
Spanner, Distance Oracle, and
Compact Routing for
Unweighted Graphs

Cyril Gavoille
(Joint work with Ittai Abraham,

Microsoft, Mountview, CA)

University of Bordeaux

ALADDIN Meeting - Arcachon

May 2011

Topic

Given a graph G with n nodes compute an efficient data
structure supporting approximate distance and/or routing
queries in G.

Efficient: polynomial time pre-processing, constant or
poly-log(n) query time

Approximate: guarantees on the distance d̂ or route
length returned w.r.t. the shortest path in G.

Ex: dG(u, v) 6 d̂(u, v) 6 f(dG(u, v))

For instance

Targets

Ideal/realistic:

data structures of linear size? o(n2) space?

constant time query? poly-log time?

linear pre-processing time? polynomial time?

Extra:

data structure can be split into n balanced labels?

Targets

Ideal/realistic:

data structures of linear size? o(n2) space?

constant time query? poly-log time?

linear pre-processing time? polynomial time?

Extra:

data structure can be split into n balanced labels?

Compression
(to get o(n2) space data structures)

Hints: sparsify the graph!

Compute a spanning subgraph (spanner) preserving distances.

Good news: Every graph G has a spanner H of O(n1+1/k)
edges with stretch function (2k − 1)d.

(i.e., dH(u, v) 6 (2k − 1)dG(u, v) for all u, v)

Compression
(to get o(n2) space data structures)

Hints: sparsify the graph!

Compute a spanning subgraph (spanner) preserving distances.

Good news: Every graph G has a spanner H of O(n1+1/k)
edges with stretch function (2k − 1)d.

(i.e., dH(u, v) 6 (2k − 1)dG(u, v) for all u, v)

Compression: stretch d+ 2 spanner of size O(n3/2)
Proof:

1 H := ∅
2 While ∃u ∈ V , deg(u) >

√
n:

1 H := H ∪ BFS(u, G)
2 G := G \N(u)

3 H := H ∪G

Size: O(n
√
n)

Stretch: if an xy-shortest path does not intersect a neighbor
of any selected node u (or cuts u), then stretch is d, otherwise
dH(x, y) 6 d1 + d2 + 2 = d+ 2.

d2

6 d2 + 1

d1

u6 d1 + 1
yx

Compression: stretch d+ 2 spanner of size O(n3/2)
Proof:

1 H := ∅
2 While ∃u ∈ V , deg(u) >

√
n:

1 H := H ∪ BFS(u, G)
2 G := G \N(u)

3 H := H ∪G

Size: O(n
√
n)

Stretch: if an xy-shortest path does not intersect a neighbor
of any selected node u (or cuts u), then stretch is d, otherwise
dH(x, y) 6 d1 + d2 + 2 = d+ 2.

d2

6 d2 + 1

d1

u6 d1 + 1
yx

Compression: stretch d+ 2 spanner of size O(n3/2)
Proof:

1 H := ∅
2 While ∃u ∈ V , deg(u) >

√
n:

1 H := H ∪ BFS(u, G)
2 G := G \N(u)

3 H := H ∪G

Size: O(n
√
n)

Stretch: if an xy-shortest path does not intersect a neighbor
of any selected node u (or cuts u), then stretch is d, otherwise
dH(x, y) 6 d1 + d2 + 2 = d+ 2.

d2

6 d2 + 1

d1

u6 d1 + 1
yx

Compression: 4

Query time?

How do we get dH(u, v)?

We can do in O(n+mH) time instead of O(n+mG)
but it’s far from polylog(n).

What about if G is already sparse? say G is a cubic graph?

Lower bound [Sommer et al. (FOCS’09)] Every stretch
O(k) · d query time t distance oracle for graphs with Õ(n)
edges must have a size n1+Ω(1/(kt)).

Space limitation of n1+Ω(1/k) comes from not only from
compression but also from constant query time.

Compression: 4

Query time?

How do we get dH(u, v)?

We can do in O(n+mH) time instead of O(n+mG)
but it’s far from polylog(n).

What about if G is already sparse? say G is a cubic graph?

Lower bound [Sommer et al. (FOCS’09)] Every stretch
O(k) · d query time t distance oracle for graphs with Õ(n)
edges must have a size n1+Ω(1/(kt)).

Space limitation of n1+Ω(1/k) comes from not only from
compression but also from constant query time.

Compression: 4

Query time?

How do we get dH(u, v)?

We can do in O(n+mH) time instead of O(n+mG)
but it’s far from polylog(n).

What about if G is already sparse? say G is a cubic graph?

