Smaller Universal Graphs for Caterpillars and Graphs of Bounded Pathwidth

Cyril Gavoille and Arnaud Labourel

2nd Workshop Complexity and Algorithms (CoA) Institut Henri Poincaré - Paris September 26th, 2022

Representation of Graphs

adjacency lists

0	2	3	6	9
1	2	5	6	7
2	0	1	3	6
$\mathbf{3}$	0	2	4	9
4	3	5	8	9
5	1	4	7	8
6	0	1	2	7
7	1	5	6	8
8	4	5	7	9
9	0	3	4	8

adjacency matrix

	0	1	2	$\mathbf{3}$	4	5	6	7	8	9
0	0	0	1	1	0	0	1	0	0	1
1	0	0	1	0	0	1	1	1	0	0
2	1	1	0	1	0	0	1	0	0	0
$\mathbf{3}$	1	0	1	0	1	0	0	0	0	1
4	0	0	0	1	0	1	0	0	1	1
5	0	1	0	0	1	0	0	1	1	0
6	1	1	1	0	0	0	0	1	0	0
7	0	1	0	0	0	1	1	0	1	0
8	0	0	0	0	1	1	0	1	0	1
9	1	0	0	1	1	0	0	0	1	0

1 node $=1$ pointer in the data-structure

Implicit Representation

Idea: Associate with each node some information and only use the information of any two nodes to determine whether they are adjacent.

Implicit Representation

Idea: Associate with each node some information and only use the information of any two nodes to determine whether they are adjacent.

An adjacency labeling scheme for a graph family \mathscr{F} is a pair of functions (ℓ, f) such that
$\forall G \in \mathscr{F}, \forall u, v \in V(G)$

- Encoder: $\ell(u, G)$ is a label (binary string)
- Decoder: $f(\ell(u, G), \ell(v, G))$ is true $\Leftrightarrow u v \in E(G)$

Goal: minimize label size (in bits)
... and time complexities of ℓ, f

Ex: Interval Graphs

$\ell(u, G):=\left(l_{u}, r_{u}\right)$ with $I_{u}<r_{u} \in\{1, \ldots, 2 n\}$ $f\left(\left(l_{u}, r_{u}\right),\left(l_{v}, r_{v}\right)\right):=$ true $\Leftrightarrow\left[l_{u}, r_{u}\right] \cap\left[l_{v}, r_{v}\right] \neq \varnothing$

Universal Graph

Babai, Chung, Erdös, Graham, Spencer 1982

A graph U is an induced-universal graph for \mathscr{F} if every graph of \mathscr{F} is isomorphic to some induced subgraph of U.

$$
\mathscr{F}=\{\text { trees with } 6 \text { nodes }\}
$$

Universal Graph vs. Labeling Scheme

universal graph for \mathscr{F}

k-bit labels \Leftrightarrow universal graph of 2^{k} nodes

Results

family	label size	U. graph size	refs.
treewidth k	$\log n+O(k \lg \lg n)$	$n \cdot(\log n)^{O(k)}$	$[G L 07]$
planar, $H \boxtimes P$	$\log n+O \tilde{O}(\sqrt{\lg n})$	$n^{1+o(1)}$	$[$ DEGJ×21]

Results

family	label size	U. graph size	refs.
treewidth k	$\log n+O(k \lg \lg n)$	$n \cdot(\log n)^{O(k)}$	[GLO7]
planar, $H \otimes P$	$\log n+\tilde{O}(\sqrt{\lg n})$	$n^{1+o(1)}$	[DEGJ×21]
outerplanar Δ	$\log n+O_{\Delta}(1)$	$O_{\Delta}(n)$	[C90][AR14]
trees	$\log n+O(1)$	$O(n)$	[ADK17]
$\Delta \leqslant 2$	$\log n+O(1)$	$2 n$	[AAHKS20]

