
On Sparse Spanners
—

Construction locale de
sous-graphes couvrants épars

Cyril Gavoille

Université de Bordeaux, France

29-30 mai, 2008, La Rochelle

Outline

Introduction, Examples & Definitions

On the Combinatorial Problem

Algorithms for k = 2

Some Distributed Algorithms

A new Distributed Algorithm

Conclusion

Outline

Introduction, Examples & Definitions

On the Combinatorial Problem

Algorithms for k = 2

Some Distributed Algorithms

A new Distributed Algorithm

Conclusion

What is a Spanner?

A spanner of a graph G is a subgraph spanning V (G)

a spanning tree

a Hamiltonian cycle

a maximal bipartite subgraph

...

What is a Spanner?

A spanner of a graph G is a subgraph spanning V (G)

a spanning tree

a Hamiltonian cycle

a maximal bipartite subgraph

...

What is a Spanner?

A spanner of a graph G is a subgraph spanning V (G)

a spanning tree

a Hamiltonian cycle

a maximal bipartite subgraph

...

What is a Spanner?

A spanner of a graph G is a subgraph spanning V (G)

a spanning tree

a Hamiltonian cycle

a maximal bipartite subgraph

...

Approximate Distance Spanners

There are two “natural” criteria for a spanner of G:

size: its number of edges.

stretch: its maximum distance distortion from G.

Goals:
- find a good skeleton of the graph;
- decrease the size of the graph while preserving distances;
- optimize stretch-size tradeoffs.

Approximate Distance Spanners

There are two “natural” criteria for a spanner of G:

size: its number of edges.

stretch: its maximum distance distortion from G.

Goals:
- find a good skeleton of the graph;
- decrease the size of the graph while preserving distances;
- optimize stretch-size tradeoffs.

A complete Euclidian graph on 15 nodes

A (minimum cost) spanner with stretch 1.2

A (minimum cost) spanner with stretch 1.7

A (minimum cost) spanner with stretch 2.0

A (minimum cost) spanner with stretch 3.0

Definition

Definition
An (α, β)-spanner S of G is spanner of G satisfying
dS(x, y) 6 α · dG(x, y) + β for all x, y ∈ V (G).

A (2, 0)-spanner of size 11 which is (1, 1)-spanner as well.

stretch(S) = max
(x,y)∈E(S)

stretch(x, y) = (α, β)

Definition

Definition
An (α, β)-spanner S of G is spanner of G satisfying
dS(x, y) 6 α · dG(x, y) + β for all x, y ∈ V (G).

A (2, 0)-spanner of size 11 which is (1, 1)-spanner as well.

stretch(S) = max
(x,y)∈E(S)

stretch(x, y) = (α, β)

Spanners to do What?

Formally introduced by [Peleg-Ullman ’87]: “An optimal
synchronizer for the Hypercube” (440 Google hits)

Used for:

communication networks

distributed systems

network design

Synchronizers [Awerbuch JACM ’85]

Links with: Sparse Partition [Awerbuch et al. FOCS’90];
Distance Oracle [Thorup-Zwick STOC’01, Baswana et al.

SODA’04]; Compact Routing [Peleg-Upfal STOC’89,

Thorup-Zwick SPAA’01];

Variant: Geometric Spanners used for TSP
(minimize

∑
e∈E(S) ω(e) of within a given stretch)

Spanners to do What?

Formally introduced by [Peleg-Ullman ’87]: “An optimal
synchronizer for the Hypercube” (440 Google hits)

Used for:

communication networks

distributed systems

network design

Synchronizers [Awerbuch JACM ’85]

Links with: Sparse Partition [Awerbuch et al. FOCS’90];
Distance Oracle [Thorup-Zwick STOC’01, Baswana et al.

SODA’04]; Compact Routing [Peleg-Upfal STOC’89,

Thorup-Zwick SPAA’01];

Variant: Geometric Spanners used for TSP
(minimize

∑
e∈E(S) ω(e) of within a given stretch)

Outline

Introduction, Examples & Definitions

On the Combinatorial Problem

Algorithms for k = 2

Some Distributed Algorithms

A new Distributed Algorithm

Conclusion

Extremal Graph Theory

(Bollobàs, Bondy, Erdös, Simonovits, ...)

We consider (unweighted) n-node graphs.

Theorem (Folklore – proved by Alon et al. ’02)

A graph G without cycle of length 6 2k has 6 1
2
n1+1/k edges.

⇔ If girth(G) > 2k, then |E(G)| 6 1
2
n1+1/k

(where girth(G) is the length of the smallest cycle of G).