Lower bound [Sommer et al. (FOCS’09)] Every stretch
O(k) · d query time t distance oracle for graphs with Õ(n)
edges must have a size n1+Ω(1/(kt)).

Space limitation of n1+Ω(1/k) comes from not only from
compression but also from constant query time.

State-of-the-art

Thorup-Zwick distance oracle (J.ACM ’05) Every
weighted graph has a stretch (2k − 1)d distance oracle of size
Õ(n1+1/k) with query time O(k), and polynomial
pre-processing. Moreover, the oracle can be represented as a
distance labeling.

For k=2:
⇒ stretch 3d, space n3/2, constant query time

Can we do better for unweighted graphs?

Pǎtraşcu-Roditty (FOCS ’10) Every unweighted graph has
stretch 2d+ 1 distance oracle of size Õ(n5/3) with constant
query time. (Label approach fails because of use a global hash

table of size n5/3)

Theorem (This talk)

Let k > 2. Every unweighted graph has stretch (2k − 2)d+ 1
distance oracle of size Õ(n1+2/(2k−1)) with query time O(k).
Moreover it can be represented as a distance labeling.

For k=2:
⇒ stretch 2d+ 1, space n1+2/3 = n5/3, constant query time

Can we do better for unweighted graphs?

Pǎtraşcu-Roditty (FOCS ’10) Every unweighted graph has
stretch 2d+ 1 distance oracle of size Õ(n5/3) with constant
query time. (Label approach fails because of use a global hash

table of size n5/3)

Theorem (This talk)

Let k > 2. Every unweighted graph has stretch (2k − 2)d+ 1
distance oracle of size Õ(n1+2/(2k−1)) with query time O(k).
Moreover it can be represented as a distance labeling.

For k=2:
⇒ stretch 2d+ 1, space n1+2/3 = n5/3, constant query time

Different trade-offs

[TZ05]

n5/4

5d3dd stretch

spacen2 n3/2 n4/3

7d

The Best Solution depends on the question:

1 What is the best space complexity with stretch 3d?
⇒ n3/2 [TZ05]

2 What is the best stretch with space complexity o(n2)?
⇒ at most 2d + 1 [PR10][us]

Under a conjecture about hardness of sparse intersecting set
data structures, [PR10] believe that stretch (2− ε)d requires
space Ω̃(n2), and stretch 2d+ 1 requires Ω̃(n3/2).

Different trade-offs

[TZ05][PR10]

2d+ 1 7d5d3dd stretch

spacen2 n5/3 n3/2 n4/3 n5/4

The Best Solution depends on the question:

1 What is the best space complexity with stretch 3d?
⇒ n3/2 [TZ05]

2 What is the best stretch with space complexity o(n2)?
⇒ at most 2d + 1 [PR10][us]

Under a conjecture about hardness of sparse intersecting set
data structures, [PR10] believe that stretch (2− ε)d requires
space Ω̃(n2), and stretch 2d+ 1 requires Ω̃(n3/2).

Different trade-offs

[TZ05][PR10][us]

6d+ 1

n5/4

7d5d3dd stretch

space

2d+ 1 4d+ 1

n2 n5/3 n3/2 n7/5 n4/3 n9/7

The Best Solution depends on the question:

1 What is the best space complexity with stretch 3d?
⇒ n3/2 [TZ05]

2 What is the best stretch with space complexity o(n2)?
⇒ at most 2d + 1 [PR10][us]

Under a conjecture about hardness of sparse intersecting set
data structures, [PR10] believe that stretch (2− ε)d requires
space Ω̃(n2), and stretch 2d+ 1 requires Ω̃(n3/2).

Different trade-offs

[TZ05][PR10][us]

6d+ 1

n5/4

7d5d3dd stretch

space

2d+ 1 4d+ 1

n2 n5/3 n3/2 n7/5 n4/3 n9/7

The Best Solution depends on the question:

1 What is the best space complexity with stretch 3d?
⇒ n3/2 [TZ05]

2 What is the best stretch with space complexity o(n2)?
⇒ at most 2d + 1 [PR10][us]

Under a conjecture about hardness of sparse intersecting set
data structures, [PR10] believe that stretch (2− ε)d requires
space Ω̃(n2), and stretch 2d+ 1 requires Ω̃(n3/2).