Results

family	label size	U. graph size	refs.
treewidth k	$\log n+O(k \lg \lg n)$	$n \cdot(\log n)^{O(k)}$	$[G L 07]$
planar, $H \otimes P$	$\log n+\tilde{O}(\sqrt{\lg n})$	$n^{1+o(1)}$	[DEGJ×21]
outerplanar Δ	$\log n+O_{\Delta}(1)$	$O_{\Delta}(n)$	$[$ C90][AR14]
trees	$\log n+O(1)$	$O(n)$	[ADK17]
$\Delta \leqslant 2$	$\log n+O(1)$	$2 n$	[AAHKS20]
caterpillars	$\log n+O(1)$	$256 n$	[BGL06]
caterpillars	$\log n+O(1)$	$384 n$	[ADK17]

Results

family	label size	U. graph size	refs.
treewidth k	$\log n+O(k \lg \lg n)$	$n \cdot(\log n)^{O(k)}$	$[G L 07]$
planar, $H \otimes P$	$\log n+\tilde{O}(\sqrt{\lg n})$	$n^{1+o(1)}$	[DEGJ×21]
outerplanar Δ	$\log n+O_{\Delta}(1)$	$O_{\Delta}(n)$	[C90][AR14]
trees	$\log n+O(1)$	$O(n)$	[ADK17]
$\Delta \leqslant 2$	$\log n+O(1)$	$2 n$	[AAHKS20]
caterpillars	$\log n+O(1)$	$256 n$	$[$ BGL06]
caterpillars	$\log n+O(1)$	$384 n$	[ADK17]
caterpillars	$\log n+O(1)$	$8 n$	new
bounded pw	$\log n+O(1)$	$O(n)$	new

Results

family	label size	U. graph size	refs.
treewidth k	$\log n+O(k \lg \lg n)$	$n \cdot(\log n)^{O(k)}$	$[G L 07]$
planar, $H \otimes P$	$\log n+\tilde{O}(\sqrt{\lg n})$	$n^{1+o(1)}$	$[$ [DEGJ×21]
outerplanar Δ	$\log n+O_{\Delta}(1)$	$O_{\Delta}(n)$	$[$ C90][AR14]
trees	$\log n+O(1)$	$O(n)$	$[$ ADK17]
$\Delta \leqslant 2$	$\log n+O(1)$	$2 n$	[AAHKS20]
caterpillars	$\log n+O(1)$	$256 n$	[BGL06]
caterpillars	$\log n+O(1)$	$384 n$	[ADK17]
caterpillars	$\log n+O(1)$	$8 n$	new
bounded pw	$\log n+O(1)$	$O(n)$	new

Preliminary results with linear size for some trees: binary
[BLG06], bounded-degree [BGL07][AR14], bounded-depth [FK10]

I. Universal Graph for Caterpillars

A caterpillar forest is a forest in which the nodes of degree at least two induce paths.

I. Universal Graph for Caterpillars

A caterpillar forest is a forest in which the nodes of degree at least two induce paths.

Theorem 1
Caterpillar forests with n nodes have a universal graph \mathscr{U}_{n} with less than $8 n$ nodes.

Lower Bound (Folk)

Every universal graph for the star and the path with $n \geqslant 5$ nodes requires $\lfloor 3 n / 2\rfloor$ nodes.

Lower Bound (Folk)

Every universal graph for the star and the path with $n \geqslant 5$ nodes requires $\lfloor 3 n / 2\rfloor$ nodes.

Recently. Every family of three n-node caterpillars has a universal graph with at most $3\lfloor n / 2\rfloor+3$ nodes.

Universal Graph \mathscr{U}_{n} for Caterpillar

Nodes:

- independent set S of $6 n$ nodes
- layers L_{i} of $n / 2^{i}$ nodes for i from 0 to $\lceil\log (n / 6)\rceil$

Universal Graph \mathscr{U}_{n} for Caterpillar

Nodes:

- independent set S of $6 n$ nodes
- layers L_{i} of $n / 2^{i}$ nodes for i from 0 to $\lceil\log (n / 6)\rceil$

S

Universal Graph \mathscr{U}_{n} for Caterpillar

Nodes:

- independent set S of $6 n$ nodes
- layers L_{i} of $n / 2^{i}$ nodes for i from 0 to $\lceil\log (n / 6)\rceil$

Universal Graph \mathscr{U}_{n} for Caterpillar

Nodes:

