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A spanner of a graph G is a subgraph spanning V' (G)

@ a spanning tree
@ a Hamiltonian cycle
@ a maximal bipartite subgraph
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@ size: its number of edges.

@ stretch: its maximum distance distortion from G.



Approximate Distance Spanners

There are two “natural” criteria for a spanner of G:

@ size: its number of edges.

@ stretch: its maximum distance distortion from G.

- find a good skeleton of the graph;
- decrease the size of the graph while preserving distances;
- optimize stretch-size tradeoffs.
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A complete Euclidian graph on 15 nodes



A (minimum cost) spanner with stretch 1.2



A (minimum cost) spanner with stretch 1.7



A (minimum cost) spanner with stretch 2.0



A (minimum cost) spanner with stretch 3.0



Definition

Definition
An (a, 3)-spanner S of G is spanner of G satisfying
ds(z,y) < a-dg(x,y) + B for all z,y € V(G).

A (2,0)-spanner of size 11 which is (1, 1)-spanner as well.




Definition

Definition
An (a, 3)-spanner S of G is spanner of G satisfying
ds(z,y) < a-dg(x,y) + B for all z,y € V(G).

A (2,0)-spanner of size 11 which is (1, 1)-spanner as well.

stretch(S) = max stretch(z,y) = (a,
(5) = max _stretch(z,y) = (a, )



Spanners to do What?

Formally introduced by [Peleg-Ullman '87]: “An optimal
synchronizer for the Hypercube” (440 Google hits)
Used for:

@ communication networks

@ distributed systems

@ network design



Spanners to do What?

Formally introduced by [Peleg-Ullman '87]: “An optimal
synchronizer for the Hypercube” (440 Google hits)
Used for:

@ communication networks

@ distributed systems

@ network design

Synchronizers [Awerbuch JACM '85]

Links with: Sparse Partition [Awerbuch et al. FOCS'90];
Distance Oracle [Thorup-Zwick STOC'01, Baswana et al.
SODA'04]; Compact Routing [Peleg-Upfal STOC'89,
Thorup-Zwick SPAA’'01];

Variant: Geometric Spanners used for TSP
(minimize }_ sy w(e) of within a given stretch)
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On the Combinatorial Problem



Extremal Graph Theory

(Bollobas, Bondy, Erdds, Simonovits, ...)

We consider (unweighted) n-node graphs.

Theorem (Folklore — proved by Alon et al. '02)
A graph G without cycle of length < 2k has < %n”l/ * edges.




Extremal Graph Theory

(Bollobas, Bondy, Erdds, Simonovits, ...)

We consider (unweighted) n-node graphs.

Theorem (Folklore — proved by Alon et al. '02)
A graph G without cycle of length < 2k has < in'™/* edges.

& If girth(G) > 2k, then |E(G)| < sn!T1/k
(where girth(G) is the length of the smallest cycle of G).
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Every graph has a (2k — 1,0)-spanner with O(n'*'/*) edges.
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any cycle of length < 2k




Greedy Algorithm [Althofer et al. 93]

Every graph has a (2k — 1,0)-spanner with O(n'*'/*) edges.

Q S := I (the empty graph)
@ While Je € E(G) with stretch > 2k —1in S,

Properties

@ stretch(S) < 2k —1

@ Whenever e = (u,v) is added to S, one cannot create
any cycle of length < 2k

Theorem [Folk] = size(S) < sn!T1/k




Erdos-Simonovits Conjecture

Theorem [Folk] is optimal. More precisely,

Conjecture (ES82)

For each integer k > 1, there is a graph of girth > 2k with at
least co - n' ™% edges, 0 < ¢y < 1.
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Erdos-Simonovits Conjecture

Theorem [Folk] is optimal. More precisely,

Conjecture (ES82)

For each integer k > 1, there is a graph of girth > 2k with at
least co - n' ™% edges, 0 < ¢y < 1.

[ES82] implies: 3 (bipartite) graph By, of girth > 2k + 2 with
1o - n' TR edges.

By = complete bipartite. [ES82] proved only for k = 1,2,3,5.
For all k, 3 graphs of girth > 2k + 2 with Q(n'"3%) edges.
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If [ES82] holds, every («, 3)-spanner of By, such that
a+ B < 2k + 1 has size |E(By)| = Q(n'*+1/k),
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Erdos-Simonovits Conjecture

For spanners [ES82] implies:

If [ES82] holds, every («, 3)-spanner of By, such that
a+ B < 2k + 1 has size |E(By)| = Q(n'*+1/k),

(If we remove an edge (u,v) from By, then stretch(u,v) > 2k + 1.
But stretch(u,v) < a - dg(u,v) + = a + (3, implies
a+pf>=2k+1: 1)

Ex. for k = 2: a (3,0)-spanner, a (1,2)-spanner, or a
(4.98,0.01)-spanner, has Q(n?/?) edges in the worst-case graph.