Extremal Graph Theory

(Bollobàs, Bondy, Erdös, Simonovits, ...)

We consider (unweighted) n-node graphs.

Theorem (Folklore – proved by Alon et al. ’02)

A graph G without cycle of length 6 2k has 6 1
2
n1+1/k edges.

⇔ If girth(G) > 2k, then |E(G)| 6 1
2
n1+1/k

(where girth(G) is the length of the smallest cycle of G).

Greedy Algorithm [Althöfer et al. ’93]

Theorem

Every graph has a (2k − 1, 0)-spanner with O(n1+1/k) edges.

1 S := ∅ (the empty graph)

2 While ∃e ∈ E(G) with stretch > 2k − 1 in S,
S := S ∪ {e}

u v
e

k = 2

Properties

stretch(S) 6 2k − 1

Whenever e = (u, v) is added to S, one cannot create
any cycle of length 6 2k

Theorem [Folk] ⇒ size(S) 6 1
2
n1+1/k

Greedy Algorithm [Althöfer et al. ’93]

Theorem

Every graph has a (2k − 1, 0)-spanner with O(n1+1/k) edges.

1 S := ∅ (the empty graph)

2 While ∃e ∈ E(G) with stretch > 2k − 1 in S,
S := S ∪ {e}

u v
e

k = 2

Properties

stretch(S) 6 2k − 1

Whenever e = (u, v) is added to S, one cannot create
any cycle of length 6 2k

Theorem [Folk] ⇒ size(S) 6 1
2
n1+1/k

Greedy Algorithm [Althöfer et al. ’93]

Theorem

Every graph has a (2k − 1, 0)-spanner with O(n1+1/k) edges.

1 S := ∅ (the empty graph)

2 While ∃e ∈ E(G) with stretch > 2k − 1 in S,
S := S ∪ {e}

u v
e

k = 2

Properties

stretch(S) 6 2k − 1

Whenever e = (u, v) is added to S, one cannot create
any cycle of length 6 2k

Theorem [Folk] ⇒ size(S) 6 1
2
n1+1/k

Greedy Algorithm [Althöfer et al. ’93]

Theorem

Every graph has a (2k − 1, 0)-spanner with O(n1+1/k) edges.

1 S := ∅ (the empty graph)

2 While ∃e ∈ E(G) with stretch > 2k − 1 in S,
S := S ∪ {e}

u v
e

k = 2

Properties

stretch(S) 6 2k − 1

Whenever e = (u, v) is added to S, one cannot create
any cycle of length 6 2k

Theorem [Folk] ⇒ size(S) 6 1
2
n1+1/k

Greedy Algorithm [Althöfer et al. ’93]

Theorem

Every graph has a (2k − 1, 0)-spanner with O(n1+1/k) edges.

1 S := ∅ (the empty graph)

2 While ∃e ∈ E(G) with stretch > 2k − 1 in S,
S := S ∪ {e}

u v
e

k = 2

Properties

stretch(S) 6 2k − 1

Whenever e = (u, v) is added to S, one cannot create
any cycle of length 6 2k

Theorem [Folk] ⇒ size(S) 6 1
2
n1+1/k

Erdös-Simonovits Conjecture

Theorem [Folk] is optimal. More precisely,

Conjecture (ES82)

For each integer k > 1, there is a graph of girth > 2k with at
least c0 · n1+1/k edges, 0 < c0 < 1

2
.

[ES82] implies: ∃ (bipartite) graph Bk of girth > 2k + 2 with
1
2
c0 · n1+1/k edges.

B1 = complete bipartite. [ES82] proved only for k = 1, 2, 3, 5.

For all k, ∃ graphs of girth > 2k + 2 with Ω(n1+ 2
3k) edges.

Erdös-Simonovits Conjecture

Theorem [Folk] is optimal. More precisely,

Conjecture (ES82)

For each integer k > 1, there is a graph of girth > 2k with at
least c0 · n1+1/k edges, 0 < c0 < 1

2
.

[ES82] implies: ∃ (bipartite) graph Bk of girth > 2k + 2 with
1
2
c0 · n1+1/k edges.

B1 = complete bipartite. [ES82] proved only for k = 1, 2, 3, 5.

For all k, ∃ graphs of girth > 2k + 2 with Ω(n1+ 2
3k) edges.

Erdös-Simonovits Conjecture

Theorem [Folk] is optimal. More precisely,

Conjecture (ES82)

For each integer k > 1, there is a graph of girth > 2k with at
least c0 · n1+1/k edges, 0 < c0 < 1

2
.