- independent set S of $6 n$ nodes
- layers L_{i} of $n / 2^{i}$ nodes for i from 0 to $\lceil\log (n / 6)\rceil$

$$
\left[\Rightarrow 6 n+\sum_{i \geqslant 0} n / 2^{i}<8 n \text { nodes }\right]
$$

Universal Graph \mathscr{U}_{n} for Caterpillar

Nodes:

- independent set S of $6 n$ nodes
- layers L_{i} of $n / 2^{i}$ nodes for i from 0 to $\lceil\log (n / 6)\rceil$

$$
\left[\Rightarrow 6 n+\sum_{i \geqslant 0} n / 2^{i}<8 n \text { nodes }\right]
$$

Each $u \in L_{i}$ is adjacent to:

- an interval $I(u)$ of $6 \cdot 2^{i}$ nodes of S
- its predecessor and successor in L_{i} and all nodes vertically below

Universal Graph \mathscr{U}_{n} for Caterpillar

Nodes:

- independent set S of $6 n$ nodes
- layers L_{i} of $n / 2^{i}$ nodes for i from 0 to $\lceil\log (n / 6)\rceil$

$$
\left[\Rightarrow 6 n+\sum_{i \geqslant 0} n / 2^{i}<8 n \text { nodes }\right]
$$

Each $u \in L_{i}$ is adjacent to:

- an interval $I(u)$ of $6 \cdot 2^{i}$ nodes of S
- its predecessor and successor in L_{i} and all nodes vertically below

Universal Graph \mathscr{U}_{n} for Caterpillar

Nodes:

- independent set S of $6 n$ nodes
- layers L_{i} of $n / 2^{i}$ nodes for i from 0 to $\lceil\log (n / 6)\rceil$

$$
\left[\Rightarrow 6 n+\sum_{i \geqslant 0} n / 2^{i}<8 n \text { nodes }\right]
$$

Each $u \in L_{i}$ is adjacent to:

- an interval $I(u)$ of $6 \cdot 2^{i}$ nodes of S
- its predecessor and successor in L_{i} and all nodes vertically below

Embedding Caterpillars Forests in \mathscr{U}_{12}

Star of 12 nodes

Matching of 6 edges

Path of 12 nodes

Some caterpillar of 12 nodes

Adjacency in \mathscr{U}_{n}

Embedding in \mathscr{U}_{n}

$\delta(u):=$ number of leaves adjacent to internal node u Basic idea: Embed each internal node u_{k} in $u \in \mathscr{U}_{n}$ such that $I(u)$ contains at least $\delta(u)$ nodes.

How to embed u_{k} ?

u_{k} should be placed
at this level
-

How to embed u_{k} ?

How to embed u_{k} ?

How to embed u_{k} ?

How to embed u_{k} ?

Recall

How to embed u_{k} ?

How to embed u_{k} ?

Recall

-

How to embed u_{k} ?

How to embed u_{k} ?

Recall

II. Graphs of Pathwidth p

The pathwidth of G is the maximum clique size minus one of an interval graph containing G as subgraph.

$$
\text { (} p=1 \Leftrightarrow G \text { is a caterpillar forest) }
$$

Adjacency Labeling Scheme

Theorem 2

There is an adjacency labeling scheme for graphs of n nodes and pathwidth p with $\log n+O(p)$-bit labels. \Rightarrow universal graph of $n \cdot 2^{O(p)}$ nodes.

- previous upper bound: $\log n+O(p \log \log n)$ bits
- matching lower bound: $\log n+\Omega(p)$ bits
$\left[\geqslant \frac{1}{n} \log \left(\mathscr{L}_{n, p}\right)\right.$ bits where $\mathscr{L}_{n, p}=n!\cdot 2^{\Theta(n p)}$ is the number of pathwidth-p labeled graphs with n nodes]

