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Figure 4.5c: Two distance models (d1 and d2) for xsend and xfetch
communications.

xsend and xfetch communication Results
Just as the xnet communications, the xsend and xfetch instructions depend on
the distances, which are dy and dx. They also depend on the number of transferred
bits (see the size of the simple types of the variables table). We will also notice the
importance of left-values (that is xsend). We can also say that the times depend on
the parameter type (ss, ps, sp, or pp; see syntax of these communications).
These times decrease when the pointers (scr and dest) are in the ACU memory.
When all the variable addresses are the same, the pointer is then situated in the
ACU and the sequencer can then order a transfer of bytes directly to all the PE's.
But if the variable addresses are not the same for all PE's, the sequencer can only
send, to the PE's, instructions for adresses decoding and then send transfer
instructions. So then the PE's have to perform more instructions.

Results on X-Net type communications
An X-Net communication used in left-value is always quicker than the same
instruction right-value. Performances depend neither on direction nor on the
number of active PE's (this is because of the uniform character of the
communication), but linearly depend on the size of the distributed information and
the distance. The sensitivity of the two parameters is more or less identical in the
non pipelined case (proportional to distance*size), whereas in the pipelined case
(xnetp and xnetc) time is especially sensitive to the size. Conflicts may occur
when there are simultaneous writings. That happens when for example all the PE's
send data to their right neighbor, whereas each predecessor on the left
simultaneously crunches the data. The problem is resolved (see figure 4.6) by a
duplication of data on each PE before transmitting them through the grid to the
destination PE. This is not serious for the xnet but it becomes so with xsend and
xfetch where the message length can be critical for the PE source's memory
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1 Transputers and Routers:
Components for Concurrent
Machines

1.1 Introduction

This chapter describes an architecture for concurrent machines constructed from two types of
component: ‘transputers’ and ‘routers’.  In subsequent chapters we consider the details of these
two components, and show the architecture can be adapted to include other types of component.

A transputer is a complete microcomputer integrated in a single VLSI chip.  Each transputer has
a number of communication links, allowing transputers to be interconnected to form concurrent
processing systems.  The transputer instruction set contains instructions to send and receive mes-
sages through these links, minimizing delays in inter-transputer communication.  Transputers can
be directly connected to form specialised networks, or can be interconnected via routing chips.
Routing chips are VLSI building blocks for interconnection networks: they can support system-
wide message routing at high throughput and low delay.

1.2 Transputers

VLSI technology enables a complete computer to be constructed on a single silicon chip.  The
INMOS T800 transputer [1], integrates a central processor, a floating point unit, four kilobytes
of static random access memory plus an interface for external memory, and a communications
system onto a chip about 1 square centimetre in area.

T800 Transputer

As a microcomputer, the transputer is unusual in that it has the ability to communicate with other
transputers via its communication links; this enables transputers to be connected together to
construct multiprocessor systems to tackle specific problems.  The transputer is also unusual in
that it has the ability to execute many software processes, sharing its time between them automati-
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Figure 1.8 A Tree with Interval Labelling

Hypercubes can be labelled

The labelling of the hypercube follows the construction given for the deadlock free routing algo-
rithm.  In combining the two order-  hypercubes  and , the transputers in  are labelled
0, . . .  , 2 – 1 and those in  are labelled 2 , . . .  ,2  – 1.  The link from each node  in 
to the corresponding node  in  is labelled with the interval [2 , . . .  ,2 ) at , and with
[0, . . .  ,2 ) at .  This inductively constructs a hypercube together with the deadlock-free rout-
ing algorithm described above.

Arrays can be labelled

The labelling for an array follows the construction of the deadlock free routing algorithm.  An
-dimensional array is composed of  arrays of dimension –1, with  corresponding nodes

(one from each –1 dimensional array) joined to form a line.  If each of the –1 dimensional ar-
rays has  nodes, the nodes in the –1 dimensional arrays are numbered 0, . . ., –1; , . . ., 2 –1;
. . .; ( –1) , . . ., –1.  On every line the link joining the  node to the ( +1)  node is labelled
[ , . . ., ) and the link to the ( –1)  node is labelled [0, . . ., ( –1) ).  This inductively labels
an array to route packets according to the deadlock free algorithm described above.  An example
is shown in figure 1.9.  This shows the labels assigned to each node, and the intervals assigned
to the links of one of the nodes.
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Figure 1.9 An Array with Interval Labelling

Labelling arbitrary networks

The above labelings provide optimal routing, so that each packet takes one of the shortest paths
to its destination.  It can easily be shown [6] that any network can be labelled so as to provide
deadlock free routing; it is only necessary to construct a spanning tree and label it as described
above.  This may produce a non-optimal routing which cannot exploit all of the links present in
the network as a whole.  Optimal labelings are known for all of the networks shown below:

trees 
hypercubes 
arrays 
multi-stage networks
butterfly networks 
rings3

In high performance embedded applications (or in reconfigurable computers) specialised net-
works are often used to minimize interconnect costs or to avoid the need for message routing.
In these systems, a non-optimal labelling can be used to provide low-speed system-wide commu-
nications such as would be needed for system configuration and monitoring.

1.5.2 Header Deletion

The main disadvantages of the interval labelling system are that it does not permit arbitrary routes
through a network, and it does not allow a message to be routed through a series of networks.
These problems can be overcome by a simple extension: header deletion.  Any link of a router
can be set to delete the header of every packet which passes out through it; the result is that the
data immediately following becomes the new header as the packet enters the next node.

Header deletion can be used to minimize delays in the routing network.  To do this, an initial head-
er is used to route the packet to a destination transputer; this header is deleted as it leaves the final
router and enters the transputer.  A second header is then used to identify the virtual link within
3.  Note that the optimal labelling of a ring requires that one of the connections be duplicated in order to avoid
deadlock.

http://dept-info.labri.fr/~gavoille/bib0/MT90
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Abstract

Compact routing tables are useful to implement rout-
ing algorithms on a distributed memory parallel com-
puter. Interval routing is a popular way of building
such compact tables. It was already known that any
network can support an interval routing function with
only one interval per output port as soon as one allows
intervals to be “cyclic” [13]. However, it might be in-
teresting for practical reasons to allow only the use of
“linear” intervals (see [2]). This notion is particularly
useful to derive results on networks built by cartesian
products (as hypercubes and torus) [4]. In this paper,
we characterize the networks that admit a linear in-
terval routing function with at most one interval per
output port. We also characterize the networks that
admit a strict linear interval routing function with at
most one interval per output port. -

1 Introduction

If the structure of the interconnection network of a dis-
tributed memory parallel computer is fixed but com-
plicated (a pancake graph, an undirected de Bruijn
graph, etc) or if the interconnection network has no
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particular structure, it could be difficult to derive a
“simple algorithmic” way to find locally the path be-
tween two nodes.

By a simple algorithm, we mean an algorithm whose
both execution time and space for implementing it on
the router are small. A solution to that problem is
obtained by the use of routing tables that are stored
locally on each router. Of course, the main require-
ment for these tables is to be as small as possible (for
instance a size of ~(n) for a network of n processors
is not realistic as soon as the number of processors is
larger that some tens).

Compact routing has already been intensively stud-
ied (see for instance [1, 7, 8]). In particular, there exist
many solutions to compress the size of the routing ta-
bles. The general idea is to group in some manner the
destination addresses that correspond to the same out-
put port, and to encode the group so that it is easy
to check if a destination address belongs to a given
group. A very popular solution of that kind is the use
of intervals [12]. They are indeed very simple to code
(only store the bounds of each interval) and at most
two comparisons are enough to check if a destination
address belongs to an interval. This kind of routing is
used for instance on the C104 routing chip [11, 3] of
Inmos.

The notion of interval routing has been introduced
by Santoro and Khatib in [12]. They mainly show
that any directed acyclic network can support an in-
terval routing function with shortest paths and only
one interval per output port. Moreover, if the digraph
is not acyclic, they show that there exists an interval
routing function such that the maximum length of the
route between two vertices is at most two times the

diameter. Then van Leeuwen and Tan [13] studied

the problem for undirected networks. They showed

that any network supports an interval routing func-
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Summary. The purpose of compact routing is to provide a la-
beling of the nodes of a network and a way to encode the rout-
ing tables, so that routing can be performed efficiently (e.g., on
shortest paths) whilst keeping the memory-space required to
store the routing tables as small as possible. In this paper, we
answer a long-standing conjecture by showing that compact
routing may also assist in the performance of distributed com-
putations. In particular, we show that a network supporting
a shortest path interval routing scheme allows broadcasting
with a message-complexity of O(n), where n is the number
of nodes of the network. As a consequence, we prove that
O(n) messages suffice to solve leader-election for any graph
labeled by a shortest path interval routing scheme, improving
the previous known bound of O(m + n). A general conse-
quence of our result is that a shortest path interval routing
scheme contains ample structural information to avoid devel-
oping ad-hoc or network-specific solutions for basic problems
that distributed systems must handle repeatedly.