[ES82] implies: ∃ (bipartite) graph Bk of girth > 2k + 2 with
1
2
c0 · n1+1/k edges.

B1 = complete bipartite.

[ES82] proved only for k = 1, 2, 3, 5.

For all k, ∃ graphs of girth > 2k + 2 with Ω(n1+ 2
3k) edges.

Erdös-Simonovits Conjecture

Theorem [Folk] is optimal. More precisely,

Conjecture (ES82)

For each integer k > 1, there is a graph of girth > 2k with at
least c0 · n1+1/k edges, 0 < c0 < 1

2
.

[ES82] implies: ∃ (bipartite) graph Bk of girth > 2k + 2 with
1
2
c0 · n1+1/k edges.

B1 = complete bipartite. [ES82] proved only for k = 1, 2, 3, 5.

For all k, ∃ graphs of girth > 2k + 2 with Ω(n1+ 2
3k) edges.

Erdös-Simonovits Conjecture

For spanners [ES82] implies:

Corollary

If [ES82] holds, every (α, β)-spanner of Bk such that
α + β < 2k + 1 has size |E(Bk)| = Ω(n1+1/k).

(If we remove an edge (u, v) from Bk, then stretch(u, v) > 2k + 1.
But stretch(u, v) 6 α · dG(u, v) + β = α + β, implies
α + β > 2k + 1: ⊥)

Ex. for k = 2: a (3, 0)-spanner, a (1, 2)-spanner, or a
(4.98, 0.01)-spanner, has Ω(n3/2) edges in the worst-case graph.

Erdös-Simonovits Conjecture

For spanners [ES82] implies:

Corollary

If [ES82] holds, every (α, β)-spanner of Bk such that
α + β < 2k + 1 has size |E(Bk)| = Ω(n1+1/k).

(If we remove an edge (u, v) from Bk, then stretch(u, v) > 2k + 1.
But stretch(u, v) 6 α · dG(u, v) + β = α + β, implies
α + β > 2k + 1: ⊥)

Ex. for k = 2: a (3, 0)-spanner, a (1, 2)-spanner, or a
(4.98, 0.01)-spanner, has Ω(n3/2) edges in the worst-case graph.

Erdös-Simonovits Conjecture

For spanners [ES82] implies:

Corollary

If [ES82] holds, every (α, β)-spanner of Bk such that
α + β < 2k + 1 has size |E(Bk)| = Ω(n1+1/k).

(If we remove an edge (u, v) from Bk, then stretch(u, v) > 2k + 1.
But stretch(u, v) 6 α · dG(u, v) + β = α + β, implies
α + β > 2k + 1: ⊥)

Ex. for k = 2: a (3, 0)-spanner, a (1, 2)-spanner, or a
(4.98, 0.01)-spanner, has Ω(n3/2) edges in the worst-case graph.

Recent Progress

[Woodruff FOCS’06]

For each k > 1, there is a graph such that every
(1, 2k − 1)-spanner requires Ω(1

k
n1+1/k) edges.

So, “[ES82] is proved for α = 1”.

Outline

Introduction, Examples & Definitions

On the Combinatorial Problem

Algorithms for k = 2

Some Distributed Algorithms

A new Distributed Algorithm

Conclusion

A (3, 0)-spanner of size O(n3/2)

(stretch < 3 implies Ω(n2) edges, and stretch < 5 implies Ω(n3/2) edges)

B(u, r) = radius-r ball centered at u (in G)
BFS(u, X) = BFS tree rooted at u spanning X

1 S := ∅
2 While ∃u ∈ V (G), deg(u) >

√
n:

1 S := S ∪ BFS(u, B(u, 2))
2 G := G \B(u, 1)

3 S := S ∪G

Example: n = 8,
√

n ≈ 2.82

Size:
√

n× (n− 1) + n×
√

n < 2n
√

n
Stretch: 3

Example: n = 8,
√

n ≈ 2.82

Size:
√

n× (n− 1) + n×
√

n < 2n
√

n
Stretch: 3

Example: n = 8,
√

n ≈ 2.82

Size:
√

n× (n− 1) + n×
√

n < 2n
√

n
Stretch: 3

Example: n = 8,
√

n ≈ 2.82

Size:
√

n× (n− 1) + n×
√

n < 2n
√

n
Stretch: 3

Example: n = 8,
√

n ≈ 2.82

Size:
√

n× (n− 1) + n×
√

n < 2n
√

n
Stretch: 3

Example: n = 8,
√

n ≈ 2.82

Size:
√

n× (n− 1) + n×
√

n < 2n
√

n
Stretch: 3

Example: n = 8,
√

n ≈ 2.82

Size:
√

n× (n− 1) + n×
√

n < 2n
√

n

Stretch: 3

Example: n = 8,
√

n ≈ 2.82

Size:
√

n× (n− 1) + n×
√

n < 2n
√

n
Stretch: 3

A (1, 2)-spanners of size O(n3/2)

