Universal Graphs (& Implicit Representation)

Cyril Gavoille

Journées de Combinatoire de Bordeaux @Home on BBB Feb. 1-4, 2021

Induced-Universal Graphs

[Babai, Chung, Erdös, Graham, Spencer '82]

A graph U is an **induced-universal** graph for the family F if every graph of F is isomorphic to an *induced* subgraph of U.

Goal: to find such a universal graph for a given family F_n with few vertices (w.r.t. n)

Representation of a Graph

adjacency list

1 (2,5 2 1,3 3 2,4,5 4 3 5 (1,3) matrix

1 node = 1 pointer in the data-structure (it does not carry any specific information)

Implicit Representation

To associate with the nodes more information, typically adjacency, and to remove the data-structure.

Interval graphs: $u \mapsto I(u) \subseteq [1,2n]$

Edges: $u-v \Leftrightarrow I(u) \cap I(v) \neq \emptyset$

Compact representation: $O(\log n)$ bits/node Possibly time O(n) algorithms vs. O(n+m)

Labelling Schemes

P = a graph property defined on pairs of nodes

F = a graph family

A P-labelling scheme for F is a pair (λ, f) such that $\forall G \in F, \forall u, v \in V(G)$:

- [labelling] $\lambda(u,G)$ is a binary string
- [decoder] $f(\lambda(u,G),\lambda(v,G))=P(u,v,G)$

Goal: to minimize the maximum label size **In this talk**: P(u,v,G) is TRUE $\Leftrightarrow uv \in E(G)$

$$\lambda(u,T)=(u, parent(u)) \text{ or } (u,u)$$

 $f(uv,xy)=(v=x \text{ or } u=y)$

For trees with n nodes: $\sim 2\log n$ bits/node (the constant does matter [Abiteboul et al. - SICOMP '06])

Universal & Label Graphs

Universal & Label Graphs

induced-universal graph U

graphs of F

 $c \log n$ -bit labelling \Leftrightarrow induced-universal graph of n^c nodes

Universal Graphs for Trees (for n=6 nodes)

From the (u, parent(u)) labelling \Rightarrow induced-universal graph of n^2 =36 nodes

61	6 2	63	6 4	65	66
o	<u>•</u>	•	•	<u>•</u>	•
51	52	53	54	55	56
o	o	•	o	4 5	•
41	42	43	44		46
o	o	o	o	o	o
31	32	33	34	35	36
o	o	o	<u>o</u>	o	o
21	22	23	24	25	26
o 11	<u>o</u> 12	• 13	<u> </u>	<u> </u>	o 16

Using DFS for T: (u,v) $\Rightarrow u>v$ or u=v=1

Universal Graphs for Trees (for n=6 nodes)

From the (u, parent(u)) labelling \Rightarrow induced-universal graph of n^2 =36 nodes

6 1	62	6 3	6 4	65	
o 51	<u>•</u> 52	• 53	• 54		
o 41	• 42	43			
o 31	32				
o 21					
o 11	• 12				• 16

Using DFS for T: (u,v)

$$\Rightarrow u>v$$
 or $u=v=1$

$$\Rightarrow n(n-1)/2+1=16$$
 nodes

Universal Graphs for Trees (for n=6 nodes)

From the (u, parent(u)) labelling \Rightarrow induced-universal graph of $n^2=36$ nodes

Using DFS for T: (u,v)

 $\Rightarrow u>v$ or u=v=1

 $\Rightarrow n(n-1)/2+1=16$ nodes

Universal Graphs for Trees (universal trees)

$$n = 2$$
:

$$n = 3$$
:

$$n = 4$$
:

n = 5:

n = 6:

n = 7:

ON GRAPHS WHICH CONTAIN ALL SMALL TREES, II.

F.R.K. CHUNG - R.L. GRAHAM - N. PIPPENGER

COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI
18. COMBINATORICS, KESZTHELY (HUNGARY), 1976.

14 nodes

Ex: Degree at most 2 [How to get log n + O(1) bit labels?]

Labelling Schemes for Planar Graphs

Edge partition: combining schemes


```
Arboricity-k graphs: (k+1)\log n bits \Rightarrow Planar (k=3): 4\log n bits [KNR - STOC'88]
```

Better Labelling Schemes

```
For trees: \log n + O(\log^* n), \log n + O(1)
[Alstrup,Rauhe - FOCS'02]
[Alstrup,Dahlgaard,B.T.Knudsen - FOCS'15 & JACM'17]
\Rightarrow Arboricity-k: k\log n + O(1)
\Rightarrow Planar: 3\log n + O(1)

For treewidth-k: \log n + O(k\log\log n)
[G.,Labourel - ESA'07]
\Rightarrow Planar & Minor-free: 2\log n + O(\log\log n)
```

Better: Bonamy, G., Pilipczuk – SODA'20

For planar & bounded genus: $\frac{4}{3} \log n + O(\log \log n)$ \Rightarrow

Induced-universal graph of $n^{4/3+o(1)}$ nodes for n-node planar graphs (and bounded genus graphs)

Labelling the nodes is polynomial Decoding adjacency takes constant time

Improved Bound: Dujmovic, Esperet, G., Joret, Micek, Morin – FOCS'20

Theorem. The family of n-vertex subgraphs of $H \boxtimes P$ has a labelling scheme with $\log n + o(\log n)$ bit labels, where H has bounded treewidth and P is a path.

Induced-universal graph of $n^{1+o(1)}$ nodes for n-node planar graphs

(and many other graph families)

Labelling the nodes takes $O(n\log n)$ time Decoding adjacency takes $\sim \sqrt{\log n}$ time

Strong Product

Figure 1: The strong product $H \boxtimes P$ of a tree H and a path P.

Special Case

Figure 5: The special case where *G* is a subgraph of $P_1 \boxtimes P_2$.

Open Problems

- 1. Improve the 2nd order term, log n + O(1)?
- Extend to minor-free graphs
- 3. Improve to $\log n + \theta(k)$ for treewidth-k
- 4. Prove lower bounds for planar or minor-free

Best lower bound for planar: $\log n + \Omega(1)$

No families with $n! \, 2^{O(n)}$ labelled graphs like trees, planar, bounded genus, bounded treewidth, minor-free (hereditary)... is known to require labels of $\log n + o(1)$ bits.