Key words: Compact routing – Interval routing – Broadcast-
ing – Distributed computing

1 Introduction

This paper addresses a problem originally formulated by
D. Peleg that can be informally summarized as follows: “Do
networks supporting shortest path compact routing schemes
present specific ability in term of distributed computation?
E.g., broadcasting, leader election, etc.” This paper answers

Part of this work was completed while the third author was visiting
the Computer Science Department of University Paris-Sud at LRI,
supported by the Australian-French ARC-IREX/CNRS cooperation
#99N92/0523. A preliminary version of this paper was presented at
the 19th ACM Symposium on Principles of Distributed Computing
(PODC 2000).
∗ Additional support by the CNRS
∗∗ Additional support by the Aquitaine Region project #98024002
∗∗∗ Additional support by the ARC

this question in the affirmative, by showing that n-node net-
works supporting interval routing schemes [27,28] (IRS for
short), allow broadcasting with O(n) message-complexity.

Formally, a network G = (V, E) (in this paper, by net-
work, wewill alwaysmean a connected undirected graphwith-
out self loops and multi-edges) supports an IRS if the nodes
of that network can be labeled from 1 to n = |V | in such a
way that the following is satisfied: given any node x ∈ V of
degree d and label !, there is a set of d intervals I1, . . . , Id of
{1, . . . , n}, one for each edge e1, . . . , ed incident to x, such
that (1) {1, . . . , n} \ {!} ⊆

⋃d
i=1 Ii, (2) Ii ∩ Ij = ∅ for every

i %= j and (3) !′ ∈ Ii implies that there is a shortest path from
x to the node labeled !′ passing through the edge ei. (IRS
encode shortest path routing tables with the property that the
set of destination-addresses using a given link is a set of con-
secutive integers.) IRS are well-known in the framework of
compact routing since a network of maximum degree ∆, and
supporting an IRS, has routing tables of size O(∆ log n) bits,
in comparison to the Θ(n log ∆) bits of a table returning, for
every destination label i ∈ {1, . . . , n}, the output port corre-
sponding to that label. For more about IRS, we refer to [7,11,
18,20,23,24], and to the survey [17]. For more about compact
routing in general, we refer to [13–15,19,21,26]. In the re-
mainder of this paper, given a network supporting an IRS, we
will make no distinction between the nodes and their labels. In
other words, we will assume V = {1, . . . , n} where the label
of node x in the IRS is precisely x ∈ {1, . . . , n}.

Broadcasting for an arbitrary node of a network is the in-
formation dissemination problem which consists of sending a
givenmessage to all the other nodes. Themessage-complexity
of broadcasting is between Ω(n) and O(m), m = |E|, since
the reception of the message by every node but the source re-
quires at leastn−1messages, andyet, broadcasting can always
be performed by flooding the network (meaning, upon recep-
tion of themessage, every node forwards thatmessage through
all its incident edges apart from the one through which it has
received themessage). Improved upper and lower boundsmay
be derived as a function of the knowledge of the nodes of the
network and of the maximal size of the message-headers (e.g.,
see [1,2,5]). In this paper, the only knowledge of every node
is its label in some IRS and the intervals attached to its inci-
dent edges in the same IRS. The size of each message-header

Algorithmica (1998) 21: 155–182 Algorithmica
© 1998 Springer-Verlag New York Inc.

Interval Routing Schemes1

P. Fraigniaud2 and C. Gavoille2

Abstract. Interval routing was introduced to reduce the size of routing tables: a router finds the direction
where to forward a message by determining which interval contains the destination address of the message,
each interval being associated to one particular direction. This way of implementing a routing function is quite
attractive but very little is known about the topological properties that must satisfy a network to support an
interval routing function with particular constraints (shortest paths, limited number of intervals associated to
each direction, etc.). In this paper we investigate the study of the interval routing functions. In particular, we
characterize the set of networks which support a linear or a linear strict interval routing function with only one
interval per direction. We also derive practical tools to measure the efficiency of an interval routing function
(number of intervals, length of the paths, etc.), andwe describe large classes of networks which support optimal
(linear) interval routing functions. Finally, we derive the main properties satisfied by the popular networks
used to interconnect processors in a distributed memory parallel computer.

Key Words. Routing in distributed networks, Compact routing, Routing function, Interval.

1. Introduction. Given a network of processors (such as the one of a distributedmem-
ory parallel computer), the way of routing messages among the processors is character-
ized, on one hand, by the routing mode (store-and-forward, circuit-switched, wormhole,
. . . ) and, on the other hand, by the routing function which determines the paths between
the sources and the destinations. This paper focuses on the second parameter.
The routing function is generally implemented locally on the routers. The route of

a message from its source to its destination is determined using a header attached to
the message, and which contains information that will allow the intermediate routers to
know where to forward the message. In this paper we are interested in routing functions
which use only the destination address of the message to find the route.
As soon as a router receives a message, it looks at the header to read the destination,

and then determines the output port which will be used to forward the message toward
its destination. There are mainly two ways of determining the output port from the
destination address:

1. Application of an algorithm.
2. Consultation of a routing table.

1 All the results presented in this paper are entirely based on [8]. The first author received the support of the
Centre de Recerca Matemàtica, Institut d’Estudis Catalans, Bellaterra, Spain. Both authors are supported by
the research programs ANM and PRS of the CNRS.
2 LIP - CNRS, École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France.
{pfraign,gavoille}@ens-lyon.fr.
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ing algorithms on a distributed memory parallel com-
puter. Interval routing is a popular way of building
such compact tables. It was already known that any
network can support an interval routing function with
only one interval per output port as soon as one allows
intervals to be “cyclic” [13]. However, it might be in-
teresting for practical reasons to allow only the use of
“linear” intervals (see [2]). This notion is particularly
useful to derive results on networks built by cartesian
products (as hypercubes and torus) [4]. In this paper,
we characterize the networks that admit a linear in-
terval routing function with at most one interval per
output port. We also characterize the networks that
admit a strict linear interval routing function with at
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1 Introduction

If the structure of the interconnection network of a dis-
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particular structure, it could be difficult to derive a
“simple algorithmic” way to find locally the path be-
tween two nodes.

By a simple algorithm, we mean an algorithm whose
both execution time and space for implementing it on
the router are small. A solution to that problem is
obtained by the use of routing tables that are stored
locally on each router. Of course, the main require-
ment for these tables is to be as small as possible (for
instance a size of ~(n) for a network of n processors
is not realistic as soon as the number of processors is
larger that some tens).

Compact routing has already been intensively stud-
ied (see for instance [1, 7, 8]). In particular, there exist
many solutions to compress the size of the routing ta-
bles. The general idea is to group in some manner the
destination addresses that correspond to the same out-
put port, and to encode the group so that it is easy
to check if a destination address belongs to a given
group. A very popular solution of that kind is the use
of intervals [12]. They are indeed very simple to code
(only store the bounds of each interval) and at most
two comparisons are enough to check if a destination
address belongs to an interval. This kind of routing is
used for instance on the C104 routing chip [11, 3] of
Inmos.

The notion of interval routing has been introduced
by Santoro and Khatib in [12]. They mainly show
that any directed acyclic network can support an in-
terval routing function with shortest paths and only
one interval per output port. Moreover, if the digraph
is not acyclic, they show that there exists an interval
routing function such that the maximum length of the
route between two vertices is at most two times the

diameter. Then van Leeuwen and Tan [13] studied

the problem for undirected networks. They showed

that any network supports an interval routing func-
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Figure 2: The Y-graph, a lithium-graph and a weak
lithium-graph.

least two vertices. Figure2 presents the general form
of a lithium-graph (the Y-graph is also a lithium-

graph). We get easily the following lemma by the same
arguments that show that the Y-graph @ 1- LIRS:

Lemma 2 If G M a lithzurn-graph then G @ 1-LIRS.

In fact, we get:

Theorem 2 G E 1-LIRS ~ G is not a lithium-graph.

We have to show that any graph which is not a
lithium-graph belongs to 1-LIRS. To do that, we need
some preliminary results.

Lemma 3 Any 2-edge-connected graph G belongs to
I-LIRS strzct. Moreover, for any two vertices x and y

of G, there exists a linear strict interval routing func-
tion R = (t, Z) satisfying:

i.

ii.

. . .
111.

c(x) = 1

VZ E V(G), Z(z) < I(Y), ‘de G out(z): t(y) E
17,, > IV(G)! E Iz,.