(Aingworth et al. ’99)

1 S := ∅
2 While ∃u ∈ V (G), deg(u) >

√
n:

1 S := S ∪ BFS(u, G)
2 G := G \B(u, 1)

3 S := S ∪G

Size: 6 2n
√

n

Stretch: if an xy-shortest path does not intersect a neighbor
of any selected node u (or cuts u), then stretch is 1, otherwise
dS(x, y) 6 d1 + d2 + 2 = dG(x, y) + 2.

u6 d1 + 1

d2d1

x
6 d2 + 1

y

A (1, 2)-spanners of size O(n3/2)

(Aingworth et al. ’99)

1 S := ∅
2 While ∃u ∈ V (G), deg(u) >

√
n:

1 S := S ∪ BFS(u, G)
2 G := G \B(u, 1)

3 S := S ∪G

Size: 6 2n
√

n

Stretch: if an xy-shortest path does not intersect a neighbor
of any selected node u (or cuts u), then stretch is 1, otherwise
dS(x, y) 6 d1 + d2 + 2 = dG(x, y) + 2.

u6 d1 + 1

d2d1

x
6 d2 + 1

y

A (1, 2)-spanners of size O(n3/2)

(Aingworth et al. ’99)

1 S := ∅
2 While ∃u ∈ V (G), deg(u) >

√
n:

1 S := S ∪ BFS(u, G)
2 G := G \B(u, 1)

3 S := S ∪G

Size: 6 2n
√

n

Stretch: if an xy-shortest path does not intersect a neighbor
of any selected node u (or cuts u), then stretch is 1, otherwise
dS(x, y) 6 d1 + d2 + 2 = dG(x, y) + 2.

u6 d1 + 1

d2d1

x
6 d2 + 1

y

Other Results

[Baswana, Pettie et al. SODA ’05]

Every graph has a (1, 6)-spanner of size O(n4/3), and a
(k, k − 1)-spanner of size O(kn1+1/k).

Non-trivial construction & analysis. If the Woodruff’s lower
bound is tight, stretch of (1, 4) for a size O(n4/3) is possible.

Open questions
Does exist for every graph:

a (1, β)-spanner of size o(n4/3) for some constant β?

a (1, f(k))-spanner of size O(n1+1/k) for some f?

Other Results

[Baswana, Pettie et al. SODA ’05]

Every graph has a (1, 6)-spanner of size O(n4/3), and a
(k, k − 1)-spanner of size O(kn1+1/k).

Non-trivial construction & analysis. If the Woodruff’s lower
bound is tight, stretch of (1, 4) for a size O(n4/3) is possible.

Open questions
Does exist for every graph:

a (1, β)-spanner of size o(n4/3) for some constant β?

a (1, f(k))-spanner of size O(n1+1/k) for some f?

Outline

Introduction, Examples & Definitions

On the Combinatorial Problem

Algorithms for k = 2

Some Distributed Algorithms

A new Distributed Algorithm

Conclusion

The Model

LOCAL model: (a.k.a. Free model, or Linial’s model)

synchrone

unique IDs

no size limit messages

no failures

simultaneous wake-up

arbitrary computational power at nodes

Time complexity: number of rounds
(1 round = messages sent/received between all neighbors)

Idea #1: distributed greedy algorithm

For every node u do:

1 Su := ∅ and Au := {id(u)} [u is active]
2 At each round add edge (u, v) to Su if:

id(u) is minimum in
⋃

w∈B(u,k) Aw; and
(u, v) does not create a cycle of length 6 2k in the
current graph

⋃
w∈B(u,k) Sw.

3 Repeat 2 until all incident edges u have been tested.

4 Au := ∅ [u becomes non active]

Size: O(n1+1/k) since no cycles of length 6 2k
Stretch: 2k − 1
Time: O(|E(G)|) = O(n2) rounds !!!

Idea #1: distributed greedy algorithm

For every node u do:

1 Su := ∅ and Au := {id(u)} [u is active]
2 At each round add edge (u, v) to Su if:

id(u) is minimum in
⋃

w∈B(u,k) Aw; and
(u, v) does not create a cycle of length 6 2k in the
current graph

⋃
w∈B(u,k) Sw.