Different trade-offs

[TZ05][PR10][us]

6d+ 1

n5/4

7d5d3dd stretch

space

2d+ 1 4d+ 1

n2 n5/3 n3/2 n7/5 n4/3 n9/7

The Best Solution depends on the question:

1 What is the best space complexity with stretch 3d?
⇒ n3/2 [TZ05]

2 What is the best stretch with space complexity o(n2)?
⇒ at most 2d + 1 [PR10][us]

Under a conjecture about hardness of sparse intersecting set
data structures, [PR10] believe that stretch (2− ε)d requires
space Ω̃(n2), and stretch 2d+ 1 requires Ω̃(n3/2).

Different trade-offs

[TZ05][PR10][us]

6d+ 1

n5/4

7d5d3dd stretch

space

2d+ 1 4d+ 1

n2 n5/3 n3/2 n7/5 n4/3 n9/7

The Best Solution depends on the question:

1 What is the best space complexity with stretch 3d?
⇒ n3/2 [TZ05]

2 What is the best stretch with space complexity o(n2)?
⇒ at most 2d + 1 [PR10][us]

Under a conjecture about hardness of sparse intersecting set
data structures, [PR10] believe that stretch (2− ε)d requires
space Ω̃(n2), and stretch 2d+ 1 requires Ω̃(n3/2).

Different trade-offs

[TZ05][PR10][us]

6d+ 1

n5/4

7d5d3dd stretch

space

2d+ 1 4d+ 1

n2 n5/3 n3/2 n7/5 n4/3 n9/7

The Best Solution depends on the question:

1 What is the best space complexity with stretch 3d?
⇒ n3/2 [TZ05]

2 What is the best stretch with space complexity o(n2)?
⇒ at most 2d + 1 [PR10][us]

Under a conjecture about hardness of sparse intersecting set
data structures, [PR10] believe that stretch (2− ε)d requires
space Ω̃(n2), and stretch 2d+ 1 requires Ω̃(n3/2).

Proof for k = 2.
(we want n labels of Õ(n2/3) bits and stretch 2d+ 1)

Definitions: Given a set of landmarks L ⊂ V :

BL(u) = {v ∈ V : d(u, v) < d(u, L)}

CL(v) = {u ∈ V : v ∈ BL(u)}

+ v ∈ BL(u) iff u ∈ CL(v)

Proof for k = 2.
(we want n labels of Õ(n2/3) bits and stretch 2d+ 1)

Definitions: Given a set of landmarks L ⊂ V :

BL(u) = {v ∈ V : d(u, v) < d(u, L)}

CL(v) = {u ∈ V : v ∈ BL(u)}

u

+ v ∈ BL(u) iff u ∈ CL(v)

Proof for k = 2.
(we want n labels of Õ(n2/3) bits and stretch 2d+ 1)

Definitions: Given a set of landmarks L ⊂ V :

BL(u) = {v ∈ V : d(u, v) < d(u, L)}
CL(v) = {u ∈ V : v ∈ BL(u)}

u
v

+ v ∈ BL(u) iff u ∈ CL(v)

Sampling Lemma [TZ - SPAA ’01]

Select: |L| ∼ n2/3 such that ∀u, |BL(u)| & |CL(u)| ∼ n1/3

Lemma. Given s (= n2/3), one can construct in polynomial
time a landmark set L such that for every node u of G,
|BL(u)| & |CL(u)| 6 4n/s, and in expectation, |L| 6 2s log n.

Proof idea. Sample nodes of V with probability s/n. |BL(u)|
is ok whp. Compute set W of w having large CL(w). If
|W | 6 s, add W to L. Otherwise, sample this W with
probability s/|W |. Then, half of large w becomes small
(double counting + Markov).

Storage

u

I(u) := L ∪BL(u) ∪

 ⋃
v∈BL(u)

CL(v)


Storage for u: I(u) and the distance from u to every
v ∈ I(u), plus its closest landmarks lv.

[|I(u)| = Õ(n2/3), storage 4]

Querying between s and t

s t

If t ∈ I(s), then returns d(s, t)

else returns min {d(s, ls) + d(ls), t), d(t, lt) + d(lt, t)}

+ If t /∈ I(s), then BL(s) ∩BL(t) = ∅

[otherwise ∃w ∈ BL(t) ∩BL(s)⇒ t ∈ CL(w) and
w ∈ BL(s)⇒ t ∈ I(s)]

Querying between s and t

ts

If t ∈ I(s), then returns d(s, t)

else returns min {d(s, ls) + d(ls), t), d(t, lt) + d(lt, t)}

+ If t /∈ I(s), then BL(s) ∩BL(t) = ∅

[otherwise ∃w ∈ BL(t) ∩BL(s)⇒ t ∈ CL(w) and
w ∈ BL(s)⇒ t ∈ I(s)]

