Spanner, Distance Oracle, and
Compact Routing for
Unweighted Graphs

Cyril Gavoille
(Joint work with Ittai Abraham,
Microsoft, Mountview, CA)

University of Bordeaux

ALADDIN Meeting - Arcachon
May 2011

Topic

Given a graph G with n nodes compute an efficient data
structure supporting approximate distance and/or routing
queries in G.

o Efficient: polynomial time pre-processing, constant or
poly-log(n) query time

@ Approximate: guarantees on the distance d or route
length returned w.r.t. the shortest path in G.

~

Ex: dg(u,v) < d(u,v) < f(dg(u,v))

For instance

2010 IEEE 51st Annual Symposium on Foundations of Computer Science

Distance Oracles Beyond the Thorup—Zwick Bound

Mihai Pitragcu Liam Roditty

Theorem 1. For any unweighted graph, there exists a
distance oracle of size O(n®/3) that, given any nodes u
and v at distance d, returns a distance of at most 2d+1
in constant time. A path of this length can be listed in
O(1) time per hop.

Targets

|deal /realistic:
o data structures of linear size? o(n?) space?
@ constant time query? poly-log time?

@ linear pre-processing time? polynomial time?

Targets

Ideal/realistic:

o data structures of linear size? o(n?) space?
@ constant time query? poly-log time?
@ linear pre-processing time? polynomial time?

Extra:

Compression
(to get o(n?) space data structures)

Hints: sparsify the graph!

Compute a spanning subgraph (spanner) preserving distances.

Compression
(to get o(n?) space data structures)

Hints: sparsify the graph!

Compute a spanning subgraph (spanner) preserving distances.
Good news: Every graph G has a spanner H of O(n!*/¥)
edges with stretch function (2k — 1)d.

(i.e., dy(u,v) < (2k — 1)dg(u,v) for all u,v)

Compression: stretch d 4 2 spanner of size O(n?/?)
Proof:
Q H=0
@ While Ju € V, deg(u) > /n:
@ H:= HUBFS(u,G)
@ G:=G\N@)
@ H:=HUG

Compression: stretch d 4 2 spanner of size O(n?/?)
Proof:
Q H=0
@ While Ju € V, deg(u) > /n:
@ H:= HUBFS(u,G)
@ G:=G\N(u)
@ H:=HUG

Size: O(ny/n)

Compression: stretch d 4 2 spanner of size O(n?/?)
Proof:
Q H=0
@ While Ju € V, deg(u) > /n:
@ H:= HUBFS(u,G)
@ G:=G\N()
Q@ H=HUG

Size: O(ny/n)

Stretch: if an xy-shortest path does not intersect a neighbor
of any selected node u (or cuts u), then stretch is d, otherwise
dH($7y) < d1+d2+2:d+2

Compression: v/
Query time?

How do we get dy(u,v)?

We can do in O(n + my) time instead of O(n + m¢)
but it's far from polylog(n).

Compression: v/
Query time?

How do we get dy(u,v)?

We can do in O(n + my) time instead of O(n + m¢)
but it's far from polylog(n).

What about if GG is already sparse? say GG is a cubic graph?

Compression: v/
Query time?

How do we get dy(u,v)?

We can do in O(n + my) time instead of O(n + m¢)
but it's far from polylog(n).

What about if GG is already sparse? say GG is a cubic graph?

Lower bound [Sommer et al. (FOCS’09)] Every stretch
O(k) - d query time t distance oracle for graphs with O(n)
edges must have a size n!'+(1/ (),

Space limitation of n!T%(1/*) comes from not only from
compression but also from constant query time.

State-of-the-art

Thorup-Zwick distance oracle (J.ACM ’05) Every
weighted graph has a stretch (2k — 1)d distance oracle of size
O(n'*/%) with query time O(k), and polynomial
pre-processing. Moreover, the oracle can be represented as a
distance labeling.

For k=2:
= stretch 3d, space n%/?, constant query time

Can we do better for unweighted graphs?