3 Repeat 2 until all incident edges u have been tested.

4 Au := ∅ [u becomes non active]

Size: O(n1+1/k) since no cycles of length 6 2k

Stretch: 2k − 1
Time: O(|E(G)|) = O(n2) rounds !!!

Idea #1: distributed greedy algorithm

For every node u do:

1 Su := ∅ and Au := {id(u)} [u is active]
2 At each round add edge (u, v) to Su if:

id(u) is minimum in
⋃

w∈B(u,k) Aw; and
(u, v) does not create a cycle of length 6 2k in the
current graph

⋃
w∈B(u,k) Sw.

3 Repeat 2 until all incident edges u have been tested.

4 Au := ∅ [u becomes non active]

Size: O(n1+1/k) since no cycles of length 6 2k
Stretch: 2k − 1

Time: O(|E(G)|) = O(n2) rounds !!!

Idea #1: distributed greedy algorithm

For every node u do:

1 Su := ∅ and Au := {id(u)} [u is active]
2 At each round add edge (u, v) to Su if:

id(u) is minimum in
⋃

w∈B(u,k) Aw; and
(u, v) does not create a cycle of length 6 2k in the
current graph

⋃
w∈B(u,k) Sw.

3 Repeat 2 until all incident edges u have been tested.

4 Au := ∅ [u becomes non active]

Size: O(n1+1/k) since no cycles of length 6 2k
Stretch: 2k − 1
Time: O(|E(G)|) = O(n2) rounds !!!

Idea #2: alternate distributed greedy (for k = 2)

(Derbel et al. 2006)

For every node u do:

1 Su := ∅
2 Compute its degree du in G
3 if du >

√
n and id(u) is minimum in⋃

w∈B(u,2),dw>
√

n id(w), then do:

Su := Su ∪ BFS(u, B(u, 2))
Broadcast Su in B(u, 2)
G := G \B(u, 1)

4 Repeat 2-3
√

n times

5 Su := Su ∪B(u, 1)

Stretch: 3
Size: 6 2n

√
n

Time: O(
√

n) rounds [and O(n1−1/k)]

Idea #2: alternate distributed greedy (for k = 2)

(Derbel et al. 2006)

For every node u do:

1 Su := ∅
2 Compute its degree du in G
3 if du >

√
n and id(u) is minimum in⋃

w∈B(u,2),dw>
√

n id(w), then do:

Su := Su ∪ BFS(u, B(u, 2))
Broadcast Su in B(u, 2)
G := G \B(u, 1)

4 Repeat 2-3
√

n times

5 Su := Su ∪B(u, 1)

Stretch: 3
Size: 6 2n

√
n

Time: O(
√

n) rounds [and O(n1−1/k)]

Idea #3: fast greedy

(Panconesi et al. 2005)

For every node u do:

1 Su := B(u, 1)

2 Remove edge (u, v) from Su if (u, v) ∈ cycle C of length
6 2k and if 〈id(u), id(v)〉 is minimum on C.

Time: k rounds
Size: O(n1+1/k) since no cycle of length 6 2k
Stretch:

unbounded ! (however G remains connected)

Idea #3: fast greedy

(Panconesi et al. 2005)

For every node u do:

1 Su := B(u, 1)

2 Remove edge (u, v) from Su if (u, v) ∈ cycle C of length
6 2k and if 〈id(u), id(v)〉 is minimum on C.

Time: k rounds
Size: O(n1+1/k) since no cycle of length 6 2k
Stretch:

unbounded ! (however G remains connected)

53

2 4 6

7

8

1

k = 2

Idea #3: fast greedy

(Panconesi et al. 2005)

For every node u do:

1 Su := B(u, 1)

2 Remove edge (u, v) from Su if (u, v) ∈ cycle C of length
6 2k and if 〈id(u), id(v)〉 is minimum on C.

Time: k rounds
Size: O(n1+1/k) since no cycle of length 6 2k
Stretch: unbounded ! (however G remains connected)

53

2 4 6

7

8

k = 2

1

Conclusion for ideas #1,#2, and #3

Distributed versions of greedy algorithms are non efficient, or
does not garantee stretch-size tradeoff. To do faster, one need
parallelism! Greedy algorithms are inherently non-parallel.