Querying between s and t

ls

s t

lt

If t ∈ I(s), then returns d(s, t)
else returns min {d(s, ls) + d(ls), t), d(t, lt) + d(lt, t)}

+ If t /∈ I(s), then BL(s) ∩BL(t) = ∅

[otherwise ∃w ∈ BL(t) ∩BL(s)⇒ t ∈ CL(w) and
w ∈ BL(s)⇒ t ∈ I(s)]

Querying between s and t

ls

s t

lt

If t ∈ I(s), then returns d(s, t)
else returns min {d(s, ls) + d(ls), t), d(t, lt) + d(lt, t)}

[dictionary and 2-level hash table, query time 4]

+ If t /∈ I(s), then BL(s) ∩BL(t) = ∅

[otherwise ∃w ∈ BL(t) ∩BL(s)⇒ t ∈ CL(w) and
w ∈ BL(s)⇒ t ∈ I(s)]

Querying between s and t

ls

s t

lt

If t ∈ I(s), then returns d(s, t)
else returns min {d(s, ls) + d(ls), t), d(t, lt) + d(lt, t)}

[stretch 2d+ 1?]

+ If t /∈ I(s), then BL(s) ∩BL(t) = ∅

[otherwise ∃w ∈ BL(t) ∩BL(s)⇒ t ∈ CL(w) and
w ∈ BL(s)⇒ t ∈ I(s)]

If t /∈ I(s), i.e., BL(s) ∩BL(t) = ∅
W.l.o.g. d(s, ls) 6 d(t, lt)

s t

ls lt

d

+ [d(s, ls)− 1] + 1 + [d(t, lt)− 1] 6 d

⇒ 2d(s, ls) 6 d+ 1

⇒ d̂ 6 2d(s, ls) + d 6 2d+ 1

If t /∈ I(s), i.e., BL(s) ∩BL(t) = ∅
W.l.o.g. d(s, ls) 6 d(t, lt)

s t

ls lt

d

+ [d(s, ls)− 1] + 1 + [d(t, lt)− 1] 6 d

⇒ 2d(s, ls) 6 d+ 1

⇒ d̂ 6 2d(s, ls) + d 6 2d+ 1

If t /∈ I(s), i.e., BL(s) ∩BL(t) = ∅
W.l.o.g. d(s, ls) 6 d(t, lt)

s t

ls lt

d

+ [d(s, ls)− 1] + 1 + [d(t, lt)− 1] 6 d

⇒ 2d(s, ls) 6 d+ 1

⇒ d̂ 6 2d(s, ls) + d 6 2d+ 1

If t /∈ I(s), i.e., BL(s) ∩BL(t) = ∅
W.l.o.g. d(s, ls) 6 d(t, lt)

s t

ls lt

d

+ [d(s, ls)− 1] + 1 + [d(t, lt)− 1] 6 d

⇒ 2d(s, ls) 6 d+ 1

⇒ d̂ 6 2d(s, ls) + d 6 2d+ 1

Observation

Routing with Õ(n2/3) bit routing tables, polylog addresses and
stretch 2d+ 1 is not known. Routing query is not symetric!

t

ls

lt

s

What about Compact Routing?

Best routing scheme [Thorup-Zwick (SPAA ’01)]
achieves stretch (4k − 5)d and routing tables of size Õ(n1/k).

[TZ01]

space

11d7d3dd stretch

n1 n1/2 n1/3 n1/4

New construction with stretch (4k − 6)d+ 1 and routing
tables of size Õ(n3/(3k−2)).

What about Compact Routing?

Best routing scheme [Thorup-Zwick (SPAA ’01)]
achieves stretch (4k − 5)d and routing tables of size Õ(n1/k).

[TZ01][us]

10d+ 1

n1/4

11d7d3dd stretch

space

2d+ 1 6d+ 1

n1 n3/4 n1/2 n3/7 n1/3 n3/10

New construction with stretch (4k − 6)d+ 1 and routing
tables of size Õ(n3/(3k−2)).

Conclusion

stretch size
Spanner d+ 2 O(n1/2) · n
Distance Labeling ? 2d+ 1 Õ(n2/3)

Compact Routing 2d+ 1 Õ(n3/4)

Compact Routing d+ β Ω̃(n/β2)

Thank You!

Conclusion

stretch size
Spanner d+ 2 O(n1/2) · n
Distance Labeling ? 2d+ 1 Õ(n2/3)

Compact Routing 2d+ 1 Õ(n3/4)

Compact Routing d+ β Ω̃(n/β2)

Thank You!