,. /..
out(z), e = (z, u), LIU) < L(Y) and ~z,e = 0

Proof. We will proceed iteratively: at each step,
we consider a subgraph H of G containing z and
y and a linear strict interval routing function on H
satisfying the properties (i), (ii) and (iii). We suc-
cessively update this construction, keeping the good
properties and adding one or more vertices to H until
IV(H)[ = IV(G)!. We precise below the initialization
of H and the routing function, and then a way to up-
date the construction.

hitializat ion. Assume G has at least three vertices.

If z # y, the? from Menger’s theorem, let PI and P2

be two edge-dqoint paths from x to y. Moreover, it is

possible to find such paths in G such that if they have

a certain number of common vertices U1 ~u2, . . ., ur– 1

distinct from z and y, then these vertices are encoun-

tered in the same order going from z to y on P1 or on
P2. Thuslet uo=x, u,=y and fori=Otor–1,
let Ci be the cycle composed of the path PI from ui to
U;+l, and the path P2 from ui+l to ui.

If z = y, then let CO be the subgraph of G that is a
cycle of at least 3 vertices and going through z. Set
Uo=z=y=ul.

Let H be the subgraph of G composed of the C, ‘s.
We label the vertices of H as follows (see Figure 3(a)-
(c)): set L(z) = 1 and label clockwise the vertices of Co
in an increasing order. If there is more than one cycle,
then start from U1 and label clockwise the vertices
of Cl in an increasing order. Repeat this operation
considering successively the cycles Ci, i = 2, . . . . r — 1
until all the vertices are labeled.

Now, we set the intervals as follows (see Fig-
ure 3(d)). Let nH be the number of vertices of H. Let
n; be the number of vertices of the cycle Ci, O ~ i < r.
Consider any cycle Ci, O 5 ~ < r- Let z be w ver-
tex of Ci. Let e+ (resp. e– ) be the clockwise (resp.
counter clockwise) edge of out(z) on Ci. We seti.

{

],C(z), n~,l if Z # Ui+l or Ui+l = y
‘Z,’+ = ]~(z),~j=onj – i] if z = Ui+l and Ui+l # Y
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distinct from z and y, then these vertices are encoun-

tered in the same order going from z to y on P1 or on
P2. Thuslet uo=x, u,=y and fori=Otor–1,
let Ci be the cycle composed of the path PI from ui to
U;+l, and the path P2 from ui+l to ui.

If z = y, then let CO be the subgraph of G that is a
cycle of at least 3 vertices and going through z. Set
Uo=z=y=ul.

Let H be the subgraph of G composed of the C, ‘s.
We label the vertices of H as follows (see Figure 3(a)-
(c)): set L(z) = 1 and label clockwise the vertices of Co
in an increasing order. If there is more than one cycle,
then start from U1 and label clockwise the vertices
of Cl in an increasing order. Repeat this operation
considering successively the cycles Ci, i = 2, . . . . r — 1
until all the vertices are labeled.

Now, we set the intervals as follows (see Fig-
ure 3(d)). Let nH be the number of vertices of H. Let
n; be the number of vertices of the cycle Ci, O ~ i < r.
Consider any cycle Ci, O 5 ~ < r- Let z be w ver-
tex of Ci. Let e+ (resp. e– ) be the clockwise (resp.
counter clockwise) edge of out(z) on Ci. We seti.

{

],C(z), n~,l if Z # Ui+l or Ui+l = y
‘Z,’+ = ]~(z),~j=onj – i] if z = Ui+l and Ui+l # Y
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Summary. The purpose of compact routing is to provide a la-
beling of the nodes of a network and a way to encode the rout-
ing tables, so that routing can be performed efficiently (e.g., on
shortest paths) whilst keeping the memory-space required to
store the routing tables as small as possible. In this paper, we
answer a long-standing conjecture by showing that compact
routing may also assist in the performance of distributed com-
putations. In particular, we show that a network supporting
a shortest path interval routing scheme allows broadcasting
with a message-complexity of O(n), where n is the number
of nodes of the network. As a consequence, we prove that
O(n) messages suffice to solve leader-election for any graph
labeled by a shortest path interval routing scheme, improving
the previous known bound of O(m + n). A general conse-
quence of our result is that a shortest path interval routing
scheme contains ample structural information to avoid devel-
oping ad-hoc or network-specific solutions for basic problems
that distributed systems must handle repeatedly.

Key words: Compact routing – Interval routing – Broadcast-
ing – Distributed computing

1 Introduction

This paper addresses a problem originally formulated by
D. Peleg that can be informally summarized as follows: “Do
networks supporting shortest path compact routing schemes
present specific ability in term of distributed computation?
E.g., broadcasting, leader election, etc.” This paper answers

Part of this work was completed while the third author was visiting
the Computer Science Department of University Paris-Sud at LRI,
supported by the Australian-French ARC-IREX/CNRS cooperation
#99N92/0523. A preliminary version of this paper was presented at
the 19th ACM Symposium on Principles of Distributed Computing
(PODC 2000).
∗ Additional support by the CNRS
∗∗ Additional support by the Aquitaine Region project #98024002
∗∗∗ Additional support by the ARC

this question in the affirmative, by showing that n-node net-
works supporting interval routing schemes [27,28] (IRS for
short), allow broadcasting with O(n) message-complexity.

Formally, a network G = (V, E) (in this paper, by net-
work, wewill alwaysmean a connected undirected graphwith-
out self loops and multi-edges) supports an IRS if the nodes
of that network can be labeled from 1 to n = |V | in such a
way that the following is satisfied: given any node x ∈ V of
degree d and label !, there is a set of d intervals I1, . . . , Id of
{1, . . . , n}, one for each edge e1, . . . , ed incident to x, such
that (1) {1, . . . , n} \ {!} ⊆

⋃d
i=1 Ii, (2) Ii ∩ Ij = ∅ for every

i %= j and (3) !′ ∈ Ii implies that there is a shortest path from
x to the node labeled !′ passing through the edge ei. (IRS
encode shortest path routing tables with the property that the
set of destination-addresses using a given link is a set of con-
secutive integers.) IRS are well-known in the framework of
compact routing since a network of maximum degree ∆, and
supporting an IRS, has routing tables of size O(∆ log n) bits,
in comparison to the Θ(n log ∆) bits of a table returning, for
every destination label i ∈ {1, . . . , n}, the output port corre-
sponding to that label. For more about IRS, we refer to [7,11,
18,20,23,24], and to the survey [17]. For more about compact
routing in general, we refer to [13–15,19,21,26]. In the re-
mainder of this paper, given a network supporting an IRS, we
will make no distinction between the nodes and their labels. In
other words, we will assume V = {1, . . . , n} where the label
of node x in the IRS is precisely x ∈ {1, . . . , n}.

Broadcasting for an arbitrary node of a network is the in-
formation dissemination problem which consists of sending a
givenmessage to all the other nodes. Themessage-complexity
of broadcasting is between Ω(n) and O(m), m = |E|, since
the reception of the message by every node but the source re-
quires at leastn−1messages, andyet, broadcasting can always
be performed by flooding the network (meaning, upon recep-
tion of themessage, every node forwards thatmessage through
all its incident edges apart from the one through which it has
received themessage). Improved upper and lower boundsmay
be derived as a function of the knowledge of the nodes of the
network and of the maximal size of the message-headers (e.g.,
see [1,2,5]). In this paper, the only knowledge of every node
is its label in some IRS and the intervals attached to its inci-
dent edges in the same IRS. The size of each message-header
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By combining the two inequalities on Lxσ (pi), we get
Lxσ (pi+1) < Lxr (pi).

The same type of arguments allow to show thatLxσ (pi+1)
≤ Lxr (pi) in the sequence-decomposition for IRS.

From the previous result, we get that if f(i) denotes the in-
dex such that pi ∈ Yf(i), then the active thread p0, p1, . . . , pt,
pt+1 resulting from the sequence decomposition for strict IRS
satisfies p0 = n + 1, pt+1 = 0 and
Lxf(i)(pi) > Lxf(j)(pj) (4)

for any pair (i, j), 1 ≤ i < j ≤ t. There might be up to
! equalities in the sequence decomposition for IRS. In other
words, the number of nodes in the active thread of the sequence
decomposition is n for strict IRS networks and n + ! for
arbitrary IRS networks. Bounding the number of nodes in the
jumped threads, the dead-end threads, and the auxiliary thread,
may then be achieved by exactly the same arguments as in
Sections 3 and 4. Finally, (4) holds even if the source node is
not labeled 1. Therefore, we have:

Theorem 3 The message-complexity of the up/down broad-
cast protocol is at most 6n in a network of order n supporting
a strict IRS and at most 18n in a network of order n support-
ing an IRS. As a consequence, networks supporting a shortest
path Interval Routing Scheme allows broadcasting withO(n)
message-complexity.

Corollary 3 In a network supporting a shortest path Inter-
val Routing Scheme, the average distance between two nodes
labeled by two consecutive integers is bounded by a constant.