Idea #4: fast clustering algorithm

(Awerbuch-Peleg ... in the 90’)

1 Compute an maximal indendent set (MIS) X in G2

⇒ points pariwise at distance > 3 and 6 5
2 Create (vote!) independent regions with all centers in X

⇒ regions of radius 6 2

3 In parallel compute a “good” spanner in each region

⇒ optimal stretch-size tradeoff in O(1) rounds

4 Cover inter-region edges (bipartite) with length-3 paths

doable with stretch 3 and size n + |Ru|
√

n for Ru

Idea #4: fast clustering algorithm

(Awerbuch-Peleg ... in the 90’)

1 Compute an maximal indendent set (MIS) X in G2

⇒ points pariwise at distance > 3 and 6 5

2 Create (vote!) independent regions with all centers in X

⇒ regions of radius 6 2

3 In parallel compute a “good” spanner in each region

⇒ optimal stretch-size tradeoff in O(1) rounds

4 Cover inter-region edges (bipartite) with length-3 paths

doable with stretch 3 and size n + |Ru|
√

n for Ru

Idea #4: fast clustering algorithm

(Awerbuch-Peleg ... in the 90’)

1 Compute an maximal indendent set (MIS) X in G2

⇒ points pariwise at distance > 3 and 6 5
2 Create (vote!) independent regions with all centers in X

⇒ regions of radius 6 2
3 In parallel compute a “good” spanner in each region

⇒ optimal stretch-size tradeoff in O(1) rounds

4 Cover inter-region edges (bipartite) with length-3 paths

doable with stretch 3 and size n + |Ru|
√

n for Ru

Idea #4: fast clustering algorithm

(Awerbuch-Peleg ... in the 90’)

1 Compute an maximal indendent set (MIS) X in G2

⇒ points pariwise at distance > 3 and 6 5
2 Create (vote!) independent regions with all centers in X

⇒ regions of radius 6 2

3 In parallel compute a “good” spanner in each region

⇒ optimal stretch-size tradeoff in O(1) rounds

4 Cover inter-region edges (bipartite) with length-3 paths

doable with stretch 3 and size n + |Ru|
√

n for Ru

Idea #4: fast clustering algorithm

(Awerbuch-Peleg ... in the 90’)

1 Compute an maximal indendent set (MIS) X in G2

⇒ points pariwise at distance > 3 and 6 5
2 Create (vote!) independent regions with all centers in X

⇒ regions of radius 6 2
3 In parallel compute a “good” spanner in each region

⇒ optimal stretch-size tradeoff in O(1) rounds
4 Cover inter-region edges (bipartite) with length-3 paths

doable with stretch 3 and size n + |Ru|
√

n for Ru

Idea #4: fast clustering algorithm

(Awerbuch-Peleg ... in the 90’)

1 Compute an maximal indendent set (MIS) X in G2

⇒ points pariwise at distance > 3 and 6 5
2 Create (vote!) independent regions with all centers in X

⇒ regions of radius 6 2
3 In parallel compute a “good” spanner in each region

⇒ optimal stretch-size tradeoff in O(1) rounds

4 Cover inter-region edges (bipartite) with length-3 paths

doable with stretch 3 and size n + |Ru|
√

n for Ru

Idea #4: fast clustering algorithm

(Awerbuch-Peleg ... in the 90’)

1 Compute an maximal indendent set (MIS) X in G2

⇒ points pariwise at distance > 3 and 6 5
2 Create (vote!) independent regions with all centers in X

⇒ regions of radius 6 2
3 In parallel compute a “good” spanner in each region

⇒ optimal stretch-size tradeoff in O(1) rounds
4 Cover inter-region edges (bipartite) with length-3 paths

doable with stretch 3 and size n + |Ru|
√

n for Ru

Idea #4: fast clustering algorithm

(Awerbuch-Peleg ... in the 90’)

1 Compute an maximal indendent set (MIS) X in G2

⇒ points pariwise at distance > 3 and 6 5
2 Create (vote!) independent regions with all centers in X

⇒ regions of radius 6 2
3 In parallel compute a “good” spanner in each region

⇒ optimal stretch-size tradeoff in O(1) rounds
4 Cover inter-region edges (bipartite) with length-3 paths

doable with stretch 3 and size n + |Ru|
√

n for Ru

Idea #4: analysis

Size: O(n3/2) [and O(kn1+1/k)]
Stretch: 3 [and 4k −O(1)]

Time: O(MIS(n)) [and O(f(k) ·MIS(n))]

Time complexity for distributed MIS (widly open):

Upper bound: 2O(
√

log n) [Panconesi et al. STOC’96]

Lower bound: Ω(
√

log n/ log log n) [Kuhn et al. PODC’06]

In sequential, MIS is computed by a purely greedy algorithm ...

