have a size $n^{1+\Omega(1 /(k t))}$.

Space limitation of $n^{1+\Omega(1 / k)}$ comes from not only from compression but also from constant query time.

State-of-the-art

Thorup-Zwick distance oracle (J.ACM '05) Every weighted graph has a stretch $(2 k-1) d$ distance oracle of size $\tilde{O}\left(n^{1+1 / k}\right)$ with query time $O(k)$, and polynomial pre-processing. Moreover, the oracle can be represented as a distance labeling.

For $\mathbf{k}=2$:
\Rightarrow stretch $3 d$, space $n^{3 / 2}$, constant query time

Can we do better for unweighted graphs?

Pǎtrașcu-Roditty (FOCS '10) Every unweighted graph has stretch $2 d+1$ distance oracle of size $\tilde{O}\left(n^{5 / 3}\right)$ with constant query time. (Label approach fails because of use a global hash table of size $n^{5 / 3}$)

Can we do better for unweighted graphs?

Pǎtrașcu-Roditty (FOCS '10) Every unweighted graph has stretch $2 d+1$ distance oracle of size $\tilde{O}\left(n^{5 / 3}\right)$ with constant query time. (Label approach fails because of use a global hash table of size $n^{5 / 3}$)

Theorem (This talk)
 Let $k \geqslant 2$. Every unweighted graph has stretch $(2 k-2) d+1$ distance oracle of size $\tilde{O}\left(n^{1+2 /(2 k-1)}\right)$ with query time $O(k)$. Moreover it can be represented as a distance labeling.

For $\mathbf{k}=\mathbf{2}$:
\Rightarrow stretch $2 d+1$, space $n^{1+2 / 3}=n^{5 / 3}$, constant query time

Different trade-offs

Different trade-offs

[TZ05][PR10]

Different trade-offs

[TZ05][PR10][us]

Different trade-offs

[TZ05][PR10][us]

The Best Solution depends on the question:

Different trade-offs

[TZ05][PR10][us]

The Best Solution depends on the question:
(1) What is the best space complexity with stretch $3 d$?

$$
\Rightarrow n^{3 / 2} \text { [TZO5] }
$$

Different trade-offs

[TZ05][PR10][us]

The Best Solution depends on the question:
(1) What is the best space complexity with stretch $3 d$?
$\Rightarrow n^{3 / 2}$ [TZO5]
(2) What is the best stretch with space complexity $o\left(n^{2}\right)$?
\Rightarrow at most $2 d+1$ [PR10][us]

Different trade-offs

[TZ05][PR10][us]

The Best Solution depends on the question:
(1) What is the best space complexity with stretch $3 d$?

$$
\Rightarrow n^{3 / 2}[\text { TZO5] }
$$

(2) What is the best stretch with space complexity $o\left(n^{2}\right)$? \Rightarrow at most $2 d+1$ [PR10][us]

Under a conjecture about hardness of sparse intersecting set data structures, [PR10] believe that stretch $(2-\varepsilon) d$ requires space $\tilde{\Omega}\left(n^{2}\right)$, and stretch $2 d+1$ requires $\tilde{\Omega}\left(n^{3 / 2}\right)$.

Proof for $k=2$.

(we want n labels of $\tilde{O}\left(n^{2 / 3}\right)$ bits and stretch $2 d+1$)

Proof for $k=2$.

(we want n labels of $\tilde{O}\left(n^{2 / 3}\right)$ bits and stretch $2 d+1$)

Definitions: Given a set of landmarks $L \subset V$:
$B_{L}(u)=\{v \in V: d(u, v)<d(u, L)\}$

Proof for $k=2$.

 (we want n labels of $\tilde{O}\left(n^{2 / 3}\right)$ bits and stretch $2 d+1$)Definitions: Given a set of landmarks $L \subset V$:

$$
\begin{aligned}
& B_{L}(u)=\{v \in V: d(u, v)<d(u, L)\} \\
& C_{L}(v)=\left\{u \in V: v \in B_{L}(u)\right\}
\end{aligned}
$$

Sampling Lemma [TZ - SPAA '01]

Select: $|L| \sim n^{2 / 3}$ such that $\forall u,\left|B_{L}(u)\right| \&\left|C_{L}(u)\right| \sim n^{1 / 3}$
Lemma. Given $s\left(=n^{2 / 3}\right)$, one can construct in polynomial time a landmark set L such that for every node u of G, $\left|B_{L}(u)\right| \&\left|C_{L}(u)\right| \leqslant 4 n / s$, and in expectation, $|L| \leqslant 2 s \log n$.

Proof idea. Sample nodes of V with probability $s / n .\left|B_{L}(u)\right|$ is ok whp. Compute set W of w having large $C_{L}(w)$. If $|W| \leqslant s$, add W to L. Otherwise, sample this W with probability $s /|W|$. Then, half of large w becomes small (double counting + Markov).