Warm-up: Interval Representation

- any $(p+1)$-coloring

Warm-up: Interval Representation

- any $(p+1)$-coloring

Warm-up: Interval Representation

- any $(p+1)$-coloring
- simplicial p-orientation:

$$
u \rightarrow v \quad \Leftrightarrow \quad v=u \text { or } v=u
$$

Warm-up: Interval Representation

- any $(p+1)$-coloring
- simplicial p-orientation:

$$
u \rightarrow v \quad \Leftrightarrow \quad v=u \text { or } v=u
$$

Warm-up: Interval Representation

- any $(p+1)$-coloring
- simplicial p-orientation:

$$
u \rightarrow v \quad \Leftrightarrow \quad v=u \text { or } v=u
$$

- list of missing colors of out-neighbors

$\Rightarrow 2 \log n+p+O(\log p)$-bit labeling scheme NB: interval graphs requires $2 \log n-o(\log n)$ bits.

Dominating Path Decomposition

- in each component, start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

Dominating Path Decomposition

- in each component, start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

Dominating Path Decomposition

- in each component, start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

Dominating Path Decomposition

- in each component, start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

Dominating Path Decomposition

- in each component, start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

Dominating Path Decomposition

- in each component, start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

Dominating Path Decomposition

- in each component, start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

Dominating Path Decomposition

- in each component, start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

Dominating Path Decomposition

- in each component, start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

Dominating Path Decomposition

- in each component, start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

\Rightarrow every interval is contained in the union of two consecutive intervals of the blue path

Dominating Path Decomposition

Three kinds of intervals:

- the blue intervals B of the dominating path
- the red intervals R that contain at least one end of a blue interval
- the remaining green intervals

Dominating Path Decomposition

- green intervals have thickness strictly less than the original
- repeat this process to obtain a decomposition into $\left(B_{1}, R_{1}\right),\left(B_{2}, R_{2}\right), \ldots,\left(B_{p+1}, R_{p+1}\right)$

Blue Node Encoding

Enlarge the spaces between two consecutive ends such that for blue intervals:

- the spaces between ends are power of 2
- two consecutive spaces differ only by a x2

\ldots from B_{p+1} to $B_{1} \Rightarrow$ ends $\in\left[1, n \cdot 2^{O(p)}\right]$

Blue Node Encoding

In the label of each blue interval, we encode:

- the new left end $l \in\left[1, n \cdot 2^{O(p)}\right]$
- the integers k_{0}, k_{1} and k_{2}
- the layer index (= index i of B_{i} containing it)
- some more information (more details later)

NB: $\left(l, k_{0}\right)$ can be encoded with $\log n+O(p)$ bits

Red Node Encoding

In the label of each red interval, we encode information relative to the two blue intervals containing it:

- the left end l of the first blue interval
- the integers $k_{0}, k_{1}, k_{2}, k_{3}$ and k_{4}
- the range $\subseteq[0,4]$ where the interval falls into
- the layer index
- some more information (more details later)

Adjacency: Easy Case

The node with the smaller layer index is blue \Rightarrow adjacency is easy since one can compute exactly the ends of the blue interval

subcase 1: red interval of the same layer
subcase 2: interval (blue or red) with greater layer

Adjacency: Hard Case

If the node with the smaller layer index is red
\Rightarrow adjacency is harder to determine since one can only compute some range containing the ends of the red interval

Hint: store $O(p)$ bits more

Adjacency: Hard Case

Each red interval stores the rank of its ends (sorted by length) inside its uncertainty blue zone
encode for each layer the number of intersecting red intervals of this layer: 0,3,2 $\Rightarrow O(p)$ bits
rank : layer

2
3
\Rightarrow the node (blue or red) can check if the red interval corresponds to an interval intersecting it

Conclusion and Open Problems

Summary

- Universal graph \mathscr{U}_{n} for caterpillar forests $3 n / 2 \leqslant\left|V\left(\mathscr{U}_{n}\right)\right|<8 n$ (pathwidth $p=1$)
- Universal graph for graphs of pathwidth p with $n \cdot 2^{\Theta(p)}$ nodes $(\log n+\Theta(p)$-bit labels)

Open Problems

- Improve bounds for caterpillars (universal graph)
- $\log n+\Theta(\log p)$-bit labels for interval graphs of maximum clique size p ?
- $\log n+\Theta(t)$-bit labels for graphs of treewidth t ?