Patrascu-Roditty (FOCS "10) Every unweighted graph has
stretch 2d + 1 distance oracle of size O(n®/3) with constant
query time. (Label approach fails because of use a global hash

table of size n°/3)

Can we do better for unweighted graphs?

Patrascu-Roditty (FOCS ’'10) Every unweighted graph has
stretch 2d + 1 distance oracle of size O(n®/?) with constant
query time. (Label approach fails because of use a global hash
table of size n°/3)

Theorem (This talk)

Let k > 2. Every unweighted graph has stretch (2k — 2)d + 1
distance oracle of size O(n'+*/*=1) with query time O(k).
Moreover it can be represented as a distance labeling.

For k=2:
= stretch 2d + 1, space n'*%/? = n%?3, constant query time

Different trade-offs

[TZ05]
P n3/2 ni/3 no/4 i
@ L @ >
d 3d 5d 7d stretch

Different trade-offs

[TZ05][PR10]
n2 ns/3 n3/2 n4/3 nb/4 space
° o ° ® ° >
d 2d+1 3d 5d 7d stretch

Different trade-offs

[TZ05][PR10][us]
n2 nd/3 n3/2 n?/s ni/3 nd/7 nd/4 space
o O o O o O o o—>
d 2d+1 3d 4d +1 5d 6d+1 7d stretch

Different trade-offs

[TZ05][PR10][us]
n2 nd/3 n3/2 n?/s ni/3 nd/7 nd/4 s
o O o O o O o ® >
d 2d+1 3d 4d + 1 5d 6d+1 7d stretch

The Best Solution depends on the question:

Different trade-offs

[TZ05][PR10][us]
n2 nd/3 n3/2 n?/s ni/3 nd/7 nd/4 e
o O o O o O o ® >
d 2d+1 3d 4d + 1 5d 6d+1 7d stretch

The Best Solution depends on the question:

© What is the best space complexity with stretch 3d?
= n3/2 [TZ05]

Different trade-offs

[TZ05][PR10][us]

n2 nd/3 n3/2 n?/s ni/3 nd/7 nd/4 e
o O o O o O o ® >
d 2d+1 3d 4d + 1 5d 6d+1 7d stretch

The Best Solution depends on the question:

© What is the best space complexity with stretch 3d?
= n3/2 [TZ05]

@ What is the best stretch with space complexity o(n?)?
= at most 2d + 1 [PR10][us]

Different trade-offs

[TZ05][PR10][us]
n2 nd/3 n3/2 n/5 ni/3 nd/7 nd/4 e
o O o O o O o ® >
d 2d+1 3d 4d + 1 5d 6d+1 7d stretch

The Best Solution depends on the question:

© What is the best space complexity with stretch 3d?
= n3/2 [TZ05]

@ What is the best stretch with space complexity o(n?)?
= at most 2d + 1 [PR10][us]

Under a conjecture about hardness of sparse intersecting set
data structures, [PR10] believe that stretch (2 — €)d requires
space §2(n?), and stretch 2d + 1 requires (n3/2).

Proof for k = 2.

(we want 7 labels of O(n?/) bits and stretch 2d + 1)

Proof for k = 2.

(we want 7 labels of O(n?/?) bits and stretch 2d + 1)

Definitions: Given a set of landmarks L C V:
Br(u) ={v eV :d(u,v) <d(u,L)}

Proof for k = 2.

(we want 7 labels of O(n?/?) bits and stretch 2d + 1)

Definitions: Given a set of landmarks L C V:

Br(u) ={v eV :d(u,v) <d(u,L)}
Cr(v) ={ueV:veByu)}

=" vy € Br(u) iffu € Cp(v)

Sampling Lemma [TZ - SPAA '01]

Select: |L| ~ n%? such that Vu, |Br(u)| & |CL(u)| ~ n'/3

Lemma. Given s (= n?/?), one can construct in polynomial
time a landmark set L such that for every node u of G,
|Br,(u)| & |CL(u)] < 4n/s, and in expectation, |L| < 2slogn.