Storage

$$
I(u):=L \cup B_{L}(u) \cup\left(\bigcup_{v \in B_{L}(u)} C_{L}(v)\right)
$$

Storage for u : $I(u)$ and the distance from u to every $v \in I(u)$, plus its closest landmarks l_{v}.
$\left[|I(u)|=\tilde{O}\left(n^{2 / 3}\right)\right.$, storage \boldsymbol{V}]

Querying between s and t

\bullet

If $t \in I(s)$, then returns $d(s, t)$

Querying between s and t

If $t \in I(s)$, then returns $d(s, t)$

Querying between s and t

If $t \in I(s)$, then returns $d(s, t)$
else returns $\left.\min \left\{d\left(s, l_{s}\right)+d\left(l_{s}\right), t\right), d\left(t, l_{t}\right)+d\left(l_{t}, t\right)\right\}$

Querying between s and t

If $t \in I(s)$, then returns $d(s, t)$
else returns $\left.\min \left\{d\left(s, l_{s}\right)+d\left(l_{s}\right), t\right), d\left(t, l_{t}\right)+d\left(l_{t}, t\right)\right\}$
[dictionary and 2-level hash table, query time \boldsymbol{V}]

Querying between s and t

If $t \in I(s)$, then returns $d(s, t)$
else returns $\left.\min \left\{d\left(s, l_{s}\right)+d\left(l_{s}\right), t\right), d\left(t, l_{t}\right)+d\left(l_{t}, t\right)\right\}$
[stretch $2 d+1$?]
If $t \notin I(s)$, then $B_{L}(s) \cap B_{L}(t)=\varnothing$ [otherwise $\exists w \in B_{L}(t) \cap B_{L}(s) \Rightarrow t \in C_{L}(w)$ and $\left.w \in B_{L}(s) \Rightarrow t \in I(s)\right]$

If $t \notin I(s)$, i.e., $B_{L}(s) \cap B_{L}(t)=\varnothing$
W.I.o.g. $d\left(s, l_{s}\right) \leqslant d\left(t, l_{t}\right)$

If $t \notin I(s)$, i.e., $B_{L}(s) \cap B_{L}(t)=\varnothing$
W.I.o.g. $d\left(s, l_{s}\right) \leqslant d\left(t, l_{t}\right)$

$$
\operatorname{L-B}\left[d\left(s, l_{s}\right)-1\right]+1+\left[d\left(t, l_{t}\right)-1\right] \leqslant d
$$

If $t \notin I(s)$, i.e., $B_{L}(s) \cap B_{L}(t)=\varnothing$
W.I.o.g. $d\left(s, l_{s}\right) \leqslant d\left(t, l_{t}\right)$

$$
\left[d\left(s, l_{s}\right)-1\right]+1+\left[d\left(t, l_{t}\right)-1\right] \leqslant d
$$

$\Rightarrow 2 d\left(s, l_{s}\right) \leqslant d+1$

If $t \notin I(s)$, i.e., $B_{L}(s) \cap B_{L}(t)=\varnothing$
W.I.o.g. $d\left(s, l_{s}\right) \leqslant d\left(t, l_{t}\right)$

$$
\left[d\left(s, l_{s}\right)-1\right]+1+\left[d\left(t, l_{t}\right)-1\right] \leqslant d
$$

$\Rightarrow 2 d\left(s, l_{s}\right) \leqslant d+1$
$\Rightarrow \hat{d} \leqslant 2 d\left(s, l_{s}\right)+d \leqslant 2 d+1$

Observation

Routing with $\tilde{O}\left(n^{2 / 3}\right)$ bit routing tables, polylog addresses and stretch $2 d+1$ is not known. Routing query is not symetric!

What about Compact Routing?

Best routing scheme [Thorup-Zwick (SPAA '01)] achieves stretch $(4 k-5) d$ and routing tables of size $\tilde{O}\left(n^{1 / k}\right)$.
[TZ01]

What about Compact Routing?

Best routing scheme [Thorup-Zwick (SPAA '01)] achieves stretch $(4 k-5) d$ and routing tables of size $\tilde{O}\left(n^{1 / k}\right)$.
[TZ01][us]

New construction with stretch $(4 k-6) d+1$ and routing tables of size $\tilde{O}\left(n^{3 /(3 k-2)}\right)$.

Conclusion

	stretch		size
Spanner	$d+2$		$O\left(n^{1 / 2}\right) \cdot n$
Distance Labeling	$?$	$2 d+1$	$\tilde{O}\left(n^{2 / 3}\right)$
Compact Routing		$2 d+1$	$\tilde{O}\left(n^{3 / 4}\right)$
Compact Routing	$d+\beta$		$\tilde{\Omega}\left(n / \beta^{2}\right)$

Conclusion

	stretch		size
Spanner	$d+2$		$O\left(n^{1 / 2}\right) \cdot n$
Distance Labeling	$?$	$2 d+1$	$\tilde{O}\left(n^{2 / 3}\right)$
Compact Routing		$2 d+1$	$\tilde{O}\left(n^{3 / 4}\right)$
Compact Routing	$d+\beta$		$\tilde{\Omega}\left(n / \beta^{2}\right)$

Thank You!