Recent Progress

[Woodruff FOCS'06]

For each k > 1, there is a graph such that every
(1,2k — 1)-spanner requires Q(1n'*!/*) edges.

So, “[ES82] is proved for ax = 1".
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Algorithms for k = 2



A (3, O)—spanner of size O(n3/2)

(stretch < 3 implies Q(n?) edges, and stretch < 5 implies Q(n%/2) edges)

B(u,r) = radius-r ball centered at u (in G)
BFS(u, X)) = BFS tree rooted at u spanning X

QS =0

@ While Ju € V(G), deg(u) > /n:
Q@ S :=SUBFS(u,B(u,2))
@ G:= G\ B(u1)

Q@ S:=5UG
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Example: n =8, y/n ~ 2.82

Size: /nx (n—1)+n x/n <2nyn



Example: n =8, \/n ~ 2.82

Size: /nx (n—1)+n x/n <2nyn

Stretch: 3



A (1,2)-spanners of size O(n3/2)
(Aingworth et al. '99)

Q S =0

@ While Ju € V(G), deg(u) > /n:
0@ S:=SUBFS(u,QG)
o G:=G\ B(u,1)

Q@ S =SUG



A (1,2)-spanners of size O(n3/2)
(Aingworth et al. '99)

QS5 =0

@ While Ju € V(G), deg(u) > /n:
0@ S:=SUBFS(u,QG)
o G:=G\ B(u,1)

Q@ S=5UG

Size: < 2ny/n



A (1,2)-spanners of size O(n3/2)
(Aingworth et al. '99)

Q S =0

@ While Ju € V(G), deg(u) > /n:
® S:= SUBFS(u,G)
o G:=G\ B(u,1)

Q@ S =S5SUG

Size: < 2ny/n

Stretch: if an xy-shortest path does not intersect a neighbor
of any selected node u (or cuts u), then stretch is 1, otherwise
ds(z,y) <dy +dy +2 =dg(z,y) + 2.




Other Results

[Baswana, Pettie et al. SODA '05]

Every graph has a (1, 6)-spanner of size O(n*/?), and a
(k, k — 1)-spanner of size O(kn!'*1/k).

Non-trivial construction & analysis. If the Woodruff's lower
bound is tight, stretch of (1,4) for a size O(n*/?) is possible.



Other Results

[Baswana, Pettie et al. SODA '05]

Every graph has a (1, 6)-spanner of size O(n*/?), and a
(k, k — 1)-spanner of size O(kn!'*1/k).

Non-trivial construction & analysis. If the Woodruff's lower
bound is tight, stretch of (1,4) for a size O(n*/?) is possible.

Open questions
Does exist for every graph:

@ a (1, /3)-spanner of size o(n*/?) for some constant 37
o a (1, f(k))-spanner of size O(n'*'/*) for some f?
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Some Distributed Algorithms



The Model

LOCAL model: (a.k.a. Free model, or Linial's model)
@ synchrone
@ unique IDs
@ no size limit messages
@ no failures
@ simultaneous wake-up

@ arbitrary computational power at nodes

Time complexity: number of rounds
(1 round = messages sent/received between all neighbors)



|dea #1: distributed greedy algorithm

For every node u do:
Q S, =9 and A, :={id(u)} [u is active]
@ At each round add edge (u,v) to S, if:
o id(w) is minimum in e () Aw: and
o (u,v) does not create a cycle of length < 2k in the
current graph Uy, gy k) Sw-
© Repeat 2 until all incident edges u have been tested.

Q0 A, =0 [u becomes non active]
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|dea #1: distributed greedy algorithm

For every node u do:
Q S, =9 and A, :={id(u)} [u is active]
@ At each round add edge (u,v) to S, if:
o id(w) is minimum in e () Aw: and
o (u,v) does not create a cycle of length < 2k in the
current graph Uy, gy k) Sw-
© Repeat 2 until all incident edges u have been tested.