Remark. The inherent serial behavior of the up/down proto-
col (by forwarding an increasing token and a decreasing token)
imposes Ω(n) hops in any network. We could however intro-
duce a variant of the up/down protocol to reduce the number
of hops by using more copies of the message. For instance,
a new protocol could be obtained by modifying the up/down
protocol as follows (we only consider the changes regarding
the up copy, the modification for the down copy may be ob-
tained similarly). Each header now contains an interval [a, b]
of consecutive targets to reach. The minimum label a rep-
resents the current target to reach. Initially, the originator ν
sets a to ν + 1 and b to n, and sends the up copy toward
ν + 1. Any intermediate node x which receives a message
with header [a, b] proceeds as follows. If x /∈ [a, b], then x
simply forwards the message toward a. If x ∈ [a, b] then x
creates two copies of the message, one which is sent toward
x + 1 with the header [x + 1, b], and another which is sent
toward a with header [a, x − 1]. A message of header [x, x]
reaching node x is removed from the network. The asymptotic
message-complexity of this variant of the up/down protocol
is not higher than the asymptotic message-complexity of the
original version (i.e., at most

∑n−1
i=1 d(i, i + 1)), but the num-

ber of hops of this variant can be significantly smaller than the
number of hops of the original version in some networks.

6 Related problems

The fact that n-node networks supporting shortest path inter-
val routing schemes allow broadcasting with O(n) message-
complexity can be directly used to solve other problems, such

as leader election or distributed spanning tree. For simplicity,
we present only straightforward yet asymptotically optimal
solutions here. Far more elegant solutions could be devised,
although they must also use O(n) messages.

Recall that, informally, the leader-election is the problem
of moving the network from an initial situation where the
nodes are in the same computational state, to a final situation
where exactly one node is in a distinguished computational
state (called leader) and all others are in the same state (called
defeated). The election process may be independently started
by any subset of the nodes, called awakened-nodes (any other
node is said to be “asleep”). Every node x has a distinct input
value I(x) chosen from some infinite totally ordered set and
each processor is only aware of its own input value. Similar
to most of the solutions commonly used to solve the leader
election problem, our strategy elects the node with the lowest
input value.

Theorem 4 Networks supporting a shortest-path interval
routing scheme allow leader-election with O(n) message-
complexity.

Proof. Our protocol is a 3-phase protocol:
1. Wake-up node labeled 1 via a down protocol;
2. Identify the node with the lowest input value via an up
protocol;

3. Broadcast the name of this node from node n.
More precisely, every awaken node x starts by sending a mes-
sage (W, x) to node x − 1 where“W ” stands for wake up and
x is the label of the node in the IRS. Every intermediate node
executes the broadcast protocol “down” on messages of type
W . Every target node x receiving the message (W, x + 1)
awakes, if not yet awakened. An awakened node x which has
already sent a message (W, x) to x − 1 does not forward the
message (W, x+1), but removes it from the network. A node
waking up proceeds as specified before, i.e., it sends a mes-
sage (W, x) to node x−1. When node 1 receives the message
(W, 2) as a target node, it awakes (if not yet awakened). This
completes Phase 1.

Once awakened, node 1 starts Phase 2, and initiates an
“up” protocol with message (E, I(1), 1) where “E” stands
for elect. Every node executes protocol “up” on messages of
typeE with the following modification.When a target node x
receives a message (E, I, y), it proceeds as follows: if I(x) <
I , thenx replaces themessage (E, I, y) by (E, I(x), x).When
n receives the message (E, I, x) as a target node, it elects x as
leader if I < I(n), or itself otherwise. Phase 2 is completed.

Phase 3 consists of a broadcast from node n of the identity
of the leader selected by node n.

Phase 1 does not generate more than O(n) messages; the
number of messages generated by Phase 1 is

∑n−1
i=1 d(i, i+1)

as an awakened node x sends (W, x) to x − 1 only once.
Therefore, from Corollary 3, Phase 1 generates O(n) mes-
sages. Phase 2 does not generate more than O(n) messages
as its message-complexity is equal to the message-complexity
of a broadcast from node 1. Phase 3 is a broadcast, and thus
it does not generate more thanO(n)messages. Therefore, the
message-complexity of the whole protocol is O(n)

In the distributed spanning tree problem, every node of a
network G = (V, E) must select some of its neighbors (at
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By combining the two inequalities on Lxσ (pi), we get
Lxσ (pi+1) < Lxr (pi).

The same type of arguments allow to show thatLxσ (pi+1)
≤ Lxr (pi) in the sequence-decomposition for IRS.

From the previous result, we get that if f(i) denotes the in-
dex such that pi ∈ Yf(i), then the active thread p0, p1, . . . , pt,
pt+1 resulting from the sequence decomposition for strict IRS
satisfies p0 = n + 1, pt+1 = 0 and
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for any pair (i, j), 1 ≤ i < j ≤ t. There might be up to
! equalities in the sequence decomposition for IRS. In other
words, the number of nodes in the active thread of the sequence
decomposition is n for strict IRS networks and n + ! for
arbitrary IRS networks. Bounding the number of nodes in the
jumped threads, the dead-end threads, and the auxiliary thread,
may then be achieved by exactly the same arguments as in
Sections 3 and 4. Finally, (4) holds even if the source node is
not labeled 1. Therefore, we have:

Theorem 3 The message-complexity of the up/down broad-
cast protocol is at most 6n in a network of order n supporting
a strict IRS and at most 18n in a network of order n support-
ing an IRS. As a consequence, networks supporting a shortest
path Interval Routing Scheme allows broadcasting withO(n)
message-complexity.

Corollary 3 In a network supporting a shortest path Inter-
val Routing Scheme, the average distance between two nodes
labeled by two consecutive integers is bounded by a constant.

Remark. The inherent serial behavior of the up/down proto-
col (by forwarding an increasing token and a decreasing token)
imposes Ω(n) hops in any network. We could however intro-
duce a variant of the up/down protocol to reduce the number
of hops by using more copies of the message. For instance,
a new protocol could be obtained by modifying the up/down
protocol as follows (we only consider the changes regarding
the up copy, the modification for the down copy may be ob-
tained similarly). Each header now contains an interval [a, b]
of consecutive targets to reach. The minimum label a rep-
resents the current target to reach. Initially, the originator ν
sets a to ν + 1 and b to n, and sends the up copy toward
ν + 1. Any intermediate node x which receives a message
with header [a, b] proceeds as follows. If x /∈ [a, b], then x
simply forwards the message toward a. If x ∈ [a, b] then x
creates two copies of the message, one which is sent toward
x + 1 with the header [x + 1, b], and another which is sent
toward a with header [a, x − 1]. A message of header [x, x]
reaching node x is removed from the network. The asymptotic
message-complexity of this variant of the up/down protocol
is not higher than the asymptotic message-complexity of the
original version (i.e., at most
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i=1 d(i, i + 1)), but the num-

ber of hops of this variant can be significantly smaller than the
number of hops of the original version in some networks.

6 Related problems

The fact that n-node networks supporting shortest path inter-
val routing schemes allow broadcasting with O(n) message-
complexity can be directly used to solve other problems, such

as leader election or distributed spanning tree. For simplicity,
we present only straightforward yet asymptotically optimal
solutions here. Far more elegant solutions could be devised,
although they must also use O(n) messages.

Recall that, informally, the leader-election is the problem
of moving the network from an initial situation where the
nodes are in the same computational state, to a final situation
where exactly one node is in a distinguished computational
state (called leader) and all others are in the same state (called
defeated). The election process may be independently started
by any subset of the nodes, called awakened-nodes (any other
node is said to be “asleep”). Every node x has a distinct input
value I(x) chosen from some infinite totally ordered set and
each processor is only aware of its own input value. Similar
to most of the solutions commonly used to solve the leader
election problem, our strategy elects the node with the lowest
input value.

Theorem 4 Networks supporting a shortest-path interval
routing scheme allow leader-election with O(n) message-
complexity.

Proof. Our protocol is a 3-phase protocol:
1. Wake-up node labeled 1 via a down protocol;
2. Identify the node with the lowest input value via an up
protocol;

3. Broadcast the name of this node from node n.
More precisely, every awaken node x starts by sending a mes-
sage (W, x) to node x − 1 where“W ” stands for wake up and
x is the label of the node in the IRS. Every intermediate node
executes the broadcast protocol “down” on messages of type
W . Every target node x receiving the message (W, x + 1)
awakes, if not yet awakened. An awakened node x which has
already sent a message (W, x) to x − 1 does not forward the
message (W, x+1), but removes it from the network. A node
waking up proceeds as specified before, i.e., it sends a mes-
sage (W, x) to node x−1. When node 1 receives the message
(W, 2) as a target node, it awakes (if not yet awakened). This
completes Phase 1.