1 X := ∅
2 while ∃u ∈ V (G), X := X ∪ {u} and G := G \B(u, 1)

Idea #4: analysis

Size: O(n3/2) [and O(kn1+1/k)]
Stretch: 3 [and 4k −O(1)]
Time: O(MIS(n)) [and O(f(k) ·MIS(n))]

Time complexity for distributed MIS (widly open):

Upper bound: 2O(
√

log n) [Panconesi et al. STOC’96]

Lower bound: Ω(
√

log n/ log log n) [Kuhn et al. PODC’06]

In sequential, MIS is computed by a purely greedy algorithm ...

1 X := ∅
2 while ∃u ∈ V (G), X := X ∪ {u} and G := G \B(u, 1)

Idea #4: refinement

It is possible to avoid the MIS computation, and to compute
an independent O(log n)-dominating set, which can be
done in O(log n) time.

[Derbel et al. DISC’07]

Time: 2O(k) logk−1 n rounds
Size: O(kn1+1/k)
Stretch: 4k − 5

For k = 2:
⇒ a stretch-3 spanner of size O(n3/2) in O(log n) time

Can we do faster?

Idea #5: randomization! whenever there is no more ideas

(Baswana et al. ’05)

1 xu := 1|0 with proba 1/
√

n. Let X := {u | xu = 1}
2 if B(u, 1) ∩X = ∅, then Su := B(u, 1)

3 if xu = 1, then Su := BFS(u, B(u, 2))

Z Y
X

Time: 2 rounds [and k]

Stretch: 3 [and 2k − 1]

Size: 2n3/2 in expectation [and O(kn1+1/k)]
(In expectation: |X| =

√
n, and if u ∈ Z, then deg(u) 6

√
n)

Idea #5: randomization! whenever there is no more ideas

(Baswana et al. ’05)

1 xu := 1|0 with proba 1/
√

n. Let X := {u | xu = 1}
2 if B(u, 1) ∩X = ∅, then Su := B(u, 1)

3 if xu = 1, then Su := BFS(u, B(u, 2))

X
YZ

Time: 2 rounds [and k]

Stretch: 3 [and 2k − 1]

Size: 2n3/2 in expectation [and O(kn1+1/k)]
(In expectation: |X| =

√
n, and if u ∈ Z, then deg(u) 6

√
n)

Outline

Introduction, Examples & Definitions

On the Combinatorial Problem

Algorithms for k = 2

Some Distributed Algorithms

A new Distributed Algorithm

Conclusion

The Question

What is the smallest t such that if each node u of a graph
knows B(u, t), then u can deterministically decide alone
which incident edges to keep to form a (3, 0)-spanner of size
O(n3/2)?

Theorem (Derbel, G., Peleg, Viennot - PODC’08)

There is a determinist distributed algorithm that for every
n-node graph computes a (2k − 1, 0)-spanner of size at most
kn1+1/k in time k.

Moreover, if n is unkown, then the algorithm requires time
2k − 1. Also k is the best possible time bound, even
“expected time” for a randomized (Las Vegas) algorithm.

The Question

What is the smallest t such that if each node u of a graph
knows B(u, t), then u can deterministically decide alone
which incident edges to keep to form a (3, 0)-spanner of size
O(n3/2)?

Theorem (Derbel, G., Peleg, Viennot - PODC’08)

There is a determinist distributed algorithm that for every
n-node graph computes a (2k − 1, 0)-spanner of size at most
kn1+1/k in time k.

Moreover, if n is unkown, then the algorithm requires time
2k − 1. Also k is the best possible time bound, even
“expected time” for a randomized (Las Vegas) algorithm.

Second result

Theorem (2)

For every ε ∈ (0, 2], there is a determinist distributed
algorithm that for every n-node graph (where n is unkown to
the nodes) computes a (1 + ε, 2)-spanner of size O(ε−1n3/2)
in O(ε−1) time.

We can also show that (1 + ε, 2)-spanner of size O(n3/2)
cannot be computed in less than Ω(ε−1) expected time.