Q0 A, =0 [u becomes non active]

Size: O(n'™'/*) since no cycles of length < 2k
Stretch: 2k — 1
Time: O(|E(G)|) = O(n?) rounds !!!



ldea #2: alternate distributed greedy (for k = 2)

(Derbel et al. 2006)

For every node u do:
Q@ S, =0
© Compute its degree d, in G
Q if d, > /n and id(u) is minimum in
UweB(u,z),dw>ﬁ id(w), then do:
o Sy =5, UBFS(u, B(u,2))
e Broadcast S, in B(u,?2)
o G: =G\ B(u,1)
Q Repeat 2-3 /n times
Q@ S,:=S5,UB(u,1)




ldea #2: alternate distributed greedy (for k = 2)

(Derbel et al. 2006)

For every node u do:
Q@ S, =0
© Compute its degree d, in G
Q if d, > /n and id(u) is minimum in
UweB(u,z),dw>ﬁ id(w), then do:
o Sy =5, UBFS(u, B(u,2))
e Broadcast S, in B(u,?2)
o G: =G\ B(u,1)
Q Repeat 2-3 /n times
Q@ S,:=S5,UB(u,1)

Stretch: 3
Size: < 2ny/n
Time: O(y/n) rounds [and O(n'=1/%)]



|dea #3: fast greedy

(Panconesi et al. 2005)

For every node u do:
Q S, :=B(u,l)
@ Remove edge (u,v) from S, if (u,v) € cycle C of length
< 2k and if (id(u),1d(v)) is minimum on C.
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|dea #3: fast greedy

(Panconesi et al. 2005)

For every node u do:
Q S, := B(u,l)
@ Remove edge (u,v) from S, if (u,v) € cycle C of length
< 2k and if (id(u),1d(v)) is minimum on C.

Time: k rounds
Size: O(n'™'/*) since no cycle of length < 2k
Stretch: unbounded ! (however G remains connected)
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Conclusion for ideas #1,#2, and #3

Distributed versions of greedy algorithms are non efficient, or
does not garantee stretch-size tradeoff. To do faster, one need
parallelism! Greedy algorithms are inherently non-parallel.



|dea #4: fast clustering algorithm

(Awerbuch-Peleg ... in the 90')
@ Compute an maximal indendent set (MIS) X in G?



|dea #4: fast clustering algorithm

(Awerbuch-Peleg ... in the 90')

@ Compute an maximal indendent set (MIS) X in G?
= points pariwise at distance > 3 and < 5



|dea #4: fast clustering algorithm

(Awerbuch-Peleg ... in the 90')

@ Compute an maximal indendent set (MIS) X in G?
= points pariwise at distance > 3 and < 5
@ Create (vote!) independent regions with all centers in X

an®
&



|dea #4: fast clustering algorithm

(Awerbuch-Peleg ... in the 90')

@ Compute an maximal indendent set (MIS) X in G?
= points pariwise at distance > 3 and < 5

@ Create (vote!) independent regions with all centers in X
= regions of radius < 2

an®
&



|dea #4: fast clustering algorithm

(Awerbuch-Peleg ... in the 90')

@ Compute an maximal indendent set (MIS) X in G?
= points pariwise at distance > 3 and < 5

@ Create (vote!) independent regions with all centers in X
= regions of radius < 2

© In parallel compute a “good” spanner in each region

&
Sen



|dea #4: fast clustering algorithm

(Awerbuch-Peleg ... in the 90')

@ Compute an maximal indendent set (MIS) X in G?
= points pariwise at distance > 3 and < 5

@ Create (vote!) independent regions with all centers in X
= regions of radius < 2

© In parallel compute a “good” spanner in each region
= optimal stretch-size tradeoff in O(1) rounds

&
Sen



|dea #4: fast clustering algorithm

(Awerbuch-Peleg ... in the 90')

@ Compute an maximal indendent set (MIS) X in G?
= points pariwise at distance > 3 and < 5

@ Create (vote!) independent regions with all centers in X
= regions of radius < 2

© In parallel compute a “good” spanner in each region
= optimal stretch-size tradeoff in O(1) rounds

© Cover inter-region edges (bipartite) with length-3 paths

=
&7
Con

/S S
"iﬂuumﬁ"
5




|dea #4: fast clustering algorithm

(Awerbuch-Peleg ... in the 90')

@ Compute an maximal indendent set (MIS) X in G?
= points pariwise at distance > 3 and < 5

@ Create (vote!) independent regions with all centers in X
= regions of radius < 2

© In parallel compute a “good” spanner in each region
= optimal stretch-size tradeoff in O(1) rounds

© Cover inter-region edges (bipartite) with length-3 paths
doable with stretch 3 and size n + |Ry|/n for R,