Once awakened, node 1 starts Phase 2, and initiates an
“up” protocol with message (E, I(1), 1) where “E” stands
for elect. Every node executes protocol “up” on messages of
typeE with the following modification.When a target node x
receives a message (E, I, y), it proceeds as follows: if I(x) <
I , thenx replaces themessage (E, I, y) by (E, I(x), x).When
n receives the message (E, I, x) as a target node, it elects x as
leader if I < I(n), or itself otherwise. Phase 2 is completed.

Phase 3 consists of a broadcast from node n of the identity
of the leader selected by node n.

Phase 1 does not generate more than O(n) messages; the
number of messages generated by Phase 1 is

∑n−1
i=1 d(i, i+1)

as an awakened node x sends (W, x) to x − 1 only once.
Therefore, from Corollary 3, Phase 1 generates O(n) mes-
sages. Phase 2 does not generate more than O(n) messages
as its message-complexity is equal to the message-complexity
of a broadcast from node 1. Phase 3 is a broadcast, and thus
it does not generate more thanO(n)messages. Therefore, the
message-complexity of the whole protocol is O(n)

In the distributed spanning tree problem, every node of a
network G = (V, E) must select some of its neighbors (at
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Abstract

This paper introduces a formal model for studying the complexity of
routing in networks. The aim of this model is to capture both time com-
plexity and space complexity. In particular, the model takes into account the
input and output facilities of routers. A routing program is a RAM-program
with five additional instructions that allow to handle incoming and outgoing
headers, and input and output ports. One of these five additional instructions,
called release, captures the possible use of hardware facilities to speed up
routing.

Using our model, we show that there are routing functions which, if com-
pacted, would require an arbitrarily large computation time to be decoded.
The latency is the sum of the time (in bit-operation) required at every inter-
mediate node to establish the route. We also show that, in any n-node net-
work of diameter D, the latency is bounded by O D n1 k logn , for every
constant k 2. This latter result has to be compared with the latency of the
routing tables which is Θ D logn .

1 Introduction
The search for compact routing tables deserves more and more attention as the
interest in large telecommunication systems grows [5]. Most of the literature
devoted to compact routing focuses on strategies to encode point-to-point con-
nections between pairs of sites in a networks. E.g., interval routing, introduced
in [16, 17], is a famous compact routing method which encodes the set of destina-
tion addresses as a union of intervals. This method allows to decrease the memory
requirement for routing in any network to O logn bits per communication link.
However, if one insists on shortest paths, this method may fail, and may then re-
quire as many bits as the routing tables [8]. Therefore, other methods have been
introduced whose goal is to satisfy some tradeoff between the space complexity
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ABSTRACT
We consider small world graphs as defined by Kleinberg
(2000), i.e., graphs obtained from a d-dimensional mesh by
adding links chosen at random according to the d-harmonic
distribution. This model aims at giving formal support to
the “six degrees of separation” between individuals experi-
enced by Milgram (1967), and verified recently by Dodds,
Muhamad, and Watts (2003). In particular, Kleinberg shows
that greedy routing performs in O(log2 n) expected number
of steps in d-dimensional augmented meshes, with O(log n)
bits of topological awareness per node, for any constant
d ≥ 1. We show that giving O(log2 n) bits of topologi-
cal awareness per node decreases the expected number of
steps of greedy routing to O(log1+1/d n) in d-dimensional
augmented meshes. We also show that, independently of
the amount of topological awareness given to the nodes,
greedy routing performs in Ω(log1+1/d n) expected number
of steps. In particular, augmenting the topological aware-
ness above this optimum of O(log2 n) bits would drastically
decrease the performances of greedy routing. Moreover, our
model demonstrates that the efficiency of greedy routing is
sensible to the “world’s dimension”, in the sense that high
dimensional worlds enjoy faster greedy routing than low di-
mensional ones. This could not be observed in Kleinberg’s
model. In addition to bringing new light to Milgram’s ex-
periment, our protocol presents several desirable properties.
In particular, it is totally oblivious, i.e., there is no header
modification along the path from the source to the target,
and the routing decision depends only on the target, and on
information stored locally at each node. Finally, our pro-
tocol can obviously be used for the design of DHTs, in the

∗The three authors are supported by the Actions Spécifiques
CNRS “Dynamo” and “Algorithmique des grands graphes”,
and by the project “PairAPair” of the ACI Masses de
Données.
†Additional support from the INRIA project “Grand Large”
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same spirit as Symphony (2003).

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Discrete Mathe-
matics—Graph Theory

General Terms
Algorithms, Theory

Keywords
Small World Graphs, Routing, Distributed Hash Tables.

1. INTRODUCTION
We consider augmented graphs as defined in [17], i.e., the

family of graphs H = (G,D) obtained from a graph G by
adding links chosen at random according to a probabilistic
distribution D. The graph G models an awareness common
to all the social entities represented by the nodes of H . In
other words, nodes of H are aware of the topology G. In
particular, any node x can compute the distance distG(x, y)
from x to any other node y in G. The links in G model
acquaintances between social entities that can be easily de-
duced from characteristics of the social entities (geograph-
ical positions, hobbies, professional activities, etc.). The
added links, called long-range links, model acquaintances
that cannot be deduced globally because they correspond
to random events which created acquaintances between en-
tities that have generally little in common. If (u, v) is an
edge of G, then any node x is aware that u and v have
some acquaintance. However, if (u, v) is a long-range link
non-incident to x, then x ignores that there is an acquain-
tance between u and v. In particular, x cannot compute the
distance distH(x, y) from x to any other node y in H .

Milgram’s experiment [14], recently reproduced by Dodds,
Muhamad, and Watts [5] (see also [1]), reports that there are
short chains of acquaintances between individuals, and that
these chains can be discovered in a greedy manner. Roughly
speaking, given an arbitrary source person s (e.g., living in
Wichita, KA), and an arbitrary target person t (e.g., living
in Cambridge, MA), a letter can be transmitted from s to t
via a chain of individuals related on a personal basis. The
transmission rule is that the letter held by an intermediate
person x is passed to the next person y who, as judged by x,
is most likely to know the target among all persons x knows
on a first-basis. Milgram’s experiment conclusion is often
summarized as the “six degrees of separation” phenomenon
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Abstract We consider small world graphs as defined
by Kleinberg (2000), i.e., graphs obtained from a d-
dimensional mesh by adding links chosen at random accord-
ing to the d-harmonic distribution. In these graphs, greedy
routing performs in O(log2 n) expected number of steps.
We introduce indirect-greedy routing. We show that giv-
ing O(log2 n) bits of topological awareness per node en-
ables indirect-greedy routing to perform in O(log1+1/d n)
expected number of steps in d-dimensional augmented
meshes. We also show that, independently of the amount
of topological awareness given to the nodes, indirect-
greedy routing performs in !(log1+1/d n) expected num-
ber of steps. In particular, augmenting the topological
awareness above this optimum of O(log2 n) bits would
drastically decrease the performance of indirect-greedy
routing.

Our model demonstrates that the efficiency of indirect-
greedy routing is sensitive to the “world’s dimension,” in
the sense that high dimensional worlds enjoy faster greedy
routing than low dimensional ones. This could not be ob-
served in Kleinberg’s routing. In addition to bringing new
light to Milgram’s experiment, our protocol presents sev-
eral desirable properties. In particular, it is totally oblivi-
ous, i.e., there is no header modification along the path from
the source to the target, and the routing decision depends
only on the target, and on information stored locally at each
node.

A preliminary version of this paper appeared in the proceedings of
the 23rd ACM Symposium on Principles of Distributed Computing
(PODC), St. Johns, Newfoundland, Canada, July 25–28, 2004.
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1 Introduction

We consider small world graphs as defined by Kleinberg [7],
i.e., graphs obtained from a d-dimensional mesh, for some
fixed d ≥ 1, by adding long-range links chosen at random
according to the d-harmonic distribution, i.e., the probabil-
ity that x chooses y as long-range contact is h(x, y) =
1/(Zx ·dist(x, y)d) where dist() is the Manhattan distance in
the mesh (i.e., the distance in the L1 metric), and Zx is a nor-
malizing coefficient (cf. Sects. 5.1 and 5.2 for more details).
This model aims at giving formal support to the “six degrees
of separation” between individuals experienced by Mil-
gram [14], and recently reproduced by Dodds, Muhamad,
and Watts [5] (see also [1]). In a social context, professional
as well as leisure occupation, citizenship, geography, ethnic-
ity, and religiousness are all intrinsic dimensions of the hu-
man multi-dimensional world, playing different roles with
possibly different impact degrees [6]. Each of these dimen-
sions should be used as an independent criterion for routing
in the social graph. In this context, one would thus expect
that the more criteria used the more efficient the routing
should be. Surprisingly however, Kleinberg’s model does
not reflect this fact, in the sense that greedy routing has
the same performance whether the number of mesh dimen-
sions considered is one, two, or more. Indeed, Kleinberg
has shown that greedy routing in the n-node d-dimensional
mesh augmented with long-range links chosen according to
the d-harmonic distribution performs in O(log2 n) expected
number of steps, i.e., independently of d . (This bound is
tight as it was shown in [3] that greedy routing performs in
at least !(log2 n) expected number of steps, independently
of d). Kleinberg has also shown that augmenting the d di-
mensional mesh with the r -harmonic distribution, r #= d ,
results in poor performance, i.e., !(nαr ) expected number
of steps for some positive constant αr . Furthermore, it is
shown in [2] that, in the 1-dimensional mesh augmented
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Abstract

The end-to-end communication problem is a protocol design problem, for sending a packet from a specified source-
node s to a specified target-node t, through an unreliable asynchronous memoryless communication network. The protocol
must insure reception and termination. In this paper, we measure the complexity of the protocol in term of header size, i.e.,
the quantity of information that must be attached to the packets to insure their delivery. We show that headers of
Xðlog log sÞ bits are required in every network, where s denotes the treewidth of the network. In planar networks,
Xðlog sÞ bits are required.
! 2005 Elsevier B.V. All rights reserved.