Proof idea. Sample nodes of V' with probability s/n. | By (u)]
is ok whp. Compute set W of w having large C(w). If

|W| < s, add W to L. Otherwise, sample this W with
probability s/|W|. Then, half of large w becomes small
(double counting + Markov).

Storage . .

I(u) == LUB(u (U Cr(v)

’UEBL)

Storage for u: I(u) and the distance from u to every
v € I(u), plus its closest landmarks ,,.

[|I(u)| = O(n*?), storage V]

Querying between s and t
([J

O
® s

([]
If ¢t € I(s), then returns d(s,t)

S @

Querying between s and t
([J

If ¢t € I(s), then returns d(s,t)

Querying between s and t
([J

I, o L

—

([]
If ¢t € I(s), then returns d(s,t)
else returns min {d(s, l5) + d(ls),t),d(t,l;) + d(l;,t)}

Querying between s and t
([J

I, o L

—

([]
If ¢t € I(s), then returns d(s,t)
else returns min {d(s, l5) + d(ls),t),d(t,l;) + d(l;,t)}

[dictionary and 2-level hash table, query time v/|

Querying between s and t
([J

I, o L

—

[J
([]
If ¢t € I(s), then returns d(s,t)
else returns min {d(s, l5) + d(l5),t),d(t,l;) + d(l;, 1)}

[stretch 2d + 17]

w If t ¢ I(s), then Br(s) N B(t) =@

[otherwise Jw € B (t) N Br(s) =t € C(w) and
w € Br(s) =t e I(s)]

I . B g ')
§](S), I.e., Z () (
W.l.O.g. O!(S,l) g

)=
d(t, l;)

Ift & I(s), ie.,

Bi(s) N Byt
W.lo.g. d(s,l,) <

)=
d(t,ly)

i [d(s, 1) — 1] + 1 + [d(t, L) — 1]

<d

Ift & I(s), i.e., Bp(s) N BL(t) = @
W.lo.g. d(s,ls) < d(t,1})

w [d(s, 1) — 1] + 1+ [d(t, ;) — 1] < d

= 2d(s,l;) <d+1

Ift & I(s), i.e., Bp(s) N BL(t) = @
W.lo.g. d(s,ls) < d(t,1})

w [d(s, 1) — 1] + 1+ [d(t, ;) — 1] < d

= 2d(s,l5) <d+1
= d < 2d(s,l,) +d <2d+1

Observation

Routing with O(n?/3) bit routing tables, polylog addresses and
stretch 2d 4+ 1 is not known. Routing query is not symetric!

What about Compact Routing?

Best routing scheme [Thorup-Zwick (SPAA '01)]
achieves stretch (4k — 5)d and routing tables of size O(n'/¥).

[TZ01]

1 1/2

n n 1/3 1/4

w space
L ® ® >

d 3d 7d 11d stretch

n

What about Compact Routing?

Best routing scheme [Thorup-Zwick (SPAA '01)]
achieves stretch (4k — 5)d and routing tables of size O(n'/¥).

[TZ01][us]

n' n3/ n space

® ® ® ® ® ® ® ® >
d 2d+1 3d 6d+1 7d 10d+1 11d stretch

1/2 n3/7 nl/3 n3/10 nl/4

New construction with stretch (4k — 6)d + 1 and routing
tables of size O(n3/(k=2),

Conclusion

stretch

size
Spanner d+2 O(n'/?) -
Distance Labeling | ? 2d+1 | O(n*?)
Compact Routing 2d +1 | O(n?/4)
Compact Routing | d+ 3 Q(n/5?)

Conclusion

stretch size
Spanner d+2 O(n'/?) -
Distance Labeling | ? 2d+1 | O(n*?)
Compact Routing 2d +1 | O(n?/4)
Compact Routing | d+ 3 Q(n/5?)

Thank You!