=
&7
Con

/S S
"iﬂuumﬁ"
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|dea #4: analysis

Size: O(n®?) [and O(kn'*1/%)]
Stretch: 3 [and 4k — O(1)]



|dea #4: analysis

Size: O(n?/?) [and O(kn'*+1/%)]
Stretch: 3 [and 4k — O(1)]
Time: O(MIS(n)) [and O(f(k) - MIS(n))]

Time complexity for distributed MIS (widly open):
o Upper bound: 20(V1°8™) [Panconesi et al. STOC'96]
o Lower bound: Q(y/logn/loglogn) [Kuhn et al. PODC'06]

In sequential, MIS is computed by a purely greedy algorithm ...
QO X =0
@ while Ju € V(G), X := X U {u} and G := G\ B(u,1)



|dea #4: refinement

It is possible to avoid the MIS computation, and to compute
an independent O(log n)-dominating set, which can be
done in O(logn) time.

[Derbel et al. DISC'07]

Time: 2°®) 1og" ! n rounds
Size: O(kn'*'/k)
Stretch: 4k — 5

For k = 2:
= a stretch-3 spanner of size O(n*?) in O(logn) time

Can we do faster?



Idea #5 randomization! whenever there is no more ideas

(Baswana et al. '05)

Q z, := 1|0 with proba 1/y/n. Let X :={u |z, =1}
Q if B(u,1)N X = &, then S, := B(u, 1)
Q if x, =1, then S, := BFS(u, B(u, 2))



Idea #5 randomization! whenever there is no more ideas

(Baswana et al. '05)

Q z, := 1|0 with proba 1/y/n. Let X :={u |z, =1}
Q if B(u,1)N X = &, then S, := B(u, 1)
Q if x, =1, then S, := BFS(u, B(u, 2))

Time: 2 rounds [and ]
Stretch: 3 [and 2k — 1]
Size: 2n3/2 in expectation [and O(knl*+1/%)]

(In expectation: |X| = /n, and if u € Z, then deg(u) < \/n)
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A new Distributed Algorithm



The Question

What is the smallest ¢ such that if each node u of a graph
knows B(u,t), then u can deterministically decide alone

which incident edges to keep to form a (3, 0)-spanner of size
O(n3/?)?



The Question

What is the smallest ¢ such that if each node u of a graph
knows B(u,t), then u can deterministically decide alone

which incident edges to keep to form a (3, 0)-spanner of size
O(n3/?)?

Theorem (Derbel, G., Peleg, Viennot - PODC'08)

There is a determinist distributed algorithm that for every

n-node graph computes a (2k — 1,0)-spanner of size at most
En' /% in time k.

Moreover, if n is unkown, then the algorithm requires time
2k — 1. Also k is the best possible time bound, even
“expected time" for a randomized (Las Vegas) algorithm.



Second result

For every € € (0,2], there is a determinist distributed
algorithm that for every n-node graph (where n is unkown to
the nodes) computes a (1 + ¢,2)-spanner of size O(c~'n?/?)
in O(e™1) time.

We can also show that (1 + ¢, 2)-spanner of size O(n*/?)
cannot be computed in less than Q(c7!) expected time.



The Algorithm (for k = 2)

For every node u do:

Q R, := {u} U { any selection of |\/|B(u,3)|] neighbors }
@ send R, and receive R, to/from its neighbors
Q@ W:=Bu,1)\{v|jue R,}\R,and C, := &
Q while Jw € W:
o C,:=C,U{w}
0 W =W\{veW]|R,NR, # 2}
© Add edges from u to R, U C,
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The Algorithm (for k = 2)

For every node u do:

Q R, := {u} U { any selection of |\/|B(u,3)|] neighbors }
@ send R, and receive R, to/from its neighbors
Q@ W:=Bu,1)\{v|jue R,}\R,and C, := &
Q while Jw € W:
o C,:=C,U{w}
0 W =W\{veW]|R,NR, # 2}
© Add edges from u to R, U C,

Size: w € W after 3 has degree >
|B(w,3)|"2. Thus, deg(w) > |B(u,2)|"/?
since B(u,2) € B(w,3). Ry, taken ¢/
in C, are disjoint.  #loops is |Cy] <
|B(u,2)|/|B(u,2)|"? < \/n. Size: nx2y/n.
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Conclusion

@ The computation of “optimal” sparse spanners is LOCAL
@ How to reduce message size? (lower bound?)

o Does exist (1, 3)-spanner of size o(n/?)?
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