Keywords: End-to-end; Sequence transmission; Treewidth

1. Introduction

The end-to-end communication problem is the
problem of sending a (sequence of) packet(s) from
a specified source-node s to a specified target-node
t, through an unreliable communication network G

(see, e.g., [13,29]). The sequence transmission [38]
problem and the reliable communication [24] prob-
lem are other names for the end-to-end communica-
tion problem (cf. the survey [25]). By an unreliable
network, it is generally meant that links can lose,
reorder, and duplicate packets. Moreover, networks
are assumed to be asynchronous, i.e., the time for a
packet to traverse a link is finite but otherwise
unbounded. In particular, a processor cannot distin-
guish between an inoperational link and an opera-
tional link which is just very slow. Hence, an
instance of the end-to-end communication problem
is described by an (unreliable and asynchronous)
network, modeled by an undirected graph G, and
two nodes s and t of G. Solving the problem consists
in designing a distributed protocol which (1) allows
s to send a packet, or a sequence of packets, to t
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Abstract. We study the problem of the amount of information (ad-
vice) about a graph that must be given to its nodes in order to achieve
fast distributed computations. The required size of the advice enables
to measure the information sensitivity of a network problem. A problem
is information sensitive if little advice is enough to solve the problem
rapidly (i.e., much faster than in the absence of any advice), whereas it
is information insensitive if it requires giving a lot of information to the
nodes in order to ensure fast computation of the solution. In this paper,
we study the information sensitivity of distributed graph coloring.

1 Introduction

This work is a part of a recent project aiming at studying the quantitative
impact of knowledge on the efficiency when computing with distributed entities
(nodes of a distributed system, mobile users in ad hoc networks, etc.). Indeed,
as observed by Linial [16], ”within the various computational models for parallel
computers, the limitations that follow from the local nature of the computation
are specific to the distributed context”. Two frameworks have been considered for
analyzing the limitations incurring because of the local nature of the distributed
computation. One aims at identifying which tasks can or cannot be computed
locally, i.e., when every node can acquire knowledge only about the nodes that
are at constant distance from it. Surprisingly, non trivial tasks can be achieved
locally [20]. This is for instance the case of weak-coloring, a basis for a solution
to some resource allocation problems. However, many important problems in
distributed computing do not have a local solution [14]. This is the case of
computing an approximate minimum vertex cover or an approximate minimum
dominating set.

The other framework that has been considered is distributed computing with
advice. In this framework, the computing entities can be given information about
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Abstract We study the problem of the amount of informa-
tion (advice) about a graph that must be given to its nodes in
order to achieve fast distributed computations. The required
size of the advice enables to measure the information sensitiv-
ity of a network problem. A problem is information sensitive
if little advice is enough to solve the problem rapidly (i.e.,
much faster than in the absence of any advice), whereas it is
information insensitive if it requires giving a lot of informa-
tion to the nodes in order to ensure fast computation of the
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solution. In this paper, we study the information sensitivity
of distributed graph coloring.
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1 Introduction

This work is a part of a recent project aiming at studying the
quantitative impact of knowledge on the efficiency when com-
puting with distributed entities (nodes of a distributed system,
mobile users in ad hoc networks, etc.). Indeed, as observed
by Linial [18], “within the various computational models
for parallel computers, the limitations that follow from the
local nature of the computation are specific to the distrib-
uted context”. Two frameworks have been considered for
analyzing the limitations incurred by the local nature of dis-
tributed computations. One aims at identifying which tasks
can or cannot be computed locally, i.e., when every node
can acquire knowledge only about the nodes that are at con-
stant distance from it. Surprisingly, non-trivial tasks can be
achieved locally [23]. This is for instance the case for weak-
coloring, a basis for a solution to some resource allocation
problems. However, many important problems in distributed
computing do not have a local solution [16]. This is the case
of computing an approximate minimum vertex cover or an
approximate minimum dominating set.

The other framework that has been considered is distrib-
uted computing with advice. In this framework, the com-
puting entities can be given information about the instance
of the considered problem. The traditional approach is actu-
ally qualitative in the sense that algorithms are designed or
impossibility results are proved under the assumption that the
nodes are aware of specific parameters, e.g., the size of the
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ABSTRACT
Graph augmentation theory is a general framework for ana-
lyzing navigability in social networks. It is known that, for
large classes of graphs, there exist augmentations of these
graphs such that greedy routing according to the shortest
path metric performs in polylogarithmic expected number
of steps. However, it is also known that there are classes of
graphs for which no augmentations can enable greedy rout-
ing according to the shortest path metric to perform better
than Ω(n1/

√
log n) expected number of steps. In fact, the

best known universal bound on the greedy diameter of arbi-
trary graph is essentially n1/3. That is, for any graph, there
is an augmentation such that greedy routing according to
the shortest path metric performs in Õ(n1/3) expected num-
ber of steps. Hence, greedy routing according to the short-
est path metric has at least two drawbacks. First, it is in
general space-consuming to encode locally the shortest path
distances to all the other nodes, and, second, greedy rout-
ing according to the shortest path metric performs poorly
in some graphs.

We prove that, using semimetrics of small stretch results
in a huge positive impact, in both encoding space and ef-
ficiency of greedy routing. More precisely, we show that,
for any connected n-node graph G and any integer k ≥ 1,
there exist an augmentation ϕ of G and a semimetric µ on G
with stretch 2k − 1 such that greedy routing according to µ
performs in O(k2n2/k log2 n) expected number of steps. As
a corollary, we get that for any connected n-node graph G,
there exist an augmentation ϕ of G and a semimetric µ on
G with stretch O(log n) such that greedy routing according
to µ performs in polylogarithmic expected number of steps.
This latter semimetric can be encoded locally at every node
using only a polylogarithmic number of bits.
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from the INRIA project CEPAGE.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’08, June 14–16, 2008, Munich, Germany.
Copyright 2008 ACM 978-1-59593-973-9/08/06 ...$5.00.

Categories and Subject Descriptors
C.1.4 [Computer-Communication Networks]: Net-
work Architecture and design—Network topology ; C.2.2
[Computer-Communication Networks]: Network
Protocols—Routing protocols; C.2.4 [Computer-
Communication Networks]: Distributed systems

General Terms
Algorithms

Keywords
Small world phenomenon, Network Navigability, Social Net-
works

1. INTRODUCTION
Graph augmentation theory is a general framework for

analyzing navigability in social networks. It was introduced
in [21] where J. Kleinberg analyzed the small world phe-
nomenon observed in Milgram experiment [8, 27]. An aug-
mented graph model is a pair (G, ϕ) where G is an n-node
connected graph with positive edge cost function, and ϕ is a
collection of probability distributions {ϕu, u ∈ V (G)}. Ev-
ery node u ∈ V (G) is given one1 extra link pointing to some
node v, called the long range contact of u, chosen at random
among all nodes in G according to ϕu as follows:

Pr{u → v} = ϕu(v).

The link from a node to its long range contact is called a
long range link. The links of the underlying graph G are
called local links. Greedy routing in a graph of (G, ϕ) is
the oblivious routing protocol where the routing decision
taken at the current node u for a message with destination
t consists in

1. selecting a neighbor v of u that is the closest to t ac-
cording to the distance in G (this choice is performed
among all neighbors of u in G and the long range con-
tact of u), and

2. forwarding the message to v.