The Algorithm (for k = 2)

For every node u do:

1 Ru := {u} ∪ { any selection of b
√
|B(u, 3)|c neighbors }

2 send Ru and receive Rv to/from its neighbors

3 W := B(u, 1) \ {v | u ∈ Ru} \Ru and Cu := ∅
4 while ∃w ∈ W :

1 Cu := Cu ∪ {w}
2 W := W \ {v ∈ W | Rv ∩Rw 6= ∅}

5 Add edges from u to Ru ∪ Cu

The Algorithm (for k = 2)

For every node u do:

1 Ru := {u} ∪ { any selection of b
√
|B(u, 3)|c neighbors }

2 send Ru and receive Rv to/from its neighbors

3 W := B(u, 1) \ {v | u ∈ Ru} \Ru and Cu := ∅
4 while ∃w ∈ W :

1 Cu := Cu ∪ {w}
2 W := W \ {v ∈ W | Rv ∩Rw 6= ∅}

5 Add edges from u to Ru ∪ Cu

Stretch: if (u, v) /∈ S, then v removed from

W in 4.2.

Thus ∃w ∈ Cu with Rv∩Rw 6= ∅.

Hence, stretch 3.

vu

The Algorithm (for k = 2)

For every node u do:

1 Ru := {u} ∪ { any selection of b
√
|B(u, 3)|c neighbors }

2 send Ru and receive Rv to/from its neighbors

3 W := B(u, 1) \ {v | u ∈ Ru} \Ru and Cu := ∅
4 while ∃w ∈ W :

1 Cu := Cu ∪ {w}
2 W := W \ {v ∈ W | Rv ∩Rw 6= ∅}

5 Add edges from u to Ru ∪ Cu

Stretch: if (u, v) /∈ S, then v removed from

W in 4.2. Thus ∃w ∈ Cu with Rv∩Rw 6= ∅.

Hence, stretch 3.

vu

w

The Algorithm (for k = 2)

For every node u do:

1 Ru := {u} ∪ { any selection of b
√
|B(u, 3)|c neighbors }

2 send Ru and receive Rv to/from its neighbors

3 W := B(u, 1) \ {v | u ∈ Ru} \Ru and Cu := ∅
4 while ∃w ∈ W :

1 Cu := Cu ∪ {w}
2 W := W \ {v ∈ W | Rv ∩Rw 6= ∅}

5 Add edges from u to Ru ∪ Cu

Stretch: if (u, v) /∈ S, then v removed from

W in 4.2. Thus ∃w ∈ Cu with Rv∩Rw 6= ∅.

Hence, stretch 3.

v

w

u

The Algorithm (for k = 2)

For every node u do:

1 Ru := {u} ∪ { any selection of b
√
|B(u, 3)|c neighbors }

2 send Ru and receive Rv to/from its neighbors

3 W := B(u, 1) \ {v | u ∈ Ru} \Ru and Cu := ∅
4 while ∃w ∈ W :

1 Cu := Cu ∪ {w}
2 W := W \ {v ∈ W | Rv ∩Rw 6= ∅}

5 Add edges from u to Ru ∪ Cu

Size: w ∈ W after 3 has degree >
|B(w, 3)|1/2. Thus, deg(w) > |B(u, 2)|1/2

since B(u, 2) ⊆ B(w, 3).

Rw taken

in Cu are disjoint. #loops is |Cu| 6
|B(u, 2)|/|B(u, 2)|1/2 6

√
n. Size: n×2

√
n.

u

w

The Algorithm (for k = 2)

For every node u do:

1 Ru := {u} ∪ { any selection of b
√
|B(u, 3)|c neighbors }

2 send Ru and receive Rv to/from its neighbors

3 W := B(u, 1) \ {v | u ∈ Ru} \Ru and Cu := ∅
4 while ∃w ∈ W :

1 Cu := Cu ∪ {w}
2 W := W \ {v ∈ W | Rv ∩Rw 6= ∅}

5 Add edges from u to Ru ∪ Cu

Size: w ∈ W after 3 has degree >
|B(w, 3)|1/2. Thus, deg(w) > |B(u, 2)|1/2

since B(u, 2) ⊆ B(w, 3). Rw taken

in Cu are disjoint. #loops is |Cu| 6
|B(u, 2)|/|B(u, 2)|1/2 6

√
n. Size: n×2

√
n.

w

u

w′

Outline

Introduction, Examples & Definitions

On the Combinatorial Problem

Algorithms for k = 2

Some Distributed Algorithms

A new Distributed Algorithm

Conclusion

Conclusion

The computation of “optimal” sparse spanners is LOCAL

How to reduce message size? (lower bound?)

Does exist (1, β)-spanner of size o(n4/3)?

Thank You
for your attention

	Introduction, Examples & Definitions
	On the Combinatorial Problem
	Algorithms for k=2
	Some Distributed Algorithms
	A new Distributed Algorithm
	Conclusion