1Adding more that one link generally results in speeding
up navigability by a factor linear in the number of links,
and thus this dimension of the problem is ignored in this
paper which focusses on augmentations using one extra link
per node. Note that computing the minimum number of
links necessary to achieve a given navigability performance
is NP-hard [14].
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ABSTRACT
Augmented graphs were introduced for the purpose of ana-
lyzing the ”six degrees of separation between individuals”
observed experimentally by the sociologist Standley Mil-
gram in the 60’s. Formally, an augmented graph is a pair
(G, ') where G is a graph, and ' is a collection of proba-
bility distributions {'u, u 2 V (G)}. Every node u 2 V (G)
is given an extra link, called a long range link, pointing to
some node v, called the long range contact of u. The head v

of this link is chosen at random by Pr{u ! v} = 'u(v). In
augmented graphs, greedy routing is the oblivious routing
process in which every intermediate node chooses among all
its neighbors (including its long range contact) the one that
is closest to the target according to the distance measured
in the underlying graph G, and forwards to it. Roughly,
augmented graphs aim at modeling the structure of social
networks, while greedy routing aims at modeling the search-
ing procedure applied in Milgram’s experiment.

Our objective is to design e�cient universal augmentation
schemes, i.e., augmentation schemes that give to any graph
G a collection of probability distributions ' such that greedy
routing in (G, ') is fast. It is known that the uniform scheme
'unif is a universal scheme ensuring that, for any n-node

⇤
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graph G, greedy routing in (G, 'unif) performs in O(
p

n)
expected number of steps. Our main result is the design of
a universal augmentation scheme ' such that greedy routing
in (G, ') performs in Õ(n1/3) expected number of steps for
any n-node graph G. We also show that under some more
restricted model, the

p
n-barrier cannot be overcome.

Categories and Subject Descriptors
C.1.4 [Computer-Communication Networks]: Net-
work Architecture and design—Network topology ; C.2.2
[Computer-Communication Networks]: Network
Protocols—Routing protocols; C.2.4 [Computer-
Communication Networks]: Distributed systems

General Terms
Algorithms

Keywords
Small world phenomenon

1. INTRODUCTION
Augmented graphs were introduced in [22] and formally

defined in [13] for the purpose of understanding the ”small
world phenomenon”. Precisely, augmented graphs give a
framework for modeling and analyzing the ”six degrees of
separation” between individuals observed from Milgram’s
experiment [18], and stating that short chains of acquain-
tances between any pair of individuals can be discovered in
a distributed manner. The concept of augmented graphs
has recently gained interest, and gave rise to an abundant
literature (cf., e.g., [1, 2, 3, 7, 9, 10, 11, 13, 15, 16, 17, 21]).
We refer to Kleinberg’s survey [14] on complex networks for
more details on the concept of augmented graphs.

Formally, an augmented graph is a pair (G, ') where G is
an n-node connected graph, and ' is a collection of proba-
bility distributions {'u, u 2 V (G)}. Every node u 2 V (G)
is given an extra link pointing to some node v, called the
long range contact of u, chosen at random according to 'u

as follows: Pr{u ! v} = 'u(v). The link from a node to its
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a b s t r a c t

Augmented graphs were introduced for the purpose of analyzing the ‘‘six degrees of
separation between individuals’’ observed experimentally by the sociologist Standley
Milgram in the 60’s. We define an augmented graph as a pair (G,M) where G is an n-
node graph with nodes labeled in {1, . . . , n}, and M is an n ⇥ n stochastic matrix. Every
node u 2 V (G) is given an extra link, called a long range link, pointing to some node
v, called the long range contact of u. The head v of this link is chosen at random by
Pr{u ! v} = Mu,v . In augmented graphs, greedy routing is the oblivious routing process
in which every intermediate node chooses from among all its neighbors (including its long
range contact) the one that is closest to the target according to the distance measured in
the underlying graph G, and forwards to it. The best augmentation scheme known so far
ensures that, for any n-node graph G, greedy routing performs in O(

p
n) expected number

of steps.
Our main result is the design of an augmentation scheme that overcomes the O(

p
n)

barrier. Precisely, we prove that for any n-node graph Gwhose nodes are arbitrarily labeled
in {1, . . . , n}, there exists a stochasticmatrixM such that greedy routing in (G,M)performs
in Õ(n1/3), where the Õ notation ignores the polylogarithmic factors.

We prove additional results when the stochastic matrix M is universal to all graphs. In
particular, we prove that the O(

p
n) barrier can still be overcame for large graph classes

even if the matrix M is universal. This however requires an appropriate labeling of the
nodes. If the node labeling is arbitrary, then we prove that the O(

p
n) barrier cannot be

overcome with universal matrices.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Augmented graphs were defined in [18,19] for the purpose of understanding the ‘‘small world phenomenon’’, as a model
for greedy decentralized search.Precisely, augmented graphs give one framework for modeling and analyzing the ‘‘six
degrees of separation’’ between individuals observed from Milgram’s experiment [7,29], and stating that short chains of
acquaintances between any pair of individuals can be discovered in a distributedmanner. The concept of augmented graphs
has recently gained interest, and the study of navigable small-world networks has given rise to an abundant literature (cf.,
e.g., [1–3,9,12,13,15,18,23–26,33]).We refer to Kleinberg’s survey [21] on complex networks formore details on the concept

I A preliminary version of this paper appeared in the proceedings of the 19th Annual ACM Symposium on Parallelism in Algorithms and Architectures
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Abstract We consider small world graphs as defined
by Kleinberg (2000), i.e., graphs obtained from a d-
dimensional mesh by adding links chosen at random accord-
ing to the d-harmonic distribution. In these graphs, greedy
routing performs in O(log2 n) expected number of steps.
We introduce indirect-greedy routing. We show that giv-
ing O(log2 n) bits of topological awareness per node en-
ables indirect-greedy routing to perform in O(log1+1/d n)
expected number of steps in d-dimensional augmented
meshes. We also show that, independently of the amount
of topological awareness given to the nodes, indirect-
greedy routing performs in !(log1+1/d n) expected num-
ber of steps. In particular, augmenting the topological
awareness above this optimum of O(log2 n) bits would
drastically decrease the performance of indirect-greedy
routing.

Our model demonstrates that the efficiency of indirect-
greedy routing is sensitive to the “world’s dimension,” in
the sense that high dimensional worlds enjoy faster greedy
routing than low dimensional ones. This could not be ob-
served in Kleinberg’s routing. In addition to bringing new
light to Milgram’s experiment, our protocol presents sev-
eral desirable properties. In particular, it is totally oblivi-
ous, i.e., there is no header modification along the path from
the source to the target, and the routing decision depends
only on the target, and on information stored locally at each
node.

A preliminary version of this paper appeared in the proceedings of
the 23rd ACM Symposium on Principles of Distributed Computing
(PODC), St. Johns, Newfoundland, Canada, July 25–28, 2004.
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1 Introduction

We consider small world graphs as defined by Kleinberg [7],
i.e., graphs obtained from a d-dimensional mesh, for some
fixed d ≥ 1, by adding long-range links chosen at random
according to the d-harmonic distribution, i.e., the probabil-
ity that x chooses y as long-range contact is h(x, y) =
1/(Zx ·dist(x, y)d) where dist() is the Manhattan distance in
the mesh (i.e., the distance in the L1 metric), and Zx is a nor-
malizing coefficient (cf. Sects. 5.1 and 5.2 for more details).
This model aims at giving formal support to the “six degrees
of separation” between individuals experienced by Mil-
gram [14], and recently reproduced by Dodds, Muhamad,
and Watts [5] (see also [1]). In a social context, professional
as well as leisure occupation, citizenship, geography, ethnic-
ity, and religiousness are all intrinsic dimensions of the hu-
man multi-dimensional world, playing different roles with
possibly different impact degrees [6]. Each of these dimen-
sions should be used as an independent criterion for routing
in the social graph. In this context, one would thus expect
that the more criteria used the more efficient the routing
should be. Surprisingly however, Kleinberg’s model does
not reflect this fact, in the sense that greedy routing has
the same performance whether the number of mesh dimen-
sions considered is one, two, or more. Indeed, Kleinberg
has shown that greedy routing in the n-node d-dimensional
mesh augmented with long-range links chosen according to
the d-harmonic distribution performs in O(log2 n) expected
number of steps, i.e., independently of d . (This bound is
tight as it was shown in [3] that greedy routing performs in
at least !(log2 n) expected number of steps, independently
of d). Kleinberg has also shown that augmenting the d di-
mensional mesh with the r -harmonic distribution, r #= d ,
results in poor performance, i.e., !(nαr ) expected number
of steps for some positive constant αr . Furthermore, it is
shown in [2] that, in the 1-dimensional mesh augmented
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Fig. 1 Long-range links in the 2-dimensional mesh. The topological
awareness of node x is composed of the four plain long-range links

aware that there is a long-range link from a to a′, from d to
d ′, and from y to y′. Note that x does not have any long-
range link to either y or y′, but is just aware that there is a
long-range link from y to y′. On the other hand, x does not
know the long-range contacts of b and c.

This gives rise to the following: how to benefit from
the additional topological awareness given to the nodes
to perform simple (i.e., greedy) routing in the augmented
d-dimensional mesh? To answer this question, we define
indirect-greedy routing.

2.2 Indirect-greedy routing

To define indirect-greedy routing, let us introduce some no-
tation. For a directed edge e = (u, v), we denote u = tail(e),
and v = head(e). The 2d neighbors of the current node
x in the d-dimensional mesh are denoted by w1, . . . , w2d ,
and the long-range contact of x is denoted w0. Finally, let
t be the target node, t "= x . The function dist(u, v) is the
Manhattan distance between nodes u and v in the mesh.

Phase 1. Among all edges in {(x, w1), . . . , (x, w2d)} ∪ Ax ,
x selects an edge e such that head(e) is closest to the
target t in the mesh (according to the Manhattan dis-
tance). If there are several such edges e, x selects one
such that tail(e) is the closest to x in the mesh. Possible
remaining ties are broken arbitrarily. If tail(e) = x or if
dist(x, tail(e)) ≥ dist(x, t), then set x̂ = t , otherwise set
x̂ = tail(e).

Phase 2. Node x selects, among its 2d + 1 neighbors
w0, w1, . . . , w2d , the one that is the closest to x̂ , and for-
wards to that neighbor.

In the following, the node x̂ selected during Phase 1
is called the intermediate destination for x . Note that we
set x̂ = t if dist(x, tail(e)) ≥ dist(x, t). We could replace
this latter condition by dist(x, tail(e)) + dist(head(e), t) ≥
dist(x, t) but this would not improve the performance of
indirect-greedy routing. In fact, the condition dist(x, tail
(e)) ≥ dist(x, t) is somewhat more consistent with the fact
that routing from x to tail(e) is performed by traditional

greedy routing, whereas routing from head(e) to t is per-
formed by indirect-greedy routing.

Remark 1 Indirect-greedy routing is totally oblivious, i.e.,
there is no header modification along the path from the
source to the target, and the routing decision depends only
on the target, and on information stored locally at each
node. That is, in contrast with non-oblivious protocols
(see, e.g., [10, 13]), the computation of the intermediate
destination is performed at every node involved in the
routing process. In particular, if x is the current node, and
if wi is the neighbor of x to which it forwarded during
Phase 2, then the intermediate destination ŵi for wi may be
different from the intermediate destination x̂ for x .

Let us take two extreme examples to illustrate the behav-
ior of indirect-greedy routing:

(a) If the topological awareness of every node is reduced to
its own long-range contact, then the edge e selected dur-
ing Phase 1 is necessarily incident to the current node x ,
i.e., tail(e) = x and thus x̂ = x . Thus, during Phase 2, x
forwards to head(e). Therefore, indirect-greedy routing
reduces to greedy routing in this case.

(b) If the topological awareness of every node is the whole
graph, i.e., if every node is aware of all long-range con-
tacts (a very unrealistic hypothesis), then let e1, . . . , ek
be the k ≥ 1 long-range links such that, for every i ,
1 ≤ i ≤ k, dist(head(ei ), t) is minimum among all long-
range links. At every node involved in routing, the in-
termediate destination is yi = tail(ei ) for some i . (The
intermediate destination may change if the current node
is at equal distance from two intermediate destinations.)
For a source s, let m = min1≤i≤k dist(s, yi ). Most of the
process actually consists in traveling distance m in the
mesh, from s to one of the yi ’s, using Kleinberg’s greedy
routing. Hence, indirect-greedy routing also reduces to
greedy routing in this case. Obviously, in this example, a
faster routing would be obtained by computing a short-
est path from the source to the target in the augmented
mesh, but this would be a quite unrealistic model as far
as social networks are concerned (see Sect. 5).

Remark 2 As opposed to Kleinberg’s greedy routing, the
Manhattan distance to the target is not strictly decreasing at
each step of indirect-greedy routing. Indeed, an intermedi-
ate destination can be farther from the target than the current
node, and thus going to this intermediate destination may
result in increasing the Manhattan distance to the target. We
will see in the next section that, under a weak condition, this
phenomenon has little impact on the expected performance
of indirect-greedy routing because it is counter balanced by
the fact that the intermediate destination has a long-range
contact leading close to the target.

3 Performance of indirect greedy routing

In this section, we give a sufficient condition for indirect-
greedy routing to converge, i.e., to always route correctly
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Fig. 4 The expected number of steps vs. the awareness v(n) =
(log n)α . The expected number of steps is "((log n)2+α/d−α) if α < 1
(by Lemma 5), and "((log n)1+α/d−o(1)) if 1 ≤ α < d (by Lemma 6).
For α > d , the expected number of steps is #(log2 n) (by Lemma 6)

Proof Let s be the source node, t be the target node, and
m = dist(s, t). Assume first that m = logα n for some α <
1. Let r ≤ m, and let B be the ball of radius 2r centered at
x . By definition of the d-harmonic distribution, we have

Pr(x → B) =
∑

b∈B

Pr(x → b) ≈ 1
log n

∑

b∈B

1
dist(x, b)d

≈ 1
log n

2r∑

i=1

|Si |
id

where Si is the set of nodes at distance exactly i from x .
Thus

Pr(x → B) ≈ 1
log n

2r∑

i=1

id−1

id ≈ log r
log n

≤ log m
log n

.

Therefore, while going from s to t using Kleinberg’s greedy
routing, the expected number of discovered long range links
that connect to nodes closer to t than the current node is
O(

m log m
log n ). Since m = logα n with α < 1, this number goes

to zero as n goes to infinity, and thus no long range link is
used between s and t , resulting in m expected routing steps.

Assume now that m = logα n for some α > 1. Then, for
i ≥ 0, let

Bi = {u | dist(u, t) ≤ m/2i }.

For any node x ∈ B0 \ B1, and any i ≥ 1, we have (ignoring
the constant depending on d only):

Pr(x → Bi ) =
∑

b∈Bi

Pr(x → b) ≈ 1
log n

∑

b∈Bi

1
dist(x, b)d

≤ 1
log n

· |Bi |
md(1 − 1

2i )
d

The latter inequality follows from the fact the d-harmonic
distribution decreases with the distance. Since |Bi | ≈
(m/2i )d , we get that, up to a constant,

Pr(x → Bi ) ≤ 1
log n

· (m/2i )d

md(1 − 1
2i )

d
= 1

(2i − 1)d log n
.

Therefore, while traveling in B0\B1, the probability to visit a
node whose long-range contact is in B1 is only O(1/ log n).
Thus while traveling in B0\B1, the expected number of steps
before visiting a node whose long-range contact is in Bi is
"(log n) for any i ≥ 1. Since m ' log n, such a node will
eventually be visited. However, since Pr(x → Bi ) decreases
exponentially with i , the expected value of the index i such
that greedy routing reaches a node in Bi while entering B1
for the first time is a constant. As a consequence, an ex-
pected number of "(log n) steps are required to decrease
the distance to the target by at most a constant expected fac-
tor. Therefore, starting from a node at distance m from the
target, at least "(log m log n) expected number of steps are
required. ()

To prove Theorem 2, we consider separately the cases
v(n) * log n, and v(n) ' log n. Intuitively, if every node
is aware of the long-range contacts of its v(n) * log n clos-
est neighbors, then reaching an intermediate destination is
fast, but a large number of intermediate destinations must
be visited before expecting reaching a node whose long
range-contact leads close to the target. In fact, we show the
following:

Lemma 5 If v(n) = logα n, for some 0 ≤ α < 1, then the
expected number of steps to reach the target is at least

"(((log n)/v(n))1−1/d · log1+1/d n).

Proof Let m = dist(x, t) be the distance between the current
node x and the target t . We use the same notations as in the
proof of Theorem 1. Let B = {u | dist(u, t) ≤ m/2}, and,
for any node u, let V (u) = {v | dist(u, v) ≤ v(n)1/d}. From
the definition of the d-harmonic distribution, an expected
number of "(log n) long-range contacts must be considered
before finding one that leads to a node in B. Hence, we com-
pute the expected number of steps required to learn about
"(log n) long-range contacts. Starting from x , the route vis-
its a sequence y1, y2, . . . of good intermediate destinations
(see Fig. 2).
Claim 4 The expected number of steps required to go from
y j to y j+1 is #(v(n)1/d).

Proof Let x0, x1, . . . , x$ be the sequence of bad intermedi-
ate destinations that are considered while traveling to y j+1
starting from y j , until the route eventually reaches the good
intermediate destination y j+1. I.e, x0 = y j and x$ = y j+1.
Let r = dist(x0, x1) (note that r ≤ v(n)1/d since x1 ∈
V (x0)).

Since the expected Manhattan distance r̄ between x0 and
x1 is "(v(n)1/d), and v(n) = logα n, α < 1, it follows from